REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2016

ST. LOUIS, MISSOURI

JULY 21, 2017

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2016

ST. LOUIS, MISSOURI

JULY 21, 2017

prepared by:

U.S. Army Corps of Engineers, St. Louis District Office Formerly Utilized Sites Remedial Action Program

with assistance from:

Leidos, Inc.

under Contract No. W912P9-12-D-0506, Delivery Order 0005

TABLE OF CONTENTS

TIO	<u>N</u>	<u>I</u>	PAGE
ΓOF	TABLE	S	ii
ΓOF	FIGURI	ES	iii
ГОБ	APPEN	DICES	iii
RONY	YMS AN	D ABBREVIATIONS	iv
T AB	BREVIA	ATIONS	vi
CCUT	IVE SU	MMARY	ES-1
HIS	TORICA	AL SITE BACKGROUND AND CURRENT SITE STATUS	1-1
1.1			
1.2			
1.3	ST. LO	UIS SITE PROGRAM AND SITE BACKGROUND	1-1
	1.3.1		
EVA	LUATI	ON OF RADIOLOGICAL AIR MONITORING DATA	2-1
2.1	RADIO		
	2.1.1		
2.2			
	2.2.1		
	2.2.2		
EX(CAVATI		
3.1	EVALU	JATION OF EXCAVATION-WATER DISCHARGE MONITORING	
GRO	OUND-W	VATER MONITORING DATA	4-1
4.1	GROUN	ND-WATER MONITORING AT THE ST. LOUIS DOWNTOWN SITE	4-2
4.2	EVALU	JATION OF GROUND-WATER MONITORING DATA	4-2
	4.2.1		
			4-4
	4.2.3		4-5
	4.2.4		
ENV	VIRONM	IENTAL QUALITY ASSURANCE PROGRAM	5-1
5.1	PROGR	RAM OVERVIEW	5-1
5.2	QUALI	TY ASSURANCE PROGRAM PLAN	5-1
5.3	SAMPL	ING AND ANALYSIS GUIDE	5-1
5.4	FIELD	SAMPLE COLLECTION AND MEASUREMENT	5-2
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	F OF F OF F OF RONY T AB CCUT HIS 1.1 1.2 1.3 EVA 2.1 2.2 EXC 3.1 4.1 4.2 5.1 5.2 5.3	T OF FIGURE T OF APPENT RONYMS AN T ABBREVIA CCUTIVE SUITE HISTORICA 1.1 INTRO 1.2 PURPO 1.3 ST. LO 1.3.1 EVALUATI 2.1 RADIO 2.1.1 2.1.2 2.1.3 2.2 EVALU 2.2.1 2.2.2 2.2.3 2.2.4 EXCAVATI 3.1 EVALU RESUL GROUND-W 4.1 GROUN 4.2 EVALU 4.2.1 4.2.2 4.2.3 4.2.4 ENVIRONM 5.1 PROGR 5.2 QUALI 5.3 SAMPI	TOF TABLES TOF FIGURES TOF APPENDICES TOF APPENDICE

TABLE OF CONTENTS (Continued)

<u>SEC</u>	TION	<u>1</u>]	PAGE
	5.5	PERFO	RMANCE AND SYSTEM AUDITS	5-2
		5.5.1	Field Assessments	5-2
		5.5.2	Laboratory Audits	5-3
	5.6	SUBCO	ONTRACTED LABORATORY PROGRAMS	5-3
	5.7	QUALI	TY ASSURANCE AND QUALITY CONTROL SAMPLES	5-4
		5.7.1	Duplicate Samples	
		5.7.2	Split Samples	
		5.7.3	Equipment Rinsate Blanks	5-4
	5.8	DATA	REVIEW, EVALUATION, AND VALIDATION	5-5
	5.9		SION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, LETENESS, AND SENSITIVITY	
	5.10	DATA	QUALITY ASSESSMENT SUMMARY	5-7
	5.11		TS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATI	
6.0	RAD	OIOLOG	GICAL DOSE ASSESSMENT	6-1
	6.1	SUMM	ARY OF ASSESSMENT RESULTS	6-1
	6.2		VAY ANALYSIS	
	6.3	EXPOS	SURE SCENARIOS	6-2
	6.4		RMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR	
			SURE SCENARIOS	6-2
7.0	REF	ERENC	CES	7-1
			LIST OF TABLES	
NUN	ABER	2		PAGE
	e 2-1.	_		
	e 2-1. e 2-2.		nmary of SLDS Gamma Radiation Data for CY 2016nmary of SLDS Airborne Radioactive Particulate Data for CY 2016	
	e 2-2. e 2-3.		nmary of SLDS Andorne Radioactive Farticulate Data for C1 2010	
	e 2-3. e 2-4.		nmary of SLDS Outdoor Airborne Radon (Rn-222) Data for CY 2016	
	e 3-1.		avation Water Discharged at the SLDS in CY 2016	
	e 4-1.		eened HUs for SLDS Ground-Water Monitoring Wells in CY 2016	
	e 4-2.		alytes Detected in HU-A Ground Water at the SLDS in CY 2016	
	e 4-3.		alytes Detected in HU-B Ground Water at the SLDS in CY 2016	
	e 4-4.		ults of Mann-Kendall Trend Test for SLDS Ground Water in CY 2016	
	e 5-1.		n-Radiological Duplicate Sample Analysis for CY 2016 – Ground Water	
	e 5-2.		n-Radiological Split Sample Analysis for CY 2016 – Ground Water	
	e 5-3.	Nor	n-Radiological Parent Samples and Associated Duplicate and Split	
		San	nples for CY 2016 – Ground Water	5-7
Tabl	e 6-1.	Con	nplete Radiological Exposure Pathways for the SLDS	6-2

LIST OF FIGURES

- Figure 1-1. Location Map of the St. Louis Sites
- Figure 1-2. Plan View of the SLDS
- Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at St. Louis Background Location USACE Service Base
- Figure 2-2. Gamma Radiation and Radon Monitoring Locations at the SLDS
- Figure 3-1. MSD Excavation-Water Discharge Point at the SLDS
- Figure 4-1. Generalized Stratigraphic Column for the SLDS
- Figure 4-2. SLDS Geologic Cross-Section A-A'
- Figure 4-3. Ground-Water Monitoring Well Locations at the SLDS
- Figure 4-4. Arsenic Concentration Trends in Unfiltered Ground Water at the SLDS
- Figure 4-5. Total U Concentration Trends in Unfiltered Ground Water at the SLDS
- Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Cadmium in Ground-Water Monitoring Wells at the SLDS
- Figure 4-7. HU-A Potentiometric Surface at the SLDS (June 7, 2016)
- Figure 4-8. HU-B Potentiometric Surface at the SLDS (June 7, 2016)
- Figure 4-9. HU-A Potentiometric Surface at the SLDS (November 9, 2016)
- Figure 4-10. HU-B Potentiometric Surface at the SLDS (November 9, 2016)
- Figure 6-1. St. Louis FUSRAP SLDS Dose Trends
- Figure 6-2. St. Louis FUSRAP SLDS Maximum Dose vs. Background Dose

LIST OF APPENDICES

- Appendix A St. Louis Downtown Site 2016 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 *CFR* 61, Subpart I
- Appendix B* Environmental Thermoluminescent Dosimeter, Alpha Track Detector, and Perimeter Air Data
- Appendix C* Storm-Water, Waste-Water, and Excavation-Water Data
- Appendix D* Ground-Water Field Parameter Data for Calendar Year 2016 and Analytical Data Results for Calendar Year 2016
- Appendix E* Well Maintenance Checklists and Well Abandonment Registration Forms for the Annual Ground-Water Monitoring Well Inspections Conducted at the St. Louis Downtown Site in Calendar Year 2016
- Appendix F Dose Assessment Assumptions

BACK COVER

*CD-ROM Appendices B, C, D, and E

iii REVISION 0

ACRONYMS AND ABBREVIATIONS

AEC U.S. Atomic Energy Commission

amsl above mean sea level

ARAR applicable or relevant and appropriate requirement

ATD alpha track detector BTOC below top of casing

CEDE committed effective dose equivalent

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations
COC contaminant of concern

CY calendar year
DL detection limit
DO dissolved oxygen

DOD U.S. Department of Defense DQO data quality objective EDE effective dose equivalent

ELAP Environmental Laboratory Accreditation Program

EM Engineer Manual

EMDAR Environmental Monitoring Data and Analysis Report EMG Environmental Monitoring Guide for the St. Louis Sites

EMICY16 Environmental Monitoring Implementation Plan for the St. Louis

Downtown Site for Calendar Year 2016

EMP Environmental Monitoring Program

ER Engineer Regulation

FUSRAP Formerly Utilized Sites Remedial Action Program

Futura Coatings Company

GRAAA ground-water remedial action alternative assessment

HISS Hazelwood Interim Storage Site

HU hydrostratigraphic unit ICP inductively coupled plasma

IL investigative limit

K potassium

KPA kinetic phosphorescence analysis

Mallinckrodt LLC

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDNR Missouri Department of Natural Resources

MDC minimum detectable concentration

MDL method detection limit
MED Manhattan Engineer District

MSD Metropolitan St. Louis Sewer District

NAD normalized absolute difference

NESHAP National Emissions Standards for Hazardous Air Pollutants

NRC U.S. Nuclear Regulatory Commission

NTU nephelometric turbidity unit ORP oxidation reduction potential PDI pre-design investigation

QA quality assurance

QAPP quality assurance program plan

iv REVISION 0

ACRONYMS AND ABBREVIATIONS (Continued)

QC quality control

QSM Department of Defense (DoD)/Department of Energy (DOE) Consolidated

Quality Systems Manual (QSM) for Environmental Laboratories

Ra radium

RA remedial action RL reporting limit

RME reasonably maximally exposed

Rn radon

ROD Record of Decision for the St. Louis Downtown Site

RPD relative percent difference

SAG Sampling and Analysis Guide for the St. Louis Sites

SLAPS St. Louis Airport Site
SLDS St. Louis Downtown Site

SLS St. Louis Sites

SOP standard operating procedure

SOR sum of ratios SU survey unit

TEDE total effective dose equivalent

Th thorium

TLD thermoluminescent dosimeter
TSS total suspended solid(s)

U uranium

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

VP vicinity property
VQ validation qualifier
WL working level

WRS Wilcoxon Rank Sum

V REVISION 0

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

 $\begin{array}{ll} ^{\circ}C & degree(s) \ Celsius \ (centigrade) \\ \mu Ci/mL & microcurie(s) \ per \ milliliter \\ \mu g/L & microgram(s) \ per \ liter \\ \end{array}$

μS/cm microSiemen(s) per centimeter

Ci curie(s)
ft foot/feet
m meter(s)

mg/L milligram(s) per liter

 $\begin{array}{ll} mL & milliliter(s) \\ mrem & millirem \\ mV & millivolt(s) \end{array}$

pCi/L picocuries per liter yd³ cubic yard(s)

vi REVISION 0

EXECUTIVE SUMMARY

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2016 applies to the St. Louis Downtown Site (SLDS), which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

The purpose of this EMDAR is:

- 1) to document the environmental monitoring activities, and
- 2) to assess whether remedial actions (RAs) had a measurable environmental impact by:
 - a) reporting the current condition of the SLDS,
 - b) summarizing the data collection effort for CY 2016, and
 - c) providing an analysis of the environmental monitoring data to date.

The U.S. Army Corps of Engineers (USACE) St. Louis District collects comprehensive environmental data for decision-making and planning purposes. Environmental monitoring, performed as a Best Management Practice or as a component of RA, serves as a critical component in the evaluation of the current status and potential future migration of residual contaminants.

All environmental monitoring required through implementation of the *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2016* (EMICY16) (USACE 2016) was conducted as planned during CY 2016. Evaluation of the environmental monitoring data for all SLDS properties demonstrates compliance with applicable or relevant and appropriate requirements (ARARs).

RADIOLOGICAL AIR MONITORING

Radiological air data were collected and evaluated at the SLDS through airborne radioactive particulate, radon (indoor and outdoor), and gamma radiation monitoring, as required in the EMICY16. In addition, for environmental monitoring purposes, radiological air data were also used as inputs to calculate total effective dose equivalent (TEDE) to the hypothetical maximally exposed individual at the SLDS.

The TEDE calculated for the hypothetical maximally exposed individual at the SLDS was less than 0.1 mrem per year. The results of the radiological air monitoring conducted at the SLDS demonstrate compliance with ARARs for the SLDS.

EXCAVATION-WATER DISCHARGE MONITORING AT THE ST. LOUIS DOWNTOWN SITE

CY 2016 was the 18th year excavation-water discharge from the SLDS was monitored and reported. Excavation water from the SLDS was discharged to the St. Louis sanitary sewer system in compliance with the requirements stated in the July 23, 2001, Metropolitan St. Louis Sewer District (MSD) authorization letter (MSD 2001) and amended in the October 13, 2004, MSD letter (MSD 2004). This authorization was extended through the issuance of letters dated

ES-1 REVISION 0

June 19, 2006; May 22, 2008; May 10, 2010; May 24, 2012; June 23, 2014, and July 18, 2016 (MSD 2006, 2008, 2010, 2012, 2014, 2016). This authorization expires July 23, 2018 (MSD 2016). During CY 2016, no exceedances of the MSD limits occurred at the SLDS.

GROUND-WATER MONITORING

Ground water was sampled during CY 2016 at the SLDS following a protocol for individual wells and analytes. Samples were analyzed for various radiological constituents and inorganic parameters. Static ground-water elevations for all SLDS wells were measured quarterly.

The environmental sampling requirements and ground-water criteria for each analyte are consistent with the EMICY16. The ground-water criteria are used for comparison and discussion purposes. The criteria for assessing ground-water sampling data at the SLDS include the investigative limits (ILs) identified in the ROD (USACE 1998a) and the combined radium (Ra)-226/Ra-228 concentration limit from 40 *Code of Federal Regulations (CFR)* 192.02 (Table 1 of Subpart A). The ground-water criteria are presented in Table 2-6 of the EMICY16 and in Section 4.0 of this EMDAR. For those stations where an analyte exceeded the ground-water criteria at least once during CY 2016 and sufficient data were available to evaluate trends, Mann-Kendall statistical trend analyses were completed to assess whether analyte concentrations were increasing or decreasing through time.

During CY 2016, two hydrostratigraphic unit (HU)-A monitoring wells (B16W06S and DW21) were sampled (Figure 4-3). B16W06S was sampled for arsenic and cadmium during the second and fourth quarters. DW21 was sampled for arsenic and cadmium in the first, second, and third quarters, and for radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, uranium [U]-234, U-235, and U-238) in the second quarter. Trend analysis was conducted for arsenic in B16W06S and DW21. Based on the graph and a quantitative evaluation of the trend using the Mann-Kendall Trend Test (Section 4.2.3), there is a downward trend in arsenic concentrations in B16W06S and DW21. Because the majority of their historical results were near or below their detection limits (DLs), a trend analysis was not performed for cadmium in B16W06S and DW21 or for U-234 and total U in DW21. The remaining SLDS contaminants of concern (COCs) (Ra-228, Th-232, U-235, and U-238) were not detected in HU-A ground water during CY 2016.

During CY 2016, six SLDS wells completed in the Mississippi Alluvial Aquifer (HU-B) were sampled. Mann-Kendall Trend Tests were conducted for COCs that exceeded the ILs in HU-B wells during CY 2016: arsenic in DW14, DW16, and DW18, and cadmium in DW15. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant downward trend in DW14 and a statistically significant upward trend in DW16 and DW18. The Mann-Kendall Trend Test results also indicate a statistically significant upward trend for cadmium in DW15. Additionally, two HU-B ground-water monitoring wells, DW19 and DW22R, were decommissioned in CY 2016.

Potentiometric surface maps were created from ground-water elevations measured in June and November to illustrate ground-water flow conditions in wet and dry seasons. The ground-water surface in HU-A under the eastern portion of the Mallinckrodt plant is generally sloping northeastward toward the Mississippi River (Figures 4-7 and 4-9). In HU-B, ground-water flow and direction are strongly influenced by river stage, which indicates a hydraulic connection to the Mississippi River. The flow direction at the site is generally northeast toward the Mississippi River.

ES-2 REVISION 0

1.0 HISTORICAL SITE BACKGROUND AND CURRENT SITE STATUS

1.1 INTRODUCTION

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2016 applies to the St. Louis Downtown Site (SLDS) which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

1.2 PURPOSE

The purpose of this EMDAR is to document the environmental monitoring activities and to assess whether remedial actions (RAs) at the SLDS had a measurable environmental impact. In addition, this EMDAR serves to enhance the reader's awareness of the current condition of the SLDS, summarize the data collection efforts for CY 2016, and provide analysis of the CY 2016 environmental monitoring data results. This EMDAR presents the following information:

- Sample collection data for various media at the SLDS and interpretation of CY 2016 EMP results;
- The compliance status of the SLDS with federal and state applicable or relevant and appropriate requirements (ARARs) or other benchmarks (e.g., *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for CY 2016* [EMICY16] [USACE 2016]);
- Dose assessments for radiological contaminants as appropriate at the SLDS;
- A summary of trends based on changes in contaminant concentrations to support RAs, ensure public safety, and maintain surveillance monitoring requirements at the SLDS; and
- The identification of data gaps and future EMP needs.

1.3 ST. LOUIS SITE PROGRAM AND SITE BACKGROUND

The FUSRAP was executed by the U.S. Atomic Energy Commission (AEC) in 1974 to identify, remediate, or otherwise control sites where residual radioactivity remains from operations conducted for the Manhattan Engineer District (MED) and AEC during the early years of the nation's atomic energy program. The FUSRAP was continued by the follow-on agencies to the AEC until 1997, when the U.S. Congress transferred responsibility for FUSRAP to the U.S. Army Corps of Engineers (USACE).

The SLDS properties were involved with: refinement of uranium ores, production of uranium metal and compounds, uranium recovery from residues and scrap, and the storage and disposal of associated process byproducts. The processing activities were conducted in portions of the SLDS under contract to the MED/AEC between the early 1940s and the 1950s.

1-1 REVISION 0

A detailed description and history of the SLDS can be found in the *Remedial Investigation Report for the St. Louis Site* (U.S. Department of Energy [DOE] 1994); the *Remedial Investigation Addendum for the St. Louis Site* (DOE 1995); the ROD (USACE 1998a); and the *Environmental Monitoring Guide for the St. Louis Sites* (EMG) (USACE 1999a).

During CY 2016, the following USACE SLDS documents were finalized:

- Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2016, St. Louis, Missouri (January 29);
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soils Within the St. Louis Downtown Site Kiesel Riverfront Property, St. Louis, Missouri (March 2);
- CY 2015 Fourth Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories, St. Louis, Missouri (March);
- CY 2016 First Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories, St. Louis, Missouri (May);
- St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2015, St. Louis, Missouri (June 21);
- CY 2016 Second Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories, St. Louis, Missouri (August);
- Destrehan Street East/Plant 7 West North Remedial Action Work Area-Specific Description and Design Package, FUSRAP St. Louis Downtown Site, St. Louis, Missouri (Revision 1, September 22);
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soil within the St. Louis Downtown Site Plant 6 East Property, St. Louis, Missouri (September 26);
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soil within the St. Louis Downtown Site Plant 7 East Property, St. Louis, Missouri (September 27);
- CY 2016 Third Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory & Associated Satellite Laboratories, St. Louis, Missouri (November 29);
- Remedial Action Work Plan for Selective Remediation at the St. Louis Downtown Site, FUSRAP St. Louis Downtown Site, St. Louis, Missouri (December 6); and
- Environmental Monitoring Implementation Plan for the North St. Louis Sites for Calendar Year 2017, St. Louis, Missouri (December 29).

1.3.1 St. Louis Downtown Site Calendar Year 2016 Remedial Actions

During CY 2016, RAs were performed at the following SLDS properties (Figure 1-2): Plant 6 West Half (henceforth referred to as Plant 6WH) Building 101 and Destrehan Street. RAs at Plant 6WH Building 101 continued throughout the year and RAs at Plant 7 West (henceforth referred to as Plant 7W) and Destrehan Street started in the third quarter and continued through the fourth

1-2 REVISION 0

quarter. A total of 17,851 yd³ of contaminated material were shipped from the SLDS via railcar to US Ecology in Idaho for proper disposal.

Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (DOD 2000) Class 1 verifications were performed at Plant 6WH (survey unit [SU]-16 and SU-17) and Plant 7W (SU-5), and Destrehan Street (SU-1) during CY 2016.

No MARSSIM Class 2 or Class 3 verifications were performed during CY 2016. Verifications at the SLDS were performed to confirm that the remediation goals of the ROD were achieved. The SLDS is shown on Figure 1-2.

A characterization/pre-design investigation (PDI) was performed at Plants 1, 2, and 10, and Salisbury Street during CY 2016.

Two monitoring wells were decommissioned in CY 2016: DW19 and DW22R. DW19 was decommissioned on August 3, 2016 and DW22R was decommissioned on May 4, 2016.

In accordance with the Metropolitan St. Louis Sewer District (MSD) authorization letter for the SLDS, 4,742,100 gallons of excavation water were discharged in CY 2016. Since the beginning of the project, 25,905,348 gallons have been treated and released to MSD at the SLDS.

1-3

REVISION 0

St. Louis Downtown Site Annu	ual Environmental Monitoring Data and Analysis Report for CY 2016	
r ·	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
ŗ	THIS PAGE INTENTIONALLY LEFT BLANK	
·	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

1-4 REVISION 0

2.0 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

This section documents environmental monitoring activities related to radiological air data. The radiological air monitoring conducted at the SLDS is conducted as part of the EMP. Radiological air data are collected to evaluate the compliance status of each site with respect to ARARs, to evaluate trends, and to perform dose assessments for radiological contaminants, as appropriate, at each site. Section 2.1 includes a description of the types of radiological air monitoring conducted at the SLDS, potential sources of the contaminants to be measured (including natural background), and measurement techniques employed during CY 2016.

All radiological air monitoring required through implementation of the EMICY16 (USACE 2016) was conducted as planned during CY 2016. The evaluations of radiological air monitoring data for all SLDS properties demonstrate compliance with ARARs.

A total effective dose equivalent (TEDE) for the reasonably maximally exposed (RME) member of the public was calculated for the SLDS by summing the dose due to gamma radiation, radiological air particulates, and radon. The TEDE calculated for the RME individual at the SLDS was less than 0.1 mrem per year. The TEDE for the SLDS was below the 10 *Code of Federal Regulations* (*CFR*) 20.1301 limit for members of the public, which is 100 mrem per year. Details of the radiological dose assessment (TEDE calculation) are presented in Section 6.0.

2.1 RADIOLOGICAL AIR MEASUREMENTS

The three types of radiological air monitoring conducted at the SLS during CY 2016 are gamma radiation, airborne radioactive particulates, and airborne radon. Section 2.2 provides details of the air monitoring conducted at the SLDS.

2.1.1 Gamma Radiation

Gamma radiation is emitted from natural, cosmic, and manmade sources. The earth naturally contains gamma radiation-emitting substances, such as the uranium decay series, the thorium decay series, and potassium (K)-40. Cosmic radiation originates in outer space and filters through the atmosphere to the earth. Together, these two sources comprise the majority of natural gamma background radiation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) estimates that the total naturally occurring background radiation dose equivalent due to gamma exposure is 65 mrem per year, 35 mrem per year of which originates from sources on earth and 30 mrem per year of which originates from cosmic sources (UNSCEAR 1982). The background monitoring locations for the SLS (Figure 2-1) are reasonably representative of background gamma radiation for the St. Louis metropolitan area.

Gamma radiation was measured at the SLDS during CY 2016 using thermoluminescent dosimeters (TLDs). TLDs were placed at locations representative of areas accessible to the public (Figure 2-2) in order to provide input for calculation of the TEDE.

The TLDs were placed at the monitoring location approximately 5 ft above the ground surface inside a housing shelter. The TLDs were collected quarterly and sent to a properly certified, off-site laboratory for analysis.

2-1 REVISION 0

2.1.2 Airborne Radioactive Particulates

2.1.2.1 Air Sampling

Airborne radioactive particulates result from radionuclides in soils that become suspended in the air. The radionuclides in soil normally become airborne as a result of wind erosion of the surface soil or as a result of soil disturbance (e.g., excavation). This airborne radioactive material includes naturally occurring background concentrations (Appendix B, Table B-1) as well as above-background concentrations of radioactive materials present at the SLDS.

Airborne radioactive particulates were measured at the SLDS by drawing air through a filter membrane with an air sampling pump placed approximately 3 ft above the ground, and then analyzing the material contained on the filter. The results of the analysis, when compared to the amount of air drawn through the filter, were reported as radioactive contaminant concentrations (i.e., μ Ci/mL). Particulate air monitors were located in predominant wind directions at excavation and loadout area perimeter locations, as appropriate, to provide input for the National Emissions Standard for Hazardous Air Pollutants (NESHAP) Report and calculation of TEDE to the critical receptor. Air particulate samples were typically collected weekly or more frequently.

2.1.2.2 Estimation of Emissions in Accordance with the National Emissions Standard for Hazardous Air Pollutants

The SLDS CY 2016 NESHAP report (Appendix A) presents calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors in accordance with the NESHAP. The report is prepared in accordance with the requirements and procedures contained in 40 *CFR* 61, Subpart I.

Emission rates calculated using air sampling data, activity fractions, and other site-specific information were used for the SLDS as inputs to the U.S. Environmental Protection Agency (USEPA) CAP88-PC Version 4.0 modeling code (USEPA 2014) to demonstrate compliance with the 10 mrem per year ARAR in 40 *CFR* 61, Subpart I.

CY 2016 monitoring results for the SLDS demonstrate compliance with the 10 mrem per year ARAR prescribed in 40 *CFR* 61, Subpart I. See Section 2.2.2 for further details.

2.1.3 Airborne Radon

Uranium (U)-238 is a naturally occurring radionuclide commonly found in soil and rock. Radon (Rn)-222 is a naturally occurring radioactive gas found in the uranium decay series. A fraction of the radon produced from the radioactive decay of naturally occurring U-238 diffuses from soil and rock into the atmosphere, accounting for natural background airborne radon concentrations. In addition to this natural source, radon is produced from the above-background concentrations of radioactive materials present at the SLDS.

Outdoor airborne radon concentration is governed by the emission rate and dilution factors, both of which are strongly affected by meteorological conditions. Surface soil is the largest source of radon. Secondary contributors include oceans, natural gas, geothermal fluids, volcanic gases, ventilation from caves and mines, and coal combustion. Radon levels in the atmosphere have been observed to vary with elevation, season, time of day, or location. The chief meteorological parameter governing airborne radon concentration is atmospheric stability; however, the largest variations in atmospheric radon occur spatially (USEPA 1987).

2-2 REVISION 0

Radon alpha track detectors (ATDs) were used at the SLDS to measure alpha particles emitted from radon and its associated decay products. Radon ATDs were co-located with environmental TLDs 3 ft above the ground surface in housing shelters at locations representative of areas accessible to the public (Figure 2-2). Outdoor ATDs were collected approximately every 6 months and sent to an off-site laboratory for analysis. Recorded radon concentrations are listed in pCi/L and are compared to the value of 0.5 pCi/L average annual concentration above background as listed in 40 *CFR* 192.02(b)(2).

CY 2016 outdoor radon monitoring results for the SLDS demonstrate compliance with the 0.5 pCi/L ARAR prescribed in 40 *CFR* 192.02(b)(2). See Section 2.2.3 for further details.

At the SLDS, ATDs were also placed in locations within applicable structures (Building 26 at Plant 1 and the South Storage Building at DT-4 North) to monitor for indoor radon exposure. The ATDs were placed in areas that represent the highest likely exposure from indoor radon. ATD locations were selected with consideration given to known radium (Ra)-226 concentrations under applicable buildings and occupancy times at any one location within each building. Annual average indoor radon data in each applicable building were compared to the 40 *CFR* 192.12(b)(1) ARAR value of 0.02 working levels (WL). In accordance with 40 *CFR* 192.12(b)(1), reasonable effort shall be made to achieve, in each habitable or occupied building, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL. In any case, the radon decay product concentration shall not exceed 0.03 WL. Background indoor radon monitors were not necessary, because the regulatory standard of 0.02 WL includes background. Indoor ATDs were also collected approximately every 6 months and sent to an off-site laboratory for analysis.

CY 2016 indoor radon monitoring results for the SLDS demonstrate compliance with the 0.02 WL ARAR prescribed by 40 *CFR* 192.12(b)(1). See Section 2.2.4 for further details.

2.2 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

2.2.1 Evaluation of Gamma Radiation Data

Gamma radiation monitoring was performed at the SLDS during CY 2016 at four locations representative of areas accessible to the public (Figure 2-2) and at the background location (Figure 2-1) to compare on-site/off-site exposure and to provide input for calculation of TEDE to the critical receptor. The EMP uses two TLDs at Monitoring Station DA-1 (for each monitoring period) to provide additional quality control (QC) of monitoring data (Figure 2-2). A summary of TLD monitoring results for CY 2016 at the SLDS is shown in Table 2-1. TLD data are located in Appendix B, Table B-2, of this EMDAR.

Monitoring Monitoring			Quarter Data		Quarter Data		Quarter Data		Quarter Data	CY 2016 Net TLD
Location	Station		(mrem/quarter)					Data		
		Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	(mrem/year)
	DA-1	16.8	0	16.1	0	17.5	0	17.4	0	0
CI DC	DA-1 ^c	17.4	0	18	0.5	17.7	0	17.4	0	0
SLDS	DA-2	19.1	0	20.6	0	19	0	18.9	1.7	0.5
Perimeter	DA-3	18.2	0	18.8	0	18.9	0	19.2	0.2	0.2
	DA-6	20.9	1.6	19.4	0	20.8	0.6	19.7	0.8	3.0

Table 2-1. Summary of SLDS Gamma Radiation Data for CY 2016

2-3 REVISION 0

Table 2-1. Summary of SLDS Gamma Radiation Data for CY 2016 (Continued)

Monitoring Monitoring			Quarter Data		Quarter Data		Quarter Data		Quarter Data	CY 2016 Net TLD
Location	Station		(mrem/quarter)						Data	
		Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	(mrem/year)
Background	BA-1	19.4		20.1		20.3		19.0		

All quarterly data reported from the vendor have been normalized to exactly one quarter's exposure above background.

Cor.-corrected

Rpt. - reported

2.2.2 Evaluation of Airborne Radioactive Particulate Data

Air sampling for radiological particulates during CY 2016 was conducted by the RA contractor at the perimeter of each active excavation and loadout area within the SLDS. Air particulate data were used as inputs to the NESHAP report (Appendix A) and calculation of TEDE to the critical receptor (Section 6.0). Air sampling for radiological particulates was not conducted at the SLDS perimeter locations during CY 2016 due to the insignificant potential for material to become airborne at the site. The ground surface at the SLDS is generally covered with asphalt or concrete, which limits the potential for material to become airborne. A summary of air particulate monitoring data from excavation perimeters is shown in Table 2-2. Airborne radioactive particulate data are contained in Appendix B, Table B-3, of this EMDAR.

Table 2-2. Summary of SLDS Airborne Radioactive Particulate Data for CY 2016

Monitoring Location	Average Concentration (μCi/mL)			
Withittoring Location	Gross Alpha	Gross Beta		
Plant 6	3.65E-15	2.32E-14		
Plant 7	5.85E-15	3.95E-14		
Plant 6 Loadout	4.04E-15	3.21E-14		
Background Concentration ^a (BA-1)	3.61E-15	1.88E-14		

These concentrations are only provided for informational purposes.

2.2.3 Evaluation of Outdoor Airborne Radon Data

Outdoor airborne radon monitoring was performed at the SLDS using ATDs to measure radon emissions. Four detectors were co-located with the TLDs at locations shown on Figure 2-2. One additional detector was located at Monitoring Station DA-1 as a QC duplicate. A background ATD, co-located with the background TLD (Section 2.2.1), was used to compare on-site exposure and off-site background exposure. In accordance with 40 *CFR* 192.02(b)(2), control of residual radioactive materials from a uranium mill tailings pile must be designed to provide reasonable assurance that releases of radon to the atmosphere will not increase the annual average concentration of radon outside the disposal site by more than 0.5 pCi/L. Although a uranium mill tailings pile is not associated with any of the SLS, these standards are used for comparative purposes. Outdoor airborne radon data were used as an input for calculation of the TEDE to the critical receptor (Section 6.0) and compared to the 0.5 pCi/L average annual concentration above background value listed in 40 *CFR* 192.02(b)(2). The average annual radon concentration above background at the SLDS monitoring stations was 0.0 pCi/L, meeting the 40 *CFR* 192.02(b)(2) limit of 0.5 pCi/L. A summary of outdoor airborne radon data is shown in Table 2-3. Outdoor ATD data are contained in Appendix B, Table B-4, of this EMDAR.

2-4 REVISION 0

b CY 2016 net TLD data are corrected for background, shelter absorption (s/a = 1.075), and fade.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis. Duplicate sample results were not included in calculations.

Result calculation is not required.

Monitorina	Monitoring	Average Annual Concentration (pCi/L)					
Monitoring Location	Monitoring Station	01/04/16 to 07/07/16 ^a (uncorrected)	07/07/16 to 01/04/17 ^a (uncorrected)	Average Annual Concentration ^b			
	DA-1	0.2	0.2	0			
	DA-1 ^c	0.2	0.2	0			
SLDS	DA-2	0.2	0.2	0			
	DA-3	0.2	0.2	0			
	DA-6	0.2	0.2	0			
Background	BA-1	0.2	0.2				

Detectors were installed and removed on the dates listed. Data are as reported from the vendor (gross data including background).

2.2.4 Evaluation of Indoor Airborne Radon Data

Indoor radon monitoring was performed at two SLDS buildings (Building 26 at Plant 1 and the South Storage Building at DT-4 North) using one ATD placed in each building at a height of 5 ft (to approximate breathing zone conditions) to measure radon concentrations (Figure 2-2). The ATDs were installed in January of CY 2016 at each monitoring location, collected for analysis after approximately 6 months of exposure, and replaced with another set that would represent radon exposure for the remainder of the year. Recorded radon concentrations (listed in pCi/L) were converted to radon WL, and an indoor radon equilibrium factor of 0.4 (NCRP 1988) was applied.

The results (including background) were evaluated based on the criteria contained in 40 *CFR* 192.12(b)(1). The average annual radon concentration was determined to be less than the 40 *CFR* 192.12(b)(1) criterion of 0.02 WL in each building (Leidos 2017). In addition, the concentrations at each indoor monitoring location were all less than 0.03 WL. Additional details of the data and calculation methodology used to determine indoor radon WL in SLDS buildings are contained in Table 2-4. Indoor ATD data are contained in Appendix B, Table B-4, of this EMDAR.

Table 2-4. Summary of SLDS Indoor Airborne Radon (Rn-222) Data for CY 2016

Monitorina	Manitanina	Average A	nnual Concentrat	ion (pCi/L)	
Monitoring Location	Monitoring Station	01/04/15 to 07/07/16 ^a	07/07/16 to 01/04/17 ^a	Annual Average ^b	WL^c
Plant 1 Building 26	DI-1	0.2	1.5	0.85	0.003
DT-4 North South Storage Building	DI-2	0.7	1.1	0.9	0.004

Detectors were installed and removed on the dates listed. Data are as reported from the vendor.

2-5 REVISION 0

Results reported from vendor for two periods are time-weighted and averaged to estimate an annual average radon concentration (pCi/L) above background.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis.

⁻⁻⁻ Result calculation is not required.

Results reported from vendor for two periods are averaged to estimate an annual average radon concentration (pCi/L).

The average annual WL is calculated by dividing the average pCi/L by 100 pCi/L per WL and multiplying by 0.4. The average annual WL must be less than 0.02 (40 CFR 192.12(b)).

St. Louis Downtown Site Annua	al Environmental Monitoring	Data and Analysis Report	for CY 2016	
		, — _F		
T	HIS PAGE INTENT	TIONALLY LEFT	BLANK	
		• -		

2-6 REVISION 0

3.0 EXCAVATION-WATER MONITORING DATA

This section provides a description of the excavation-water discharge monitoring activities conducted at the SLDS during CY 2016. Excavation water is storm water and ground water that accumulates in excavations present at the SLDS as a result of RAs. Excavation-water effluent from the SLDS is discharged to a combined (sanitary and storm) MSD sewer inlet located at the SLDS. It then flows to the Bissell Point Sewage Treatment Plant under a special discharge authorization. This excavation water was collected, treated, and tested before being discharged to MSD manholes 17D4-353C, 17D3-019C, and 17D3-022C. These MSD manholes are depicted on Figure 3-1.

The purpose of excavation-water discharge monitoring at the SLDS is to maintain compliance with specific discharge limits to ensure protection of human health and the environment. The MSD is the regulatory authority for water discharges and has issued authorization letters for the SLDS allowing discharges of excavation water that meets discharge-limit-based criteria (MSD 1998, 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016). On October 30, 1998, the USACE received an MSD conditional authorization letter to discharge the excavation water collected at the SLDS resulting from USACE RAs (MSD 1998). On July 23, 2001, the MSD issued a separate conditional discharge authorization letter for discharges of excavation water resulting from USACE RAs (MSD 2001). The MSD issued a change to the self-monitoring and special discharge authorization for the SLDS on October 13, 2004, and issued a 2-year extension to that authorization dated June 19, 2006 (MSD 2004, 2006). On May 22, 2008; May 10, 2010; May 24, 2012; and June 23, 2014, the MSD issued extensions to the special discharge authorization for the SLDS that remained in effect until July 23, 2010; July 23, 2012; and July 23, 2014; and July 23, 2016, respectively (MSD 2008, 2010, 2012, 2014). On July 18, 2016, the MSD issued an extension to the special discharge authorization for the SLDS that remains in effect until July 23, 2018 (MSD 2016). The results obtained from these monitoring activities are presented and evaluated with respect to the discharge limits described in the EMICY16 (USACE 2016).

Section 2.2.2 of the EMICY16 outlines the parameters and annual average discharge limits for the excavation-water discharges at the SLDS (USACE 2016). For cases in which the local regulatory authorities have not provided discharge limits for the SLDS radiological contaminants of concern (COCs), parameters from 10 *CFR* 20, Appendix B, water effluent values are used to calculate the sum of ratios (SOR) value for each discharge. Additionally, the SOR aids in the establishment of water management protocols.

3.1 EVALUATION OF EXCAVATION-WATER DISCHARGE MONITORING RESULTS AT THE ST. LOUIS DOWNTOWN SITE

During CY 2016, 4,742,100 gallons of excavation water from 12 batches were discharged to MSD manholes 17D4-353C, 17D3-019C, and 17D3-022C. The analytical results for all measured parameters by batch, along with the total activity discharged for each parameter, are included in Appendix C, Table C-1. A summary of the number of discharges, gallons of water discharged, and total radiological activity for the CY 2016 excavation-water discharges is provided in Table 3-1. All excavation-water discharge monitoring required through implementation of the EMICY16 was conducted as planned during CY 2016. The evaluation of monitoring data demonstrates compliance with all MSD criteria.

3-1 REVISION 0

Table 3-1. Excavation Water Discharged at the SLDS in CY 2016

	Number of	Number of Gallons	Tota	l Activity (Ci)	
Quarter	Discharges	Discharged ^a	Thorium ^b	Uranium (KPA) ^c	Radium ^d
1	3	1,475,147	4.8E-06	9.8E-04	8.7E-06
2	3	772,045	5.1E-06	2.4E-04	4.3E-06
3	3	1,952,240	9.8E-06	1.9E-04	8.5E-06
4	3	542,668	4.9E-06	6.6E-05	2.9E-06
Annual Totals	12	4,742,100	2.5E-05	1.5E-03	2.4E-05

3-2

REVISION 0

a Quantities based on actual quarterly discharges from the SLDS.

b Calculated value based on the addition of isotopic analyses: thorium (Th)-228, Th-230, and Th-232.

Activity based on total U results (kinetic phosphorescence analysis [KPA]).

d Calculated value based on the addition of isotopic analyses: Ra-226 and Ra-228.

4.0 GROUND-WATER MONITORING DATA

Eight (8) ground-water monitoring wells were sampled at the SLDS during CY 2016. Ground water was sampled following a protocol for individual wells and analytes, and was analyzed for various radiological constituents and inorganic analytes. Static water levels were measured quarterly at the SLDS. In addition, field parameters were measured continuously during purging of the wells prior to sampling. The ground-water field parameter results for CY 2016 sampling at the SLDS are presented in Appendix D, Table D-1. The SLDS ground-water analytical sampling results for CY 2016 are contained in Appendix D, Table D-2.

Stratigraphy at the St. Louis Downtown Site

Ground water at the SLDS is found within three hydrostratigraphic units (HUs). These units are, in order of increasing depth, the Upper HU (HU-A), which consists of fill overlying clay and silt; the Lower HU (HU-B), also referred to as the Mississippi Alluvial Aquifer, consisting of sandy silts and silty sands; and the Limestone Bedrock Unit, referred to as HU-C (Figures 4-1 and 4-2). The upper unit, HU-A, is not an aquifer and is not considered a potential source of drinking water, because it has insufficient yield and poor natural water quality. HU-B is one of the principal aquifers in the St. Louis area, but expected future use as drinking water at the SLDS is minimal, because the Mississippi and Missouri Rivers provide a readily available source and the water from the aquifer is of poor quality due to elevated concentrations of iron and manganese. HU-C would be an unlikely water supply source, as it is a deeper and less productive HU. There are no known drinking-water wells in the vicinity of the SLDS. St. Louis City Ordinance 66777 explicitly forbids the installation of wells into the subsurface for the purposes of using ground water as a potable water supply (City of St. Louis 2005). The expected future use of SLDS ground water is not anticipated to change from its current use.

As shown in the geologic cross-section of the SLDS (Figure 4-2), the erosional surface of the bedrock dips eastward toward the Mississippi River. HU-A overlies HU-B on the eastern side of the SLDS and bedrock on the western side of the SLDS. HU-B thins westerly along the bedrock surface until it becomes absent beneath the SLDS. HU-C underlies the unconsolidated sediments at depths ranging from 19 ft on the western side of the SLDS to 80 ft near the Mississippi River.

Ground-Water Criteria

The CY 2016 monitoring data for HU-B ground water at the SLDS are compared to the following ground-water criteria established in the ROD: $50~\mu g/L$ arsenic, $5~\mu g/L$ cadmium, $20~\mu g/L$ total U, and 5~pCi/L combined Ra-226 and Ra-228 (USACE 1998a). The ROD did not establish ground-water criteria for HU-A ground water. An evaluation of concentration trends is conducted for COCs detected in HU-A.

<u>Summary of Calendar Year 2016 Ground-Water Monitoring Results for the St. Louis</u> Downtown Site

Trend analysis of the COCs detected in HU-A ground water indicates continued improvement in HU-A ground-water quality, as reflected in the decreasing trend in arsenic concentrations observed in HU-A wells B16W06S and DW21. No other significant changes in the concentrations of the COCs occurred in shallow ground water during CY 2016.

Two COCs (arsenic and cadmium) were detected at concentrations above the ROD ground-water criteria in HU-B ground water during CY 2016. The arsenic concentration exceeded the investigative limit (IL) (50 μ g/L) in HU-B wells DW14 (130 μ g/L in the second quarter), DW16 (190 μ g/L in the second quarter, 81 μ g/L in the third quarter, and 87 μ g/L in the fourth quarter) and DW18 (100 μ g/L in the fourth quarter). The cadmium concentration exceeded the IL (5 μ g/L) in

4-1 REVISION 0

the second-quarter sample from DW14 (6.7 μ g/L) and the first-, second-, and fourth-quarter samples from DW15 (17.0 μ g/L, 8.0 μ g/L, and 7.6 μ g/L, respectively).

The Mann-Kendall Trend Test results for the HU-B wells indicate a statistically significant upward trend in arsenic concentrations in DW16 and DW18, and a statistically significant downward trend in the arsenic concentration in DW14. The Mann-Kendall Trend Test results also indicate there is a statistically significant upward trend for cadmium in HU-B well DW15. No other significant changes in the concentrations of the COCs occurred in deep ground water during CY 2016.

4.1 GROUND-WATER MONITORING AT THE ST. LOUIS DOWNTOWN SITE

The selected remedy presented in the ROD involves excavation and disposal of radiologically contaminated accessible soil and ground-water monitoring. The goal of the ground-water portion of the SLDS remedy is to maintain protection of HU-B and to establish the effectiveness of the source removal action. This goal is achieved by monitoring perimeter wells on a routine basis to ensure there are no significant impacts to HU-B from COCs. The HU-B ground-water results for the SLDS COCs are compared to the following ROD ground-water criteria (USACE 1998a):

- 1) the ILs: 50 μg/L arsenic, 5 μg/L cadmium, and 20 μg/L total U; and
- 2) the concentration limits from the Uranium Mill Tailings Radiation Control Act regulations listed in 40 *CFR* 192.02, Table 1 to Subpart A: 5 pCi/L combined Ra-226 and Ra-228.

The concentration limits for other SLDS COCs listed in 40 *CFR* 192.02, Table 1 to Subpart A (50 μ g/L arsenic, 10 μ g/L cadmium, and 30 pCi/L combined U-234 and U-238), are not relevant or appropriate because these limits are equal to or less stringent than the ILs.

If monitoring of HU-B indicates that the concentrations of SLDS COCs significantly exceed the above criteria, the ROD requires that a Ground-water Remedial Action Alternative Assessment (GRAAA) be initiated to further assess the fate and transport of the COCs in HU-B and to determine if additional RAs are necessary. Based on the results of 8 consecutive rounds of quarterly sampling conducted between 1999 and 2001, total U concentrations were above the IL in HU-B well DW19 over an extended period, leading to the initiation of Phase 1 of the GRAAA. The first phase of the GRAAA was completed in CY 2003 (USACE 2003). Phase 1 summarized the sampling data available for each of the monitoring wells completed in HU-B and provided recommendations for further investigation of HU-B. This EMDAR carefully reviews the HU-B data to provide additional information for future phases of the GRAAA. The ROD also specifies that a ground-water monitoring plan will be developed to assess the fate and transport of MED/AEC residual contaminants through and following the RA.

Because HU-A is not considered a potential source of drinking water, the ROD did not establish criteria for HU-A ground water. An evaluation of concentration trends is conducted for select COCs detected in HU-A ground water to support assessment of the effectiveness of the RA in the CERCLA 5-year reviews. The results of the trend analysis are presented in Section 4.2.3.

4.2 EVALUATION OF GROUND-WATER MONITORING DATA

St. Louis Downtown Site Monitoring Well Network

The EMP monitoring well network for the SLDS is shown on Figure 4-3. The screened HUs for the SLDS ground-water monitoring wells are identified in Table 4-1. Prior to initiating monitoring of HU-B, as specified by the ROD (USACE 1998a), there was no EMP sampling performed at the SLDS. In CY 2016, eight monitoring wells (two HU-A and six HU-B) were sampled for radionuclides and inorganic COCs at the SLDS. No new ground-water monitoring wells were

4-2 REVISION 0

installed or transferred at the SLDS in CY 2016. As a result of RA, ground-water monitoring well DW19 was decommissioned in CY 2016. Additionally, ground-water monitoring well DW22R was also decommissioned in CY 2016 due to accidental damage by the property owner. Ground-water sampling at the SLDS was conducted on February 26 (first quarter); June 7 and 8 (second quarter); August 16 (third quarter); and November 9 and 10 (fourth quarter) of CY 2016. The CY 2016 analytical results for the SLDS are presented in Appendix D, Table D-2. For discussion purposes, the ground-water analytical data acquired from the CY 2016 sampling events at the SLDS are presented separately for HU-A and HU-B. Appendix E provides the well maintenance checklists for the annual inspection of the SLDS ground-water monitoring wells conducted in March 2016, as well as the well abandonment forms for DW19 and DW22R.

Well ID	Screened HU
B16W06D	HU-B
B16W06S ^a	HU-A
B16W07D	HU-B
B16W08D ^a	HU-B
B16W08S	HU-A
B16W09D ^a	HU-B
B16W12S	HU-A
DW14 ^a	HU-B
DW15 ^a	HU-B
DW16 ^a	HU-B

Table 4-1. Screened HUs for SLDS Ground-Water Monitoring Wells in CY 2016

HU-B

HU-B

HU-B

HU-A

HU-B

4.2.1 Evaluation of HU-A Ground-Water Monitoring Data

DW17

DW18^a

DW19^b

DW21^a

DW22R^c

The results of the CY 2016 ground-water sampling of HU-A ground water at the SLDS are summarized in Table 4-2. During CY 2016, two HU-A monitoring wells (B16W06S and DW21) were sampled. B16W06S was sampled in the second and fourth quarter for arsenic and cadmium. DW21 was sampled for arsenic and cadmium in the first, second, and third quarters, and for radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, U-234, U-235, and U-238) in the second quarter.

Analyte	Units	Station ^a	Minimum Detected	Maximum Detected	Mean Detected	Frequency of Detection
Arsenic	/Т	B16W06S	220	230	225	2/2
Arsenic	μg/L	DW21	81	130	103	3/3
Cadmium	/Т	B16W06S	0.21	0.24	0.23	2/2
Caumum	μg/L	DW21	0.74	22	8.1	3/3
U-234	pCi/L	DW21	0.33 J	0.33 J	0.33 J	1/1
Total U ^b	μg/L	DW21	0.4	0.4	0.4	1/1

Table 4-2. Analytes Detected in HU-A Ground Water at the SLDS in CY 2016

Validation qualifier (VQ) symbol indicates: "J" analyte was identified as estimated quantity.

4-3 REVISION 0

Wells sampled in CY 2016.

DW19 was decommissioned in August 2016. Installation of a replacement well is planned after remediation activities are completed at Plant 6.

^c DW22R was damaged in CY 2014. It was decommissioned in CY 2016.

Table lists only those stations at which the analyte was detected in HU-A ground water.

Total U values were calculated from isotopic concentrations in pCi/L and converted to μg/L using radionuclide-specific activities and assuming secular equilibrium.

The analytes detected in HU-A ground water in CY 2016 are listed in Table 4-2. The remaining SLDS COCs (Ra-226, Ra-228, Th-228, Th-230, Th-232, U-235, and U-238) were not detected in the two HU-A ground-water wells monitored during CY 2016. Because the majority of their historical results was near or below their detection limits (DLs), a trend analysis was not performed for cadmium in B16W06S and DW21 or for U-234 and total U in DW21. Trend analysis was conducted for arsenic in B16W06S and DW21. Based on the graphs and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), there is a statistically significant downward trend in arsenic concentrations in B16W06S and DW21 (Figure 4-4). Figure 4-6 provides an expanded version of the time-versus-concentration plots for arsenic in B16W06S and DW21.

4.2.2 Evaluation of HU-B Ground-Water Monitoring Data

During CY 2016, six SLDS wells completed in the HU-B were monitored for various parameters, including the COCs arsenic, cadmium, Ra-226, Ra-228, Th-228, Th-230, Th-232, U-234, U-235, and U-238. Detected concentrations were compared to the respective ROD ground-water criteria. Table 4-3 lists the analytes detected in HU-B ground water during CY 2016 and compares the results with the ROD ground-water criteria.

Table 4-3. Analytes Detected in HU-B Ground Water at the SLDS in CY 2016

	ROD Ground-Water Criteria			,	Minimum	Maximum	Mean	Number of Detects > ROD	Frequency		
Analyte	ILª	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	Station	Detected	Detected	Ground- Water Criteria	of Detection		
				B16W08D	30	30	30	0	1/1		
				B16W09D	37	37	37	0	1/1		
Arsenic	50	NA	па/І	DW14	130	130	130	1	1/1		
Aisenic	30	INA	μg/L	DW15	4.5	21	13.7	0	3/3		
				DW16	81	190	119	3	3/3		
				DW18	100	100	100	1	1/1		
						B16W08D	0.64	0.64	0.64	0	1/1
				B16W09D	0.2	0.2	0.2	0	1/1		
Cadmium	5	NA	μg/L	DW14	6.7	6.7	6.7	1	1/1		
				DW15	7.6	17	10.9	3	3/3		
				DW16	0.49	1.6	0.97	0	3/3		
Ra-226	NAc	5 ^d	pCi/L	DW14	1.54 J	1.54 J	1.54 J	0	1/1		
Ka-220	INA	3	pCI/L	DW16	2.33 J	2.33 J	2.33 J	0	1/1		
Th-228	NA	NA	pCi/L	DW14	0.73 J	0.73 J	0.73 J	NA	1/1		
Th-230	NA	NA	pCi/L	B16W09D	0.56 J	0.56 J	0.56 J	NA	1/1		
111-230	МА	IVA	pCI/L	DW14	0.46 J	0.46 J	0.46 J	NA	1/1		
				B16W08D	0.75 J	0.75 J	0.75 J	NA	1/1		
11 234	U-234 NA NA	NΑ	pCi/L	DW14	1.06	1.06	1.06	NA	1/1		
0-234		IVA	pCI/L	DW16	1.19 J	1.19 J	1.19 J	NA	1/1		
				DW18	0.48 J	0.48 J	0.48 J	NA	1/1		
				B16W08D	0.68 J	0.68 J	0.68 J	NA	1/1		
U-238	NA	NA	pCi/L	DW14	0.72 J	0.72 J	0.72 J	NA	1/1		
			DW16	0.90	0.90	0.90	NA	1/1			

4-4 REVISION 0

Table 4-3. Analytes Detected in HU-B Ground Water at the SLDS in CY 2016 (Continued)

	ROE	Ground-Water Criteria			3.51	Maximum Detected	Mean Detected	Number of Detects >	Frequency
Analyte	ILa	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	Minimum Detected			ROD Ground- Water Criteria	of Detection
				B16W08D	2.04	2.04	2.04	0	1/1
Total U ^e	20	NA	μg/L	DW14	2.16	2.16	2.16	0	1/1
				DW16	2.68	2.68	2.68	0	1/1

a USACE 1998a.

Two inorganic SLDS COCs (arsenic and cadmium) were detected at concentrations above their ROD ground-water criteria in HU-B ground water during CY 2016. The concentration of arsenic exceeded the IL (50 μ g/L) in the June, August, and November 2016 samples from DW16 (190 μ g/L, 81 μ g/L, and 87 μ g/L, respectively). The concentration of arsenic also exceeded the IL in the June 2016 sample from DW14 (130 μ g/L) and the November 2016 sample from DW18 (100 μ g/L). Figure 4-6 provides the time-versus-concentration plots for arsenic in DW14, DW16, and DW18. The concentration of cadmium in the June 2016 sample from DW14 (6.7 μ g/L) and the February, June, and November 2016 samples from DW15 (17 μ g/L, 8.0 μ g/L, and 7.6 μ g/L, respectively) exceeded the IL (5 μ g/L).

No radiological COCs exceeded the ROD ground-water criteria in HU-B ground water at the SLDS during CY 2016. The concentration of total U has exceeded the IL ($20 \mu g/L$) in the annual ground-water samples collected from one HU-B well at the SLDS, DW19, since installation of the well in CY 1999. Results of the CY 2015 trend analysis indicated that the total U concentrations in DW19 were decreasing. No groundwater sampling was conducted at DW19 during CY 2016. On August 3, 2016, DW19 was plugged and abandoned so that remediation activities could be conducted in that area. When remediation and backfill activities are completed at Plant 6, a replacement well will be installed to allow continued assessment of contaminant concentration trends in this area. Figure 4-5 shows the total U concentration trends in unfiltered ground water at the SLDS.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), four statistically significant trends were identified in HU-B ground water. There are statistically significant downward trends in arsenic concentrations in DW14 and statistically significant upward trends in arsenic concentrations in DW16 and DW18. In addition, there is a statistically significant upward trend for cadmium in DW15. Figure 4-6 provides an expanded version of the time-versus-concentration plots for arsenic in DW14, DW16, and DW18 and for cadmium in DW15.

4.2.3 Comparison of Historical Ground-Water Data at the St. Louis Downtown Site

A quantitative evaluation of COC concentration trends in SLDS ground water was conducted based on available sampling data for the period from January 1999 through December 2016. The Mann-Kendall Trend Test was used to evaluate possible trends for those COCs detected in HU-A

4-5 REVISION 0

Table lists only those stations at which the analyte was detected in HU-B ground water.

Although the ROD does not reference an IL for Ra-226, it does reference the maximum constituent concentration listed in Table 1 of 40 CFR 192.02, Subpart A.

d Concentration limit for combined Ra-226 and Ra-228.

Total U values were calculated from isotopic concentrations in pCi/L and converted to μg/L using radionuclide-specific activities and assuming secular equilibrium.

NA – not appropriate (No IL is specified or the concentration limits specified in Table 1 of 40 *CFR* 192.02, Subpart A, are the same or less stringent than the IL and thus not relevant or appropriate.)

VQ symbol indicates: "J" analyte was identified as estimated quantity.

and for those COCs that exceeded ROD ground-water criteria in HU-B during CY 2016. The Mann-Kendall Trend Test was not conducted for those COCs with insufficient sampling data (fewer than six sampling results for the period from January 1999 to December 2016), a detection frequency less than 50 percent, or historical results generally within the range of measurement error of their DLs. For HU-A, a trend analysis was conducted for arsenic in B16W06S and DW21. A trend analysis was not conducted for cadmium, U-234 or total U in DW21 because the historical results were generally below or only slightly above the DLs. The Mann-Kendall Trend Test was conducted for two COCs that exceeded the ILs in HU-B wells during CY 2016: arsenic in DW14, DW16, and DW18, and cadmium in DW15. For cadmium in DW15, the dataset was restricted to the time period CY 2003 through CY 2016 in order to meet the Mann-Kendall Trend Test requirement that the dataset have a detection frequency greater than 50 percent. Trend analysis was not conducted for cadmium in DW14 because the historical results were generally within the range of measurement error of their DLs.

Statistical Method and Trend Analysis

Several statistical methods are available to evaluate contaminant trends in ground water. These include the Mann-Kendall Trend Test, the Wilcoxon Rank Sum (WRS) Test, and the Seasonal Kendall Test (USEPA 2000). The latter two tests are applicable to data that may or may not exhibit seasonal behavior, but generally require larger sample sizes than the Mann-Kendall Trend Test. The Mann-Kendall Trend Test was selected for this project, because this test can be used with small sample sizes (as few as four data points with detect values) and because a seasonal variation in concentrations was not indicated by the time-versus-concentration plots at the SLDS. The Mann-Kendall Trend Test is a non-parametric test and, as such, is not dependent upon assumptions of distribution, missing data, or irregularly-spaced monitoring periods. In addition, data reported as being less than the DL can be used (Gibbons 1994). The test can assess whether a time-ordered dataset exhibits an increasing or decreasing trend, within a predetermined level of significance. While the Mann-Kendall Trend Test can use as few as four data points, often this is not enough data to detect a trend. Therefore, the test was performed only at those monitoring stations where data have been collected for at least six sampling events.

A customized Microsoft Excel® spreadsheet was used to perform the Mann-Kendall Trend Test. The test involves listing the sampling results in chronological order and computing all differences that may be formed between current measurements and earlier measurements. The value of the test statistic (S) is the difference between the number of strictly positive differences and the number of strictly negative differences. If S is a large positive value, then there is evidence of an increasing trend in the data. If S is a large negative value, then there is evidence of a decreasing trend in the data. If there is no trend and all observations are independent, then all rank orderings of the annual statistics are equally likely (USEPA 2000). The results of the Mann-Kendall Trend Test are reported in terms of a p value or Z-score, depending on sample size, N. If the sample size is less than or equal to 10, then the p value is computed. If the p value is less than or equal to 0.05, the test concludes that the trend is statistically significant. If the p value is greater than 0.05, the test concludes there is no evidence of a significant trend. For dataset sizes larger than 10, the Z-score is compared to ± 1.64 , which is the comparison level at a 95 percent confidence level. If the Z-score is greater than +1.64, the test concludes that a significant upward trend exists. If the Z-score is less than -1.64, the test concludes that a significant downward trend exists. For Z-scores between -1.64 and +1.64, there is no statistical evidence of a significant trend.

The results of the Mann-Kendall Trend Test are less reliable for datasets containing high numbers of non-detects, particularly if the DL changes over time. Thus, for datasets for which

4-6 REVISION 0

more than 50 percent of the time-series data are non-detect, the Mann-Kendall Trend Test was not conducted. There is no general consensus regarding the percentage of non-detects that can be handled by the Mann-Kendall Trend Test. However, because the Mann-Kendall Trend Test is a nonparametric test that uses relative magnitudes and not actual values, it is generally valid even in cases in which there are large numbers of non-detects.

Only unfiltered data were used, and split sample and QC sample results were not included in the database for the Mann-Kendall Trend Test. The Mann-Kendall Trend Test is used to evaluate the data and determine trends without regard to isotopic analysis. In addition, for monitoring wells for which the Mann-Kendall Trend Test has indicated a trend (either upward or downward), another analysis is performed to determine if the trend is due to inherent error associated with the analytical test method for each sample analysis. For this analysis, graphs are generated to depict the trends, if present, and the associated error bars.

Results of Trend Analysis for Ground Water at the St. Louis Downtown Site

The Mann-Kendall Trend Test results are provided in Table 4-4. Time-versus-concentration plots for those wells and analytes exhibiting a statistically significant trend based on the Mann-Kendall Trend Test results (i.e., arsenic in B16W06S, DW14, DW16, DW18, and DW21, and cadmium in DW15) are provided on Figure 4-6.

Table 4-4. Results of	Mann-Kendall	Trend Test for	r SLDS Ground	water in CY 2016

Amaluta	Station	HU	Na	Test Statistics ^{b,c}		Trend ^d
Analyte	Station	nu	11	S	Z	Trena
	B16W06S	HU-A	22	-63	-1.75	Downward Trend
	DW14	HU-B	22	111	-3.11	Downward Trend
Arsenic	DW16	HU-B	21	121	3.6	Upward Trend
	DW18	HU-B	27	185	3.84	Upward Trend
	DW21	HU-A	26	-164	-3.60	Downward Trend
Cadmium	DW15	HU-B	11	33	2.63	Upward Trend

N is the number of unfiltered ground-water sample results for a particular analyte at the well over a particular time period. With the exception of cadmium at DW15, the time period is between January of 1999 and December of 2016. For cadmium at DW15, the dataset was restricted to the period between January of 2003 and December of 2016 to meet the Mann-Kendall Trend Test requirement that the dataset have a detection frequency greater than 50 percent.

Inorganics

Based on the results of the Mann-Kendall Trend Test, three wells exhibit significant downward trends for arsenic (two HU-A wells, B16W06S and DW21, and one HU-B well, DW14), and two wells exhibit significant upward trends for arsenic (HU-B wells DW16 and DW18). Because the Mann-Kendall Trend Test does not consider the effects of measurement error and does not provide any information concerning the magnitude of the trend, time-versus-concentration plots of arsenic in B16W06S, DW14, DW16, DW18, and DW21 were used to evaluate these factors (Figure 4-6). The plots also show the best-fit trend lines based on the data scatter. The Mann-Kendall Trend Test results also indicate a statistically significant upward trend for cadmium in HU-B well DW15 for the period between January 2003 and December 2016. No other significant changes in the concentrations of the inorganic COCs occurred in HU-A or HU-B ground water during CY 2016.

4-7 REVISION 0

Mann-Kendall Trend Tests were performed at a 95 percent level of confidence. For non-radiological data, non-detected results were replaced with one half of the lowest DL.

^c Test Statistics: S – S-statistic, Z – Z-score, or normalized test statistic (used if N>10).

Trend: The Z-score is compared to ± 1.64 to determine trend significance.

Radionuclides

One radiological COC, U-234, was detected in HU-A ground water. However, a trend analysis was not conducted for U-234 in DW21 because the historical results were generally below or only slightly above the DLs. No radiological COCs exceeded the ILs in HU-B ground water. Therefore, the Mann-Kendall Trend Test was not conducted for any radionuclides in HU-A or HU-B ground-water.

4.2.4 Evaluation of Potentiometric Surface at the St. Louis Downtown Site

Ground-water elevations were measured in monitoring wells at the SLDS in February, June, August, and November of CY 2016. Potentiometric surface maps were created from the June and November measurements to illustrate ground-water flow conditions in wet and dry seasons, respectively. The potentiometric maps for both HU-A and HU-B are presented on Figures 4-7 through 4-10.

The ground-water surface in HU-A under the eastern portion of the Mallinckrodt plant is generally sloping northeast toward the Mississippi River (Figures 4-7 and 4-9). The ground water may be present in separate lenses or subunits of the heterogeneous HU-A. Comparison of Figure 4-7 (June) with Figure 4-9 (November) indicates ground-water flow direction patterns in HU-A are similar for the wet and dry season conditions, but the hydraulic gradient is much higher (steeper) during the dry season. During CY 2016, the HU-A potentiometric surface elevations showed some seasonal fluctuation in ground-water elevations, with elevations averaging approximately 2.8 ft higher during the wet season (June) than during the dry season (November).

As shown on Figures 4-8 and 4-10, the ground-water flow direction and gradient in HU-B are strongly influenced by river stage. This indicates that ground water in HU-B is hydraulically connected to the Mississippi River. The water levels measured at the SLDS indicate that HU-B ground-water elevations averaged approximately 6.6 ft higher on June 7 than on November 9; this generally corresponds to the difference in the daily river stage, which was 6.8 ft higher on June 7 (400.6 ft above mean sea level [amsl]) than on November 9 (393.8 ft amsl). The flow direction in HU-B at the SLDS is generally northeast toward the Mississippi River.

4-8 REVISION 0

5.0 ENVIRONMENTAL QUALITY ASSURANCE PROGRAM

5.1 PROGRAM OVERVIEW

The environmental quality assurance (QA) program includes management of the QA and QC programs, plans, and procedures governing environmental monitoring activities at all SLS and at subcontracted vendor laboratories. This section describes the environmental monitoring standards of the FUSRAP and the goals for these programs, plans, and procedures.

The environmental QA program provides the FUSRAP with reliable, accurate, and precise monitoring data. The program furnishes guidance and directives to detect and prevent problems from the time a sample identification numbers are issued until the associated data are evaluated. The Missouri Department of Natural Resources (MDNR) conducted site visits on March 22, 2016, October 17, 2016, and November 9, 2016, to observe and participate in the environmental monitoring activities. USEPA Region 7 and MDNR regulatory oversight of sampling activities provided an additional level of QA/QC.

Key elements in achieving the goals of this program are maintaining compliance with the QA program; personnel training; compliance assessments; use of QC samples; documentation of field activities and laboratory analyses; and a review of data documents for precision, accuracy, and completeness.

General objectives are:

- To provide data of sufficient quality and quantity to support ongoing remedial efforts, to aid in defining potential COCs, to meet the requirements of the EMG (USACE 1999a) and the *Sampling and Analysis Guide for the St. Louis Sites* (SAG) (USACE 2000), and to support the ROD (USACE 1998a).
- To provide data of sufficient quality to meet applicable State of Missouri and federal concerns (e.g., reporting requirements).
- To ensure samples were collected using approved techniques and are representative of existing site conditions.

5.2 QUALITY ASSURANCE PROGRAM PLAN

The quality assurance program plan (QAPP) for activities performed at the SLDS is described within Section 3.0 of the SAG. The QAPP provides the organization, objectives, functional activities, and specific QA/QC activities associated with investigations and sampling activities at the SLDS.

QA/QC procedures are performed in accordance with applicable professional technical standards, USEPA requirements, government regulations and guidelines, and specific project goals and requirements. The QAPP was prepared in accordance with USEPA and USACE guidance documents, including *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (USEPA 1991), *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (USEPA 1994), and Engineer Manual (EM) 200-1-3, *Requirements for the Preparation of Sampling and Analysis Plans* (USACE 2001).

5.3 SAMPLING AND ANALYSIS GUIDE

The SAG summarizes standard operating procedures (SOPs) and data quality requirements for collecting and analyzing environmental data. The SAG integrates protocols and methodologies

5-1 REVISION 0

identified under various USACE and regulatory guidance. It describes administrative procedures for managing environmental data and governs sampling plan preparation, data review, evaluation and validation, database administration, and data archiving. The identified sampling and monitoring structures are delineated in programmatic documents such as the EMG (USACE 1999a), which is an upper tier companion document to the SAG (USACE 2000). The EMICY16 outlines the analyses to be performed at each site for various media (USACE 2016).

Flexibility to address non-periodic environmental sampling (e.g., specific studies regarding environmental impacts, well installations, and/or in-situ waste characterizations) was accomplished by the issuance of work descriptions. Environmental monitoring data obtained during these sampling activities were reported to USEPA Region 7 on a quarterly basis.

5.4 FIELD SAMPLE COLLECTION AND MEASUREMENT

Prior to beginning field sampling, field personnel were trained, as necessary, and participated in a project-specific readiness review. These activities ensured that standard procedures were followed in sample collection and completion of field logbooks, chain-of-custody forms, labels, and custody seals. Documentation of training and readiness was submitted to the project file.

The master field investigation documents are the site field logbooks. The primary purpose of these documents is to record each day's field activities; personnel on each sampling team; and any administrative occurrences, conditions, or activities that may have affected the fieldwork or data quality of any environmental samples for any given day. Guidance for documenting specific types of field sampling activities in field logbooks or log sheets is provided in Appendix C of EM 200-1-3 (USACE 2001).

At any point in the process of sample collection or data and document review, a non-conformance report may be initiated if non-conformances are identified (Leidos 2015a). Data entered into the St. Louis FUSRAP database may be flagged accordingly.

5.5 PERFORMANCE AND SYSTEM AUDITS

Performance and system audits of both field and laboratory activities were conducted to verify that sampling and analysis activities were performed in accordance with the procedures established in the SAG and activity-specific work description or the EMICY16 (USACE 2016).

5.5.1 Field Assessments

Internal assessments (audit or surveillance) of field activities (sampling and measurements) were conducted by the QA/QC Officer (or designee). Assessments included an examination of field sampling records; field instrument operating records; sample collection, handling, and packaging procedures; and maintenance of QA procedures and chain-of-custody forms. These assessments occurred at the onset of the project to verify that all established procedures were followed (systems audit).

Performance assessments followed the systems audit to ensure that deficiencies had been corrected and to verify that QA practices/procedures were being maintained throughout the duration of the project. These assessments involved reviewing field measurement records, instrumentation calibration records, and sample documentation.

External assessments may be conducted at the discretion of the USACE, USEPA Region 7, or the MDNR.

5-2 REVISION 0

5.5.2 Laboratory Audits

The on-site USACE St. Louis District FUSRAP Radioanalytical Laboratory locations are subject to periodic review(s) by the local USACE Chemist to demonstrate compliance with the *Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories* (QSM) (U.S. Department of Defense [DOD] and DOE 2013). In conjunction, the on-site laboratories participate in blind, third-party performance evaluation studies (performance audits) at least twice per year, with results reported to the local USACE point(s) of contact. In addition, contract laboratories are required to be accredited under the DOD Environmental Laboratory Accreditation Program (ELAP). The DOD ELAP requires an annual audit and re-accreditation every 3 years.

These system audits include examining laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records. Performance audits consist of USACE laboratories receiving performance evaluation samples from an outside vendor for an ongoing assessment of laboratory precision and accuracy. The analytical results of the analysis of performance evaluation samples are evaluated by USACE Hazardous, Toxic and Radioactive Waste – Center of Expertise and/or the local oversight chemist to ensure that laboratories maintain acceptable performance.

Internal performance and system audits of laboratories were conducted by the Laboratory QA Manager as directed in the *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radioanalytical Laboratory* (USACE 2013). System audits included an examination of laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records against the requirements of the laboratory's SOPs. Internal performance audits were also conducted on a regular basis. Single-blind performance samples were prepared and submitted along with project samples to the laboratory for analysis. The Laboratory QA Manager evaluated the analytical results of these single-blind performance samples to ensure that the laboratory maintained acceptable performance. Quarterly QA/QC reports were generated and provided to the local USACE authority – the reports document the ongoing QC elements and provide for further monitoring of quality processes/status. Also, QA plans and methodology follow the guidance presented in the QSM (DOD and DOE 2013).

5.6 SUBCONTRACTED LABORATORY PROGRAMS

All samples collected during environmental monitoring activities were analyzed by USACE-approved subcontractor laboratories. QA samples were collected for ground water and soil, and samples were analyzed by the designated USACE QA laboratory. Each laboratory supporting this work maintained statements of qualifications, including organizational structure, QA Manual, and SOPs. Additionally, subcontracted laboratories are also required to be an accredited laboratory under the DOD ELAP.

Samples collected during these investigations were analyzed by the USEPA methods contained in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846*, (USEPA 1993) and by other documented USEPA or nationally recognized methods. Laboratory SOPs are based on the QSM (DOD and DOE 2013).

5-3 REVISION 0

5.7 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

QA/QC samples were collected and analyzed for the purpose of assessing the quality of the sampling effort and the reported analytical data. QA/QC samples include duplicate samples (–1) and split samples (–2). The equation utilized for accuracy and precision can be found in Section 5.9.

5.7.1 Duplicate Samples

Duplicate samples measure precision and were collected by the sampling teams. Samples were submitted for analysis to the on-site USACE St. Louis FUSRAP laboratory or contract laboratories. The identity of duplicate samples is held blind to the analysts, and the purpose of these samples is to provide activity-specific, field-originated information regarding the homogeneity of the sampled matrix and the consistency of the sampling effort. These samples were collected concurrently with the primary environmental samples and equally represent the medium at a given time and location. Duplicate samples were collected from each medium addressed by this project and were submitted to the contracted laboratories for analysis. Approximately one duplicate sample was collected for every 20 field samples of each matrix and analyte across the SLS. Precision is measured by the relative percent difference (RPD) for non-radiological analyses.

The RPDs for non-radiological analyses are presented in Table 5-1. The overall precision for the CY 2016 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

Table 5-1. Non-Radiological Duplicate Sample Analysis for CY 2016 – Ground Water

Channel Water Commis Name	Arsenic	Cadmium
Ground-Water Sample Name ^a	$\mathbf{RPD}^{\mathrm{b}}$	$\mathbf{RPD}^{\mathrm{b}}$
SLD193771 / SLD193771-1	9.52	NC

Ground-water samples ending in "-1" are duplicate ground-water samples.

5.7.2 Split Samples

Split samples measure accuracy and were collected by the sampling team and sent to a USACE QA laboratory for analysis to provide an independent assessment of contractor and subcontractor laboratory performance. Approximately one split sample was collected for every 20 field samples of each matrix for non-radiological analytes across the SLS. The RPDs for non-radiological analyses are presented in Table 5-2. The overall accuracy for CY 2016 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

Table 5-2. Non-Radiological Split Sample Analysis for CY 2016 – Ground Water

Currend Wester Councils Normal	Arsenic	Cadmium
Ground-Water Sample Name ^a	$\mathbf{RPD}^{\mathrm{b}}$	$\mathbf{RPD}^{\mathrm{b}}$
SLD193771 / SLD193771-2	25.64	NC

Ground-water samples ending in "-2" are split ground-water samples.

5.7.3 Equipment Rinsate Blanks

Equipment rinsate blank samples are typically taken from the rinsate water collected from equipment decontamination activities. These samples consist of analyte-free water that has been

5-4 REVISION 0

RPD criterion for liquid samples is less than or equal to 30 percent.

NC – not calculated (due to one or both concentrations being below DLs)

RPD criterion for liquid samples is less than or equal to 30 percent.

NC – not calculated (due to one or both concentrations being below DLs)

rinsed over sampling equipment for the purposes of evaluating the effectiveness of equipment decontamination. All of the monitoring wells have dedicated sampling equipment, rendering decontamination unnecessary. Because decontamination does not apply, equipment rinsate blanks were not employed.

5.8 DATA REVIEW, EVALUATION, AND VALIDATION

All data packages received from the analytical laboratory were reviewed and either evaluated or validated by data management personnel. Data validation is the systematic process of ensuring that the precision and accuracy of the analytical data are adequate for their intended use. Validation was performed in accordance with *Data Verification and Validation* (Leidos 2015b), and/or with project-specific guidelines. General chemical data quality management guidance found in Engineer Regulation (ER)-1110-1-263 (USACE 1998b) was also used when planning for chemical data management and evaluation. Additional details of data review, evaluation, and validation are provided in the *FUSRAP Laboratory Data Management Process for the St. Louis Site* (USACE 1999b). Data assessment guidance to determine the usability of data from hazardous, toxic and radioactive waste projects is provided in EM-200-1-6 (USACE 1997).

One hundred (100) percent of the data generated from all analytical laboratories was independently reviewed and either evaluated or validated. The data review process documents the possible effects on the data from various QC failures; it does not determine data usability, nor does it include assignment of data validation qualifier (VQ) flags. The data evaluation or validation process uses the results of the data review to determine the usability of the data. The process of data evaluation summarizes the potential effects of QA/QC failures on the data, and the USACE District Chemist or District Health Physicist assesses their impact on the attainment of the project-specific data quality objectives (DQOs). Consistent with the data quality requirements, as defined in the DQOs, approximately 10 percent of all project data were validated.

5.9 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY

The data evaluation process considers precision, accuracy, representativeness, completeness, comparability, and sensitivity. This section provides detail to the particular parameters and to how the data were evaluated for each, with discussion and tables to present the associated data. An evaluation of the overall precision, accuracy, representativeness, completeness, comparability, and sensitivity of the CY 2016 environmental monitoring activities was acceptable and complete.

Accuracy and precision can be measured by the RPD using the following equation:

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) \times 100$$

where:

S = parent sample result

D = duplicate/split sample result

The RPD is calculated for all samples if a detectable result is reported for both the parent and the QA field split or field duplicate. The equation is not used when the analyte in one or both of the

5-5 REVISION 0

samples is not detected. In cases in which the equation cannot be used, the comparison is counted as acceptable in the overall number of comparisons.

Precision is a measure of mutual agreement among individual measurements performed under the same laboratory controls. To evaluate for precision, a field duplicate is submitted to the same laboratory as the original sample to be analyzed under the same laboratory conditions. The RPD between the two results was calculated and used as an indication of the precision of the analyses performed (Table 5-1). Sample collection precision was measured in the laboratory by the analyses of duplicates. The overall precision for the CY 2016 environmental monitoring activities was acceptable.

Accuracy provides a gauge or measure of the agreement between an observed result and the true value for an analysis. The RPD between the two results was calculated and used as an indication of the accuracy of the analyses performed (Table 5-2). For this EMDAR, accuracy is measured through the use of the field split samples through a comparison of the prime laboratory results versus the results of an independent laboratory. The overall accuracy for CY 2016 environmental monitoring activities was acceptable.

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Representativeness is a qualitative parameter that depends upon the proper design of the sampling program and proper laboratory protocols. Representativeness is satisfied through proper design of the sampling network, use of proper sampling techniques, following proper analytical procedures, and not exceeding holding times of the samples. Representativeness was determined by assessing the combined aspects of the QA program, QC measures, and data evaluations. The network design was developed from the EMICY16, the sampling protocols from the SAG have been followed, and analytical procedures were conducted within the bounds of the QAPP. The overall representativeness of the CY 2016 environmental monitoring activities was acceptable.

Comparability expresses the confidence with which one dataset can be compared to another. The extent to which analytical data will be comparable depends upon the similarity of sampling and analytical methods, as well as sample-to-sample and historical comparability. Standardized and consistent procedures used to obtain analytical data are expected to provide comparable results. For example, post-CY 1997 analytical data may not be directly comparable to data collected before CY 1997, because of differences in DQOs. Additionally, some sample media (e.g., stormwater and radiological monitoring) have values that are primarily useful in the present, thus the comparison to historic data is not as relevant. However, the overall comparability of the applicable environmental monitoring data met the project DQOs.

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under normal conditions. It is expected that laboratories will provide data meeting QC acceptance criteria for all samples tested. For the CY 2016 environmental monitoring activities, the data completeness was 100 percent (St. Louis FUSRAP DQO for completeness is 90 percent).

Sensitivity is the determination of minimum detectable concentration (MDC) values that allows the investigation to assess the relative confidence that can be placed in an analytical result in comparison to the magnitude or level of analyte concentration observed. For this EMDAR, MDC is a term generically used to represent the method detection limit (MDL) for non-radiological analytes. The closer a measured value to the MDC, the less confidence and more variation the measurement will

5-6 REVISION 0

have. Project sensitivity goals were expressed as quantitation level goals in the SAG. These levels were achieved or exceeded throughout the analytical process.

The MDC is reported for each result obtained by laboratory analysis. These very low MDCs are achieved through the use of inductively coupled plasma (ICP) for metals. Variations in MDLs for the same non-radiological analyte reflect variability in calibrations between laboratories, dilutions, and analytical methods. In order to complete the data evaluation (i.e., precision, accuracy, representativeness, and comparability), analytical results that exceed the MDC of the analyte are desired.

5.10 DATA QUALITY ASSESSMENT SUMMARY

The overall quality of the data meets the established project objectives. Through proper implementation of the project data review, evaluation, validation, and assessment process, project information has been determined to be acceptable for use.

Data, as presented, have been qualified as usable, but estimated when necessary. Data that have been estimated have concentrations/activities that are below the quantitation limit or are indicative of accuracy, precision, or sensitivity less than desired but adequate for interpretation.

These data can withstand scientific scrutiny, are appropriate for their intended purpose, are technically defensible, and are of known and acceptable precision and accuracy. Data integrity has been documented through proper implementation of QA/QC measures. The environmental information presented has an established confidence, which allows utilization for the project objectives and provides data for future needs.

5.11 RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES

Summaries of the QA parent sample results and associated duplicate and/or split sample results are presented in Table 5-3.

Table 5-3. Non-Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2016 – Ground Water

Ground-Water	ater Arsenic ^b			Cadmium ^b		
Sample Name ^a	Result	DL	VQ	Result	DL	VQ
SLD193771	220.00	4.00	=	0.21	0.20	=
SLD193771-1	200.00	4.00	=	0.20	0.20	U
SLD193771-2	170.00	5.00	=	0.60	0.60	U

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

5-7 REVISION 0

Result values are expressed in µg/L.

VQ symbols indicate: "=" for positively identified results, "U" for not detected.

	5.8	DEVISION
	THIS PAGE INTENTIONALLY LEFT BLANK	
St. Louis Downtown Site	Annual Environmental Monitoring Data and Analysis Report for CY 2016	5

REVISION 0 5-8

6.0 RADIOLOGICAL DOSE ASSESSMENT

This section evaluates the cumulative dose to a hypothetically impacted individual from exposure to radiological contaminants at the SLDS and documents dose trends. The regulatory dose limit for members of the public is 100 mrem per year, as stated in 10 *CFR* 20.1301. Although 10 *CFR* 20.1301 is not an ARAR for the SLDS, the USACE has provided this evaluation to evaluate public exposures from St. Louis FUSRAP cleanup operations. Compliance with the dose limit in §20.1301 can be demonstrated by one of the two following methods (§20.1302(b)(1) and (2)):

- 1) Demonstrating by measurement or calculation that the TEDE to the individual likely to receive the highest dose from SLDS operations does not exceed the annual dose limit (i.e., 100 mrem per year); or
- 2) Demonstrating that: (i) the annual average concentration of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area does not exceed the values specified in Table 1 of Appendix B of 10 *CFR* 20; and (ii) if an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 2 mrem per hour.

The USACE has elected to demonstrate compliance by calculation of the TEDE to a hypothetical individual likely to receive the highest dose from the SLDS operations (method 1). This section describes the methodology employed for this evaluation.

Dose calculations are presented for a hypothetical maximally exposed individual at the SLDS. The monitoring data used in the dose calculations are reported in the respective environmental monitoring sections of this EMDAR.

Dose calculations related to airborne emissions, as required by 40 CFR 61, Subpart I (National Emission Standards for Emissions of Radionuclides Other Than Radon From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered By Subpart H), are presented in Appendix A (the "St. Louis Downtown Site 2016 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 CFR 61, Subpart I").

6.1 SUMMARY OF ASSESSMENT RESULTS

The TEDE from the SLDS to the receptor from all complete/applicable pathways combined was less than 0.1 mrem per year, estimated for an individual who works full-time at Thomas & Proetz Lumber Company (DT-10).

Figure 6-1 documents annual dose trends from CY 2000 to CY 2016 at the SLDS. Figure 6-2 provides a comparison of the maximum annual dose from CY 2000 to CY 2016 at the SLDS to the annual average natural background dose of approximately 300 mrem per year.

6.2 PATHWAY ANALYSIS

Table 6-1 lists the four complete pathways for exposure from SLDS radiological contaminants evaluated by the St. Louis FUSRAP EMP. These pathways are used to identify data gaps in the EMP and to estimate potential radiological exposures from the SLDS. Of the four complete pathways, three were applicable in CY 2016 and were thus incorporated into radiological dose estimates.

6-1 REVISION 0

Table 6-1. Complete Radiological Exposure Pathways for the SLDS

Exposure Pathway	Pathway Description	Applicable to CY 2016 Dose Estimate
Liquid A	Ingestion of ground water from local wells downgradient from the site.	NA
Airborne A	Inhalation of particulates dispersed through wind erosion and RAs.	Y
Airborne B	Inhalation of Rn-222 and decay products emitted from contaminated soils/wastes.	Y
External	Direct gamma radiation from contaminated soils/wastes.	Y

Data from the SLDS storm-water discharges and MSD discharges are not applicable to the hypothesized recreational receptor; therefore, those data are not evaluated in this section.

In developing specific elements of the St. Louis FUSRAP EMP, potential exposure pathways of the radioactive materials present on-site are reviewed to determine which pathways are complete. Evaluation of each exposure pathway is based on hypothesized sources, release mechanisms, types, probable environmental fates of contaminants, and the locations and activities of potential receptors. Pathways are then reviewed to determine whether a link exists between one or more radiological contaminant sources, or between one or more environmental transport processes, to an exposure point where human receptors are present. If it is determined that a link exists, the pathway is termed complete. Each complete pathway is reviewed to determine if a potential for exposure was present during CY 2016. If potential for exposure was present, the pathway is termed applicable. Only applicable pathways are considered in estimates of dose.

Table 6-1 shows the pathways applicable to the CY 2016 dose estimates for the SLDS. The Liquid A exposure pathway was not applicable in CY 2016, because the aquifer is of naturally low quality and it is not known to be used for any domestic purpose in the vicinity of the SLDS (DOE 1994).

6.3 EXPOSURE SCENARIOS

Dose calculations were performed for a maximally exposed individual at a critical receptor location for applicable exposure pathways (Table 6-1) to assess dose due to radiological releases from the SLDS. A second set of dose equivalent calculations were performed to meet NESHAP requirements (Appendix A), which were also used for purposes of TEDE calculation.

The scenarios and models used to evaluate these radiological exposures are conservative, but appropriate. Although radiation doses can be calculated or measured for individuals, it is not appropriate to predict the health risk to a single individual using the methods prescribed herein. Dose equivalents to a single individual are estimated by hypothesizing a maximally exposed individual and placing this individual in a reasonable, but conservative scenario. This method is acceptable when the magnitude of the dose to a hypothetical maximally exposed individual is small, as is the case for the SLDS. This methodology provides for reasonable estimates of potential exposure to the public and maintains a conservative approach. The scenarios and resulting estimated doses are outlined in Section 6.4.

6.4 DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS

The TEDE for the exposure scenario was calculated using CY 2016 monitoring data. Calculations for dose scenarios are provided in Appendix F. Dose equivalent estimates are well below the

6-2 REVISION 0

NA - not applicable for the site

Y – applicable for the site

standards set by the U.S. Nuclear Regulatory Commission (NRC) for annual public exposure and USEPA NESHAP limits.

The CY 2016 TEDE for a hypothetical maximally exposed individual near the SLDS is less than 0.1 mrem per year.

This section discusses the estimated TEDE to a hypothetical maximally exposed individual assumed to frequent the perimeter of the SLDS and receive a radiation dose by the exposure pathways identified in Section 6.2. No private residences are adjacent to the site areas where uranium processing activities occurred. Therefore, all calculations of dose equivalent due to the applicable pathway assume a realistic residence time that is less than 100 percent. A full-time employee business receptor was considered to be the maximally exposed individual from the SLDS.

The exposure scenario assumptions include:

- Exposure to radiation from all SLDS sources occurs to the maximally exposed individual while working full-time outside at the receptor location facility located approximately 50 m from the assumed line source. Exposure time is 2,000 hours per year (Leidos 2017).
- Exposure from external gamma radiation was calculated using environmental TLD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor. The site is assumed to represent a line-source to the receptor.
- Exposure from airborne radioactive particulates was estimated using soil concentration data and air particulate monitoring data to determine a source term, and then running the CAP88-PC modeling code to estimate dose to the receptor (Leidos 2017).
- Exposure from Rn-222 (and progeny) was calculated using a dispersion factor and Rn-222 (ATD) monitoring data at the site locations representative of areas accessible to the public between the source and receptor (Leidos 2017).

Based on the exposure scenario and assumptions described above, a maximally exposed individual working outside at the receptor location facility received less than 0.1 mrem per year from external gamma, less than 0.1 mrem per year from airborne radioactive particulates, and 0.0 mrem per year from Rn-222, for a TEDE of less than 0.1 mrem per year (Leidos 2017). In comparison, the average exposure to natural background radiation in the United States results in a TEDE of approximately 300 mrem per year (NCRP 2009).

6-3 REVISION 0

St. Louis Downtown Site A	nnual Environmental Mon	itoring Data and Analysis F	Report for CY 2016	
	THIS PAGE INT	TENTIONALLY LI	EFT BLANK	
		6.4		DEVISION

REVISION 0 6-4

7.0 REFERENCES

- Cember, H., 1996. Introduction to Health Physics, Mcgraw-Hill, New York, NY.
- City of St. Louis 2005. City Ordinance 66777, effective August 2005.
- DOD 2000. U.S. Department of Defense, U.S. Department of Energy, U.S. Environmental Protection Agency, and U.S. Nuclear Regulatory Commission. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. NUREG 1575. EPA 402-R-97-016. August.
- DOD and DOE 2013. U.S. Department of Defense and U.S. Department of Energy. *Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories*. DOD Quality Systems Manual Version 5.0 and DOE Quality Systems for Analytical Services Version 3.0. July 2013.
- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site*, St. Louis, Missouri, DOE/OR/21949-280, January.
- DOE 1995. U.S. Department of Energy. *Remedial Investigation Addendum for the St. Louis Site*, St. Louis, Missouri, DOE/OR/ 21950-132, September.
- DOE 1998. U.S. Department of Energy. *Internal Dosimetry Program Technical Basis Manual*, DOE/OR/21548-241, Oak Ridge Operations Office, Rev. 5, November.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*, John Wiley and Sons, Inc., New York, January.
- Leidos 2015a. Leidos, Inc. Environmental Science & Engineering Operation, Standard Operating Procedure. "Control of Nonconforming Items," ESE A15.1, Rev. 0, January 31.
- Leidos 2015b. Leidos, Inc. *Data Verification and Validation*. Environmental Science & Engineering Operation. Standard Operating Procedure. ESE DM-05. Revision 0. January 31, 2015.
- Leidos 2017. Leidos, Inc. Total Effective Dose Equivalent (TEDE) to the Hypothetically Maximally Exposed Individual at SLDS, Calculation Package. March.
- MSD 1998. Metropolitan St. Louis Sewer District. Letter dated October 30, 1998. From Bruce H. Litzsinger, Civil Engineer, to Ken Axetel, International Technology Corporation.
- MSD 2001. Metropolitan St. Louis Sewer District. Letter dated July 23, 2001. From Bruce H. Litzsinger, Civil Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: St. Louis Downtown Site. File: IU Mallinckrodt 21120596-00.
- MSD 2004. Metropolitan St. Louis Sewer District. Letter dated October 13, 2004. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. File: IU Mallinckrodt 21120596-00.
- MSD 2006. Metropolitan St. Louis Sewer District. Letter dated June 19, 2006. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2008. Metropolitan St. Louis Sewer District. Letter dated May 22, 2008. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.

7-1 REVISION 0

- MSD 2010. Metropolitan St. Louis Sewer District. Letter dated May 10, 2010. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2012. Metropolitan St. Louis Sewer District. Letter dated May 24, 2012. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2014. Metropolitan St. Louis Sewer District. Letter dated June 23, 2014. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2016. Metropolitan St. Louis Sewer District. Letter dated July 18, 2016. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- NCRP 1988. National Council on Radiation Protection and Measurements. *Measurement of Radon and Radon Daughters in Air*, NCRP Report No. 97. November.
- NCRP 2009. National Council on Radiation Protection and Measurements. *Ionizing Radiation Exposure of the Population of the United States*, NCRP Report No. 160. 3 March.
- UNSCEAR 1982. United Nations Scientific Committee on the Effects of Atomic Radiation, 37th Session, Supplement No. 45 (A/37/45). United Nations, New York, NY.
- USACE 1997. U.S. Army Corps of Engineers. Engineering and Design Chemical Data Quality Management for Hazardous, Toxic, and Radioactive Waste (HTRW) Projects, Engineer Manual, EM-200-1-6, October.
- USACE 1998a. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site*, St. Louis, Missouri, Final, July.
- USACE 1998b. U.S. Army Corps of Engineers. Engineering and Design Chemical Data Quality Management for Hazardous, Toxic, and Radioactive Waste Activities, Engineer Regulation, ER-1110-1-263, April.
- USACE 1999a. U.S. Army Corps of Engineers. *Environmental Monitoring Guide for the St. Louis Sites*, Final, December.
- USACE 1999b. U.S. Army Corps of Engineers. *FUSRAP Laboratory Data Management Process* for the St. Louis Site, St. Louis, Missouri, June.
- USACE 2000. U.S. Army Corps of Engineers. Sampling and Analysis Guide for the St. Louis Site, Final, October.
- USACE 2001. U.S. Army Corps of Engineers. *Requirements for the Preparation of Sampling and Analysis Plans*, Engineer Manual, EM 200-1-3, February.
- USACE 2003. U.S. Army Corps of Engineers. *Phase 1 Ground-Water Remedial Action Alternative Assessment (GRAAA) at SLDS*, St. Louis Missouri, Final, June.
- USACE 2013. U.S. Army Corps of Engineers. *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radiological Laboratory*, Berkeley, Missouri. Revision 8. April 2013.

7-2 REVISION 0

- USACE 2016. U.S. Army Corps of Engineers. *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2016*, St. Louis, Missouri, Revision 0, January 29.
- USEPA 1987. U.S. Environmental Protection Agency. *Environmental Radon; Volume 35*, New York.
- USEPA 1989. U.S. Environmental Protection Agency. *Exposure Factor Handbook EPA/600/8-89/043*, Office of Health and Environmental Assessment, Washington D.C., July.
- USEPA 1991. U.S. Environmental Protection Agency. *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*, QAMS-005/80.
- USEPA 1993. U.S. Environmental Protection Agency. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846*, Third Edition, Revision 1, Updates 1, 2, and 3.
- USEPA 1994. U.S. Environmental Protection Agency. *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations*, EPA QA/R-5, January.
- USEPA 2000. U.S. Environmental Protection Agency. *Guidance for Data Quality Assessment Practical Methods for Data Analysis*, EPA QA/G-9, QA00 Update, July.
- USEPA 2014. U.S. Environmental Protection Agency. CAP88-PC Version 4.0 Modeling Code, September.
- 10 CFR 20, Standards for Protection Against Radiation.
- 10 CFR 20.1301, Dose Limits for Individual Members of the Public.
- 40 CFR 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 192, Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings.

7-3 REVISION 0

St.	Louis D	Owntow	n Site An	nual Enviro	onmental M	Monitoring	Data and A	nalysis Rep	ort for CY 2	016	
				тиіс і	DACE I	NTENT	TIONAI	IVIFE	T RI AN	K	
				THIS	PAGE I	NTENI	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENI	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	ĸ	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENI	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓIONAL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓIONAL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓIONAL	LY LEF	T BLAN	K	
				THIS	PAGE I	NTENT	ΓΙΟΝΑL	LY LEF	T BLAN	K	

7-4 REVISION 0

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS PAGE INTENTIONALLY LEFT BLANK	

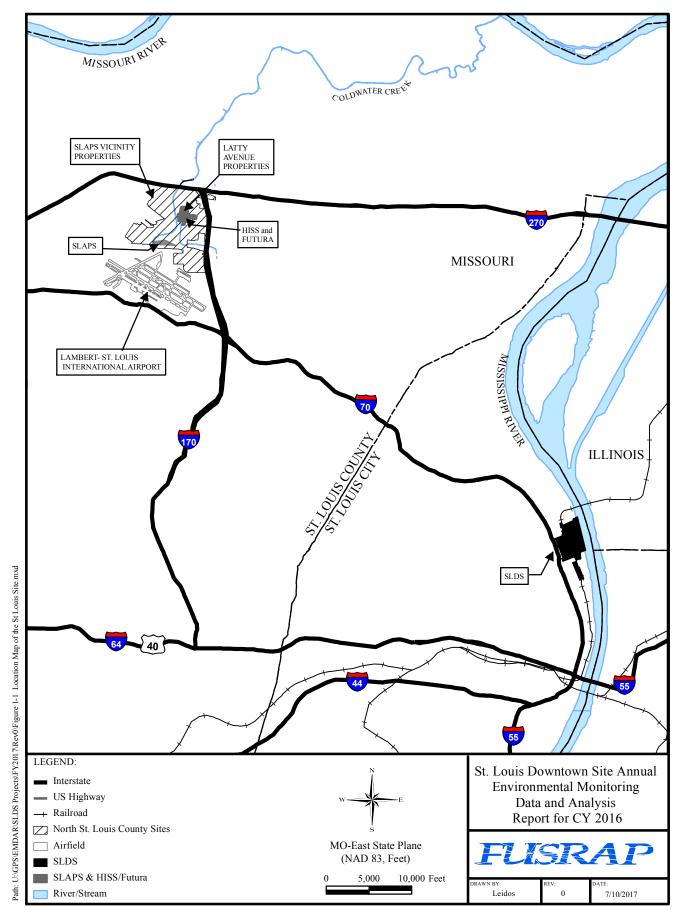


Figure 1-1. Location Map of the St. Louis Sites

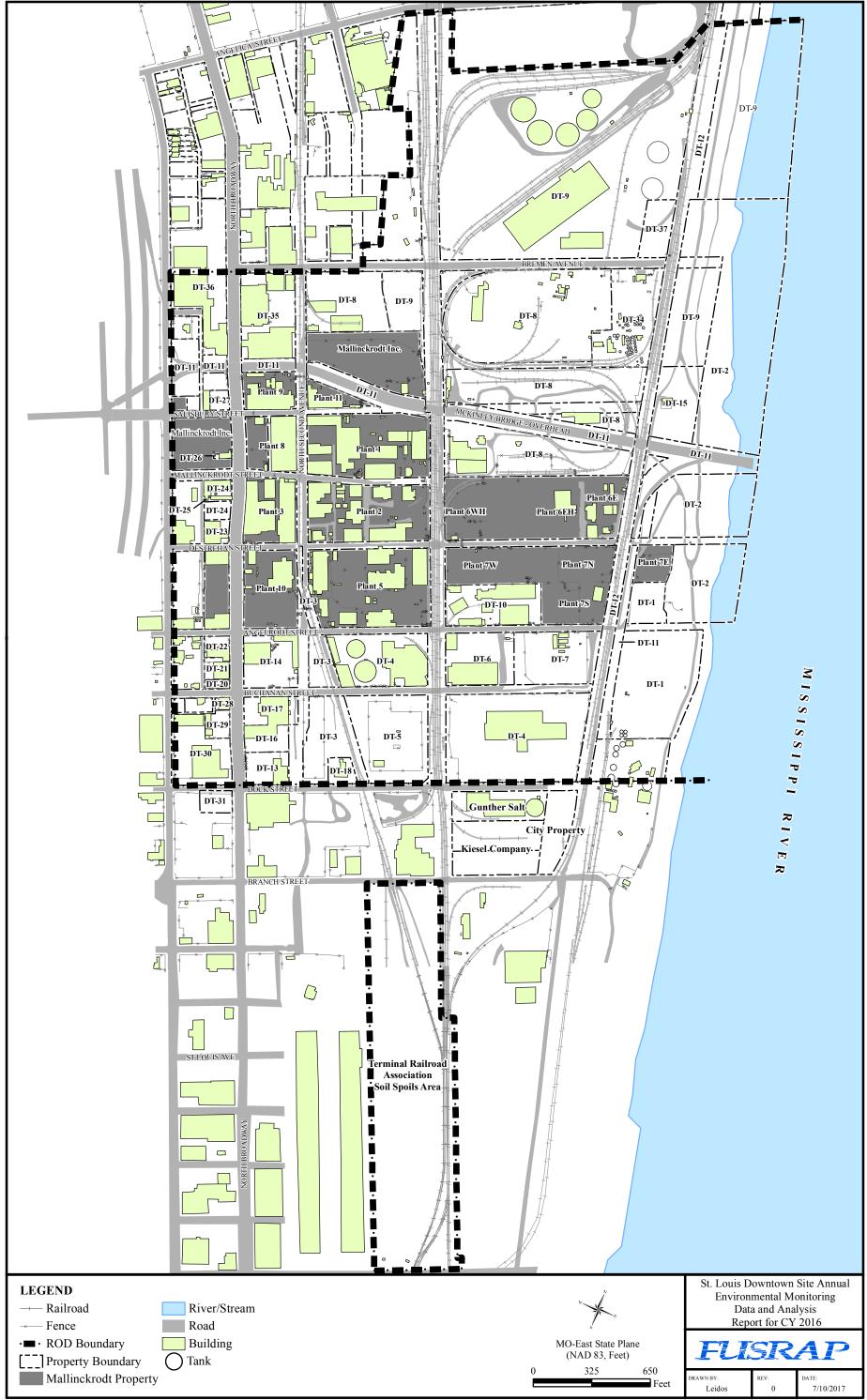


Figure 1-2. Plan View of the SLDS

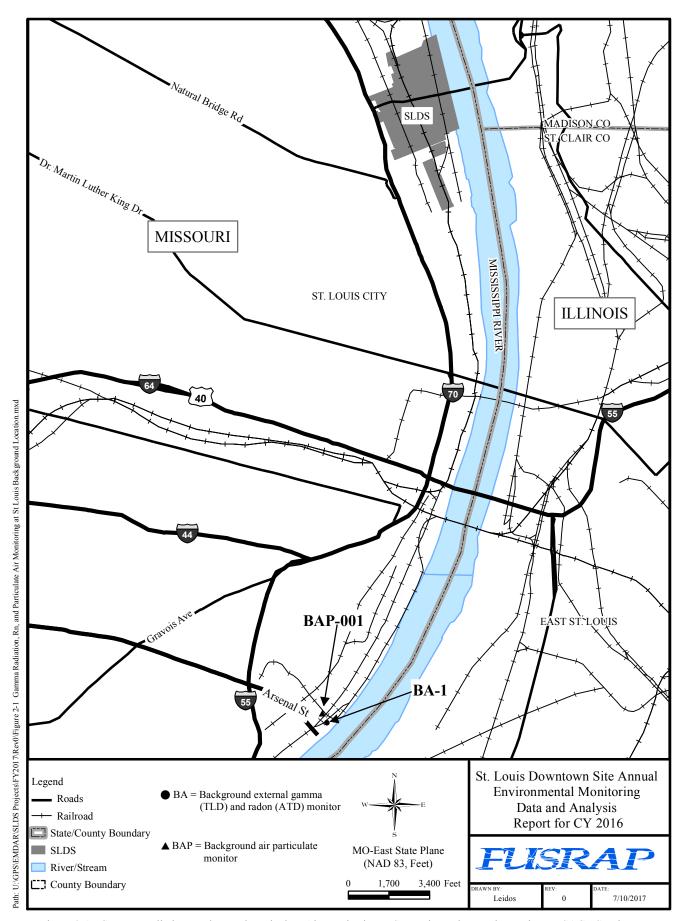


Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at St. Louis Background Location - USACE Service Base

Figure 2-2. Gamma Radiation and Radon Monitoring Locations at the SLDS

Figure 3-1. MSD Excavation-Water Discharge Point at the SLDS

Unit Designation	Approximate Thickness (ft)	Description
it (HU-A)	0-25	RUBBLE and FILL Grayish black (N2) to brownish black (5YR2/1). Dry to slightly moist, generally becoming moist at 5 to 6 ft and saturated at 10 to 12 ft. Slight cohesion, variable with depth, moisture content, and percentage of fines present. Consistency of relative density is unrepresentative due to large rubble fragments. Rubble is concrete, brick, glass, and coal slag. Percentage of fines as silt or clay increases with depth from 5 to 30 percent. Some weakly cemented aggregations of soil particles. Adhesion of fines to rubble increases with depth and higher moisture content. Degree of compaction is slight to moderate with frequent large voids.
Upper Hydrostratigraphic Unit (HU-A)	0-10	Silty CLAY (CH) Layers are mostly olive gray (5Y2/1), with some olive black (5Y2/1). Predominantly occurs at contact of undisturbed material, or at boundary of material with elevated activity. Abundant dark, decomposed organics. Variable percentages of silt and clay composition.
Hydrostra	0-5	CLAY (CL) Layers are light olive gray (5Y5/2), or dark greenish gray (5GY4/1). Slightly moist to moist, moderate cohesion, medium stiff consistency. Tends to have lowest moisture content. Slight to moderate plasticity.
Upper	0-2.5	Interbedded CLAY, silty CLAY, SILT and Sandy SILT (CL, ML, SM) Dark greenish gray (5GY4/1) to light olive gray (5Y6/1). Moist to saturated, dependent on percentage of particle size. Contacts are sharp, with structure normal to sampler axis to less than 15 degrees downdip. Layer thicknesses are variable, random in alternation with no predictable vertical gradation or lateral continuity. Some very fine-grained, rounded silica sand as stringers. Silt in dark mafic/biotite flakes. Some decomposed organics.
igraphic ;)	0-10	Sandy SILT (ML) Olive gray (5Y4/1). Moist with zones of higher sand content saturated. Slight to moderate cohesion, moderate compaction. Stiff to very stiff consistency, rapid dilatancy, nonplastic. Sand is well sorted, very fine and fine-grained rounded quartz particles.
Lower Hydrostratigraphic Unit (HU-B)	0-50	Silty SAND and SAND (SM, SP, SW) Olive gray (5Y4/1). Saturated, slight cohesion, becoming noncohesive with decrease of silt particles with depth. Dense, moderate compaction. Moderate to well-graded, mostly fine- and medium-grained, with some fine- and coarse-grained particles. Mostly rounded with coarse grains slightly subrounded. Gradual gradation from upper unit, silty sand has abundant dark mafic/biotite flakes. Sand is well-graded, fine gravel to fine sand. Mostly medium-grained, with some fine-grained and few coarse-grained and fine gravel.
Limestone Bedrock Unit (HU-C)	Total thickness not penetrated during drilling	LIMESTONE Light olive gray (5Y4/1) with interbedded chert nodules. Generally hard to very hard; difficult to scratch with knife. Slightly weathered, moderately fresh with little to no discoloration or staining. Top 5 ft is moderately fractured, with 99 percent of joints normal to the core axis. Joints are open, planar, and smooth. Some are slightly discolored with trace of hematite staining.

SOURCE: MODIFIED FROM DOE 1994.

NOTE: THE CODES IN PARENTHESES FOLLOWING THE LITHOLOGIES ARE THE UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) CODES.

THE CODES IN PARENTHESES FOLLOWING THE COLORS REPRESENT CHROMA, HUE, AND VALUE FROM THE MUNSELL SOIL COLOR CHARTS.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016
WN BY: REV. NO/DATE: CAD FILE:

DRAWN BY: REV. NO./DATE: CAD FILE: C.Kaple 0 – 05/02/2017

NOT TO SCALE

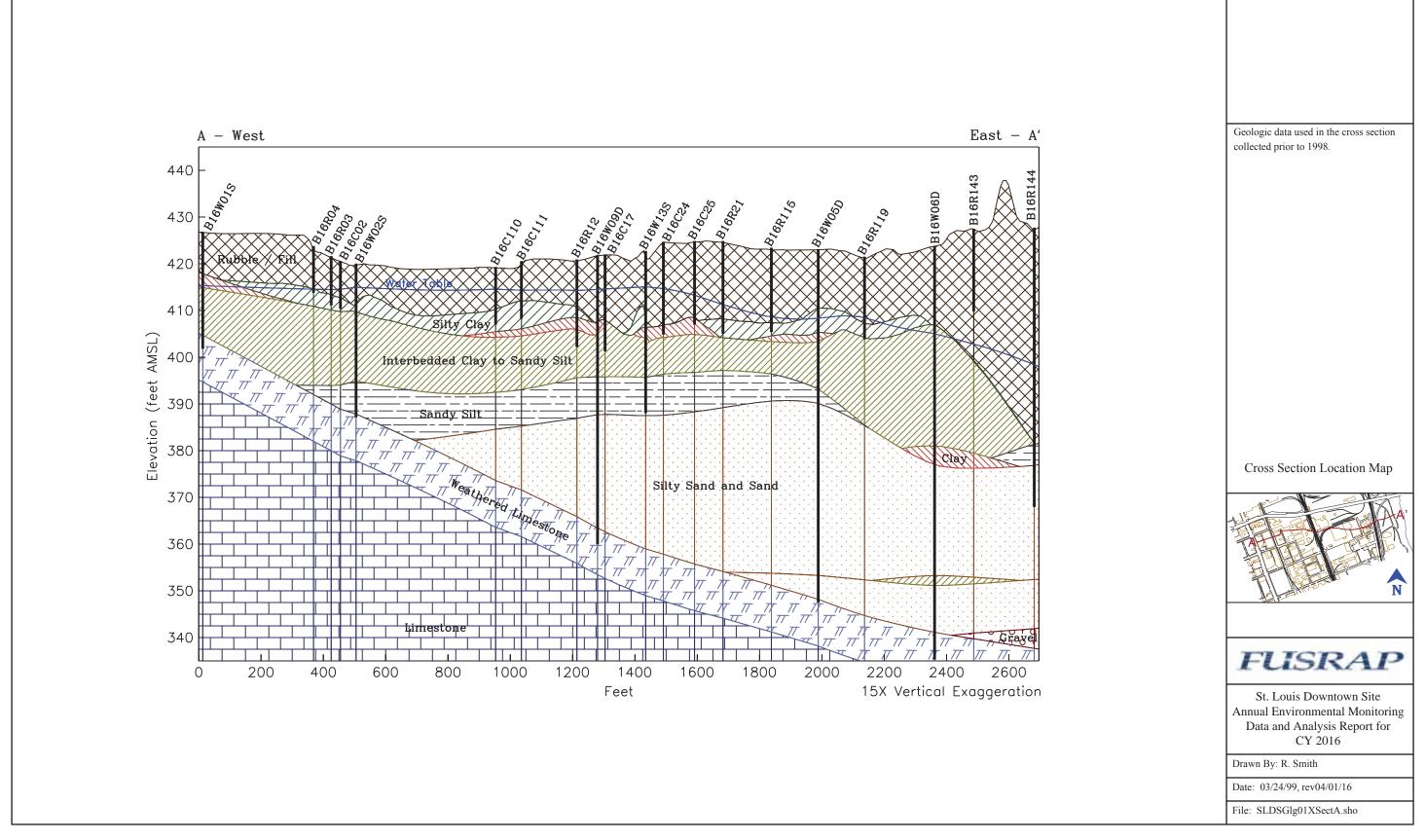


Figure 4-2. SLDS Geologic Cross-Section A-A'

Figure 4-3. Ground-Water Monitoring Well Locations at the SLDS

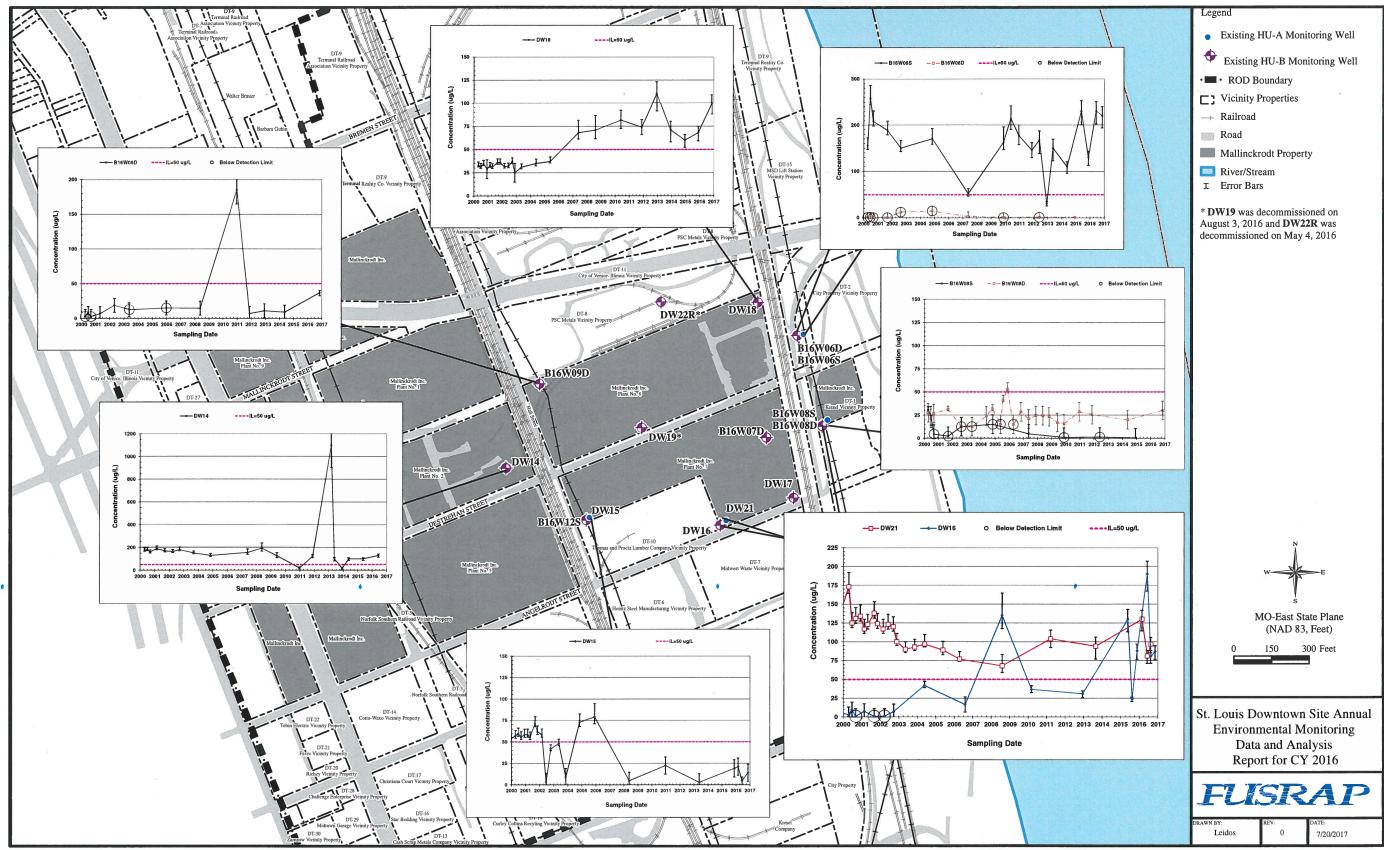


Figure 4-4. Arsenic Concentration Trends in Unfiltered Ground Water at the SLDS

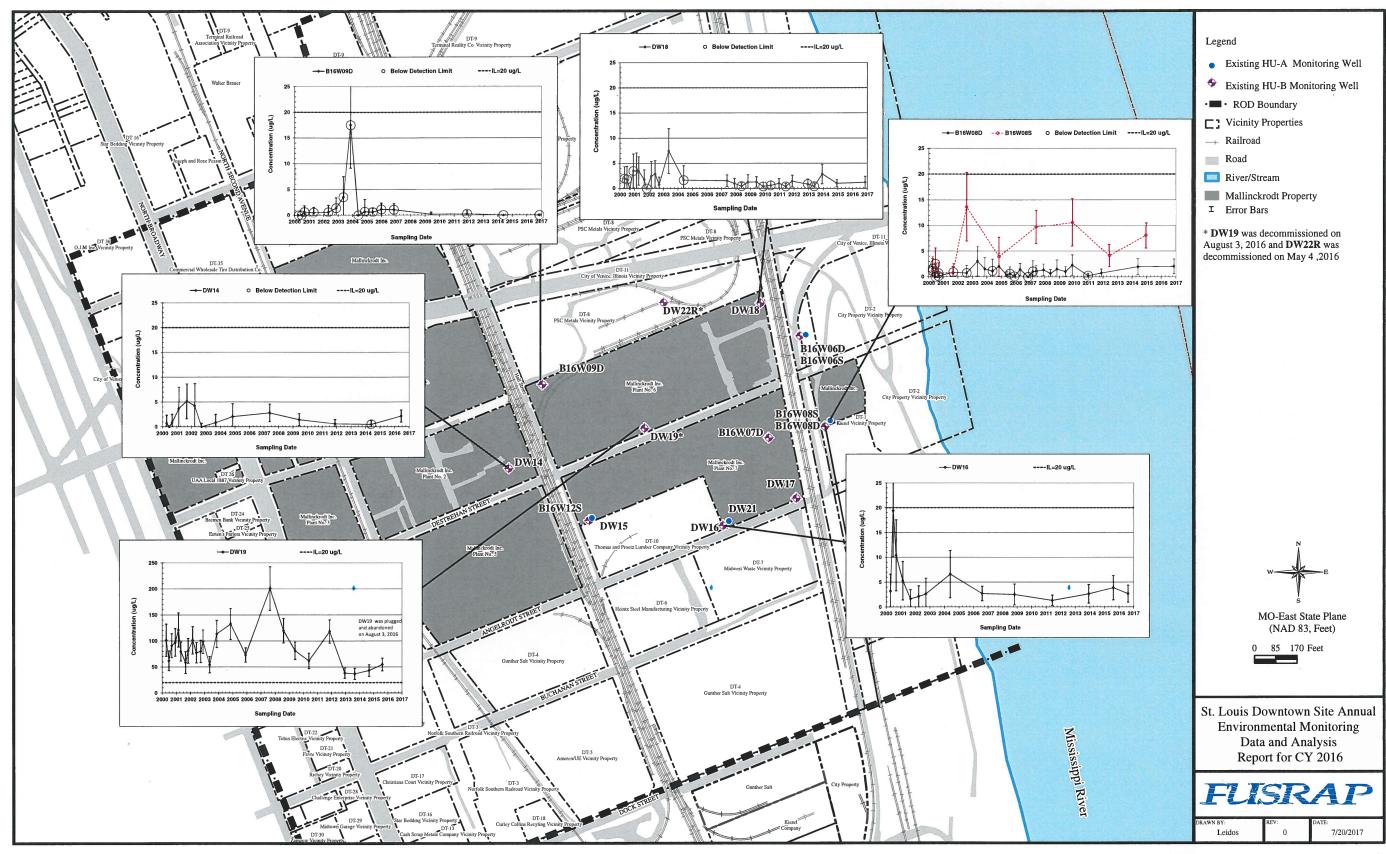
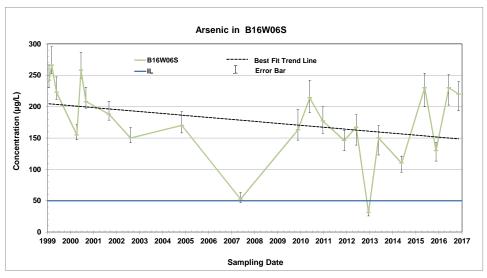
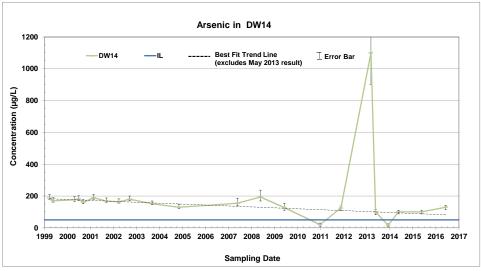
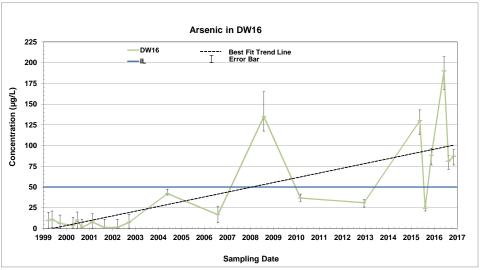
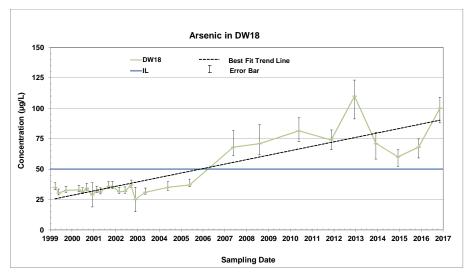
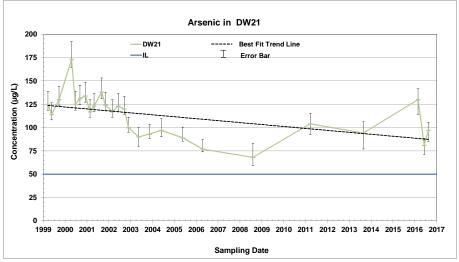
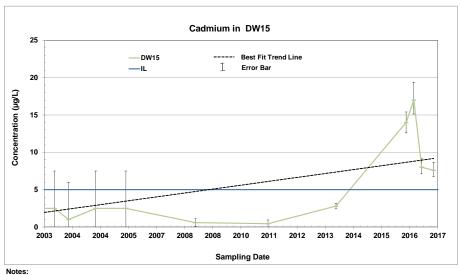





Figure 4-5. Total U Concentration Trends in Unfiltered Ground Water at the SLDS




For results less than 3 times the reporting limit (RL), the error bar represents ± RL.


For results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples.

Error bars for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported

Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Cadmium in Ground-Water Monitoring Wells at the SLDS

For results less than 3 times the RL, the error bar represents \pm RL.

For results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.

Figure 4-6. Time-Versus-Concentration Plots for Arsenic and Cadmium in Ground-Water Monitoring Wells at the SLDS (Continued)

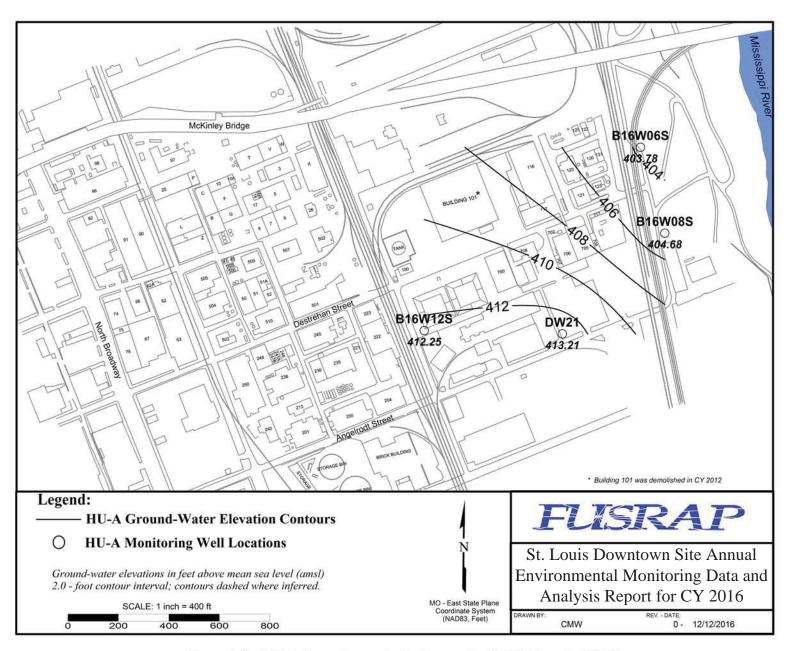


Figure 4-7. HU-A Potentiometric Surface at the SLDS (June 7, 2016)

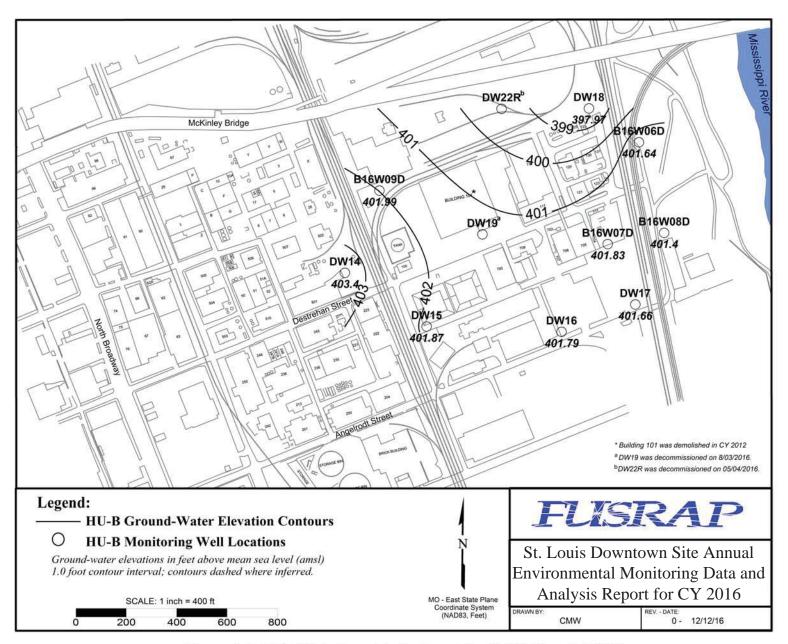


Figure 4-8. HU-B Potentiometric Surface at the SLDS (June 7, 2016)

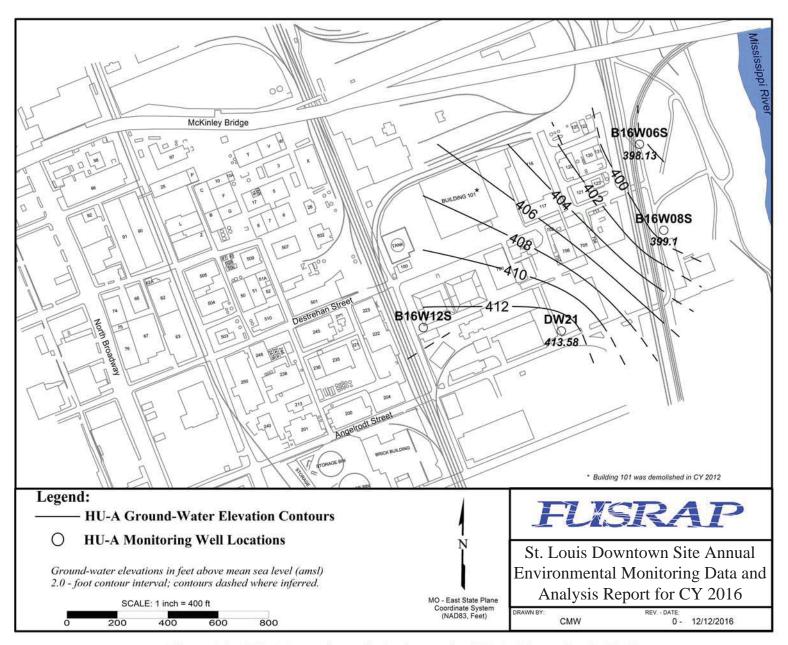


Figure 4-9. HU-A Potentiometric Surface at the SLDS (November 9, 2016)

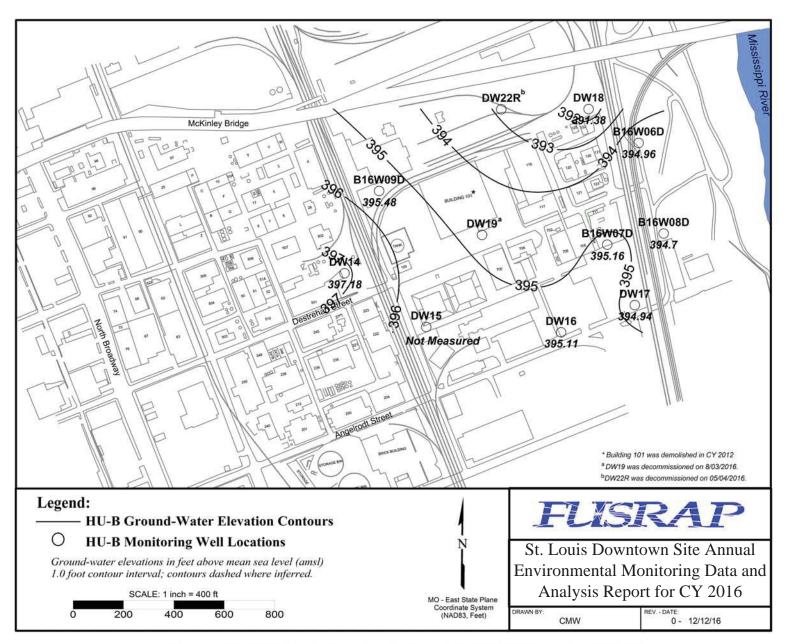


Figure 4-10. HU-B Potentiometric Surface at the SLDS (November 9, 2016)

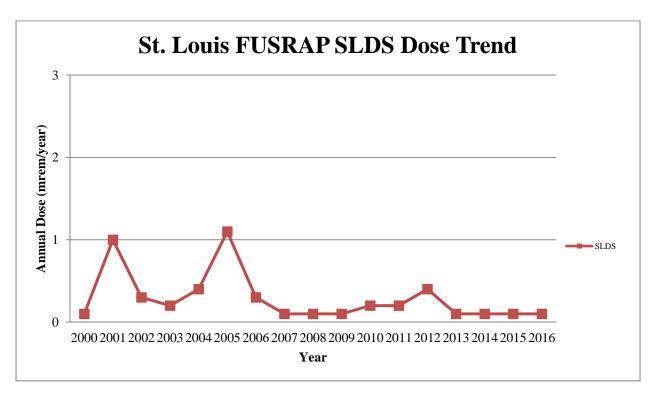


Figure 6-1. St. Louis FUSRAP SLDS Dose Trends

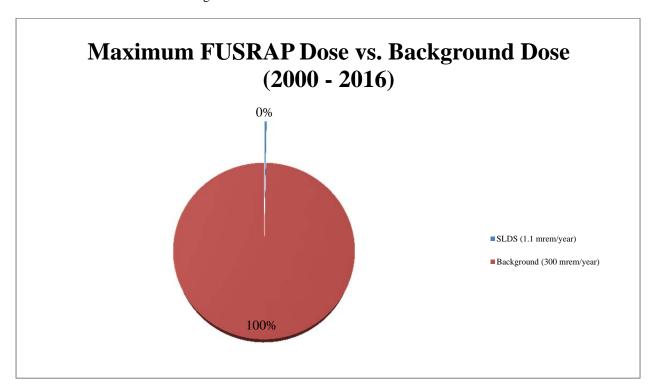


Figure 6-2. St. Louis FUSRAP SLDS Maximum Dose vs. Background Dose

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
ADDENDAY	
APPENDIX A	
ST. LOUIS DOWNTOWN SITE 2016 RADIONUCLIDE EMISSIONS NESHAP REPO	
SUBMITTED IN ACCORDANCE WITH REQUIREMENTS OF 40 CFR 61, SUBPART	1 1

st. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016
THIS DACE INTENTIONALLY LEFT BLANK
THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

SEC'	TION		PAGE
LIST	OF T	ABLES	A-ii
LIST	OF F	IGURES	A-ii
LIST	OF A	TTACHMENTS	A-ii
ACR	ONYM	IS AND ABBREVIATIONS	A-iii
UNI	Γ ABB	REVIATIONS	A-iv
EXE	CUTIV	VE SUMMARY AND DECLARATION STATEMENT	A-v
1.0	PUR	POSE	A-1
2.0	MET	THOD	A-3
	2.1	EMISSION RATE	A-3
	2.2	EFFECTIVE DOSE EQUIVALENT	A-3
3.0	MET	TEOROLOGICAL DATA	A-5
4.0		LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE IEDIATION	Δ-7
	4.1	SITE HISTORY	
	4.2	MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2016	
	4.3	SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS	A-7
	4.4	LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2016	A-7
	4.5	DISTANCES TO CRITICAL RECEPTORS	A-7
	4.6	EMISSIONS DETERMINATION	A-8
	4.7	CAP88-PC RESULTS	A-10
5.0	REF	ERENCES	A-11

LIST OF TABLES

NUMBER		PAGE
Table A-1.	St. Louis Wind Speed Frequency	A-5
Table A-2.	St. Louis Wind Rose Frequency	
Table A-3.	SLDS Critical Receptors for CY 2016	A-8
Table A-4.	SLDS Average Gross Alpha and Beta Airborne Particulate Emissions	
	for CY 2016	A-8
Table A-5.	SLDS Excavation Effective Areas and Effective Diameters for CY 2016	A-9
Table A-6.	SLDS Site Release Flow Rates for CY 2016	A-9
Table A-7.	SLDS Area Airborne Radioactive Particulate Emission Rates Based on	
	Excavation Perimeter Air Samples for CY 2016	A-9
Table A-8.	SLDS CAP88-PC Results for Critical Receptors for CY 2016	A-10

LIST OF FIGURES

NUMBER

Figure A-1. SLDS Critical Receptors

LIST OF ATTACHMENTS

Attachment A-1 Calculated Emission Rates from St. Louis Downtown Site Properties
Attachment A-2 CAP88-PC Output Report for St. Louis Downtown Site Properties

ACRONYMS AND ABBREVIATIONS

Ac actinium

AEC U.S. Atomic Energy Commission CFR Code of Federal Regulations

CY calendar year

EDE effective dose equivalent

FUSRAP Formerly Utilized Sites Remedial Action Program

GIS geographic information system

Mallinckrodt LLC

MED Manhattan Engineer District NAD normalized absolute difference

NESHAP National Emission Standard for Hazardous Air Pollutants

Pa protactinium Ra radium

RA remedial action

ROD Record of Decision for the St. Louis Downtown Site

SLDS St. Louis Downtown Site

SU survey unit
Th thorium
U uranium

USEPA U.S. Environmental Protection Agency

VP vicinity property

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

 $\begin{array}{ll} ^{\circ}C & degree(s) \ Celsius \ (centigrade) \\ \mu Ci/cm^{3} & microcurie(s) \ per \ cubic \ centimeter \\ \mu Ci/mL & microcurie(s) \ per \ milliliter \end{array}$

Ci curie(s) cm centimeter(s)

cm³ cubic centimeter(s)

m meter(s)

m² square meter(s)
m³ cubic meter(s)
mL milliliter
mrem millirem

pCi/g picocuries per gram

EXECUTIVE SUMMARY AND DECLARATION STATEMENT

This report presents the results of National Emission Standard for Hazardous Air Pollutants (NESHAP) calculations for the St. Louis Formerly Utilized Sites Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS) for calendar year (CY) 2016. NESHAP requires the calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors. The report follows the requirements and procedures contained in 40 Code of Federal Regulations (CFR) 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.

This NESHAP report evaluates SLDS properties where there was a reasonable potential for radionuclide emissions due to St. Louis FUSRAP activities. These sites include: Plant 6, Plant 7 (including Destrehan Street), and Plant 6 Loadout.

Emissions from the SLDS were evaluated for the entire CY 2016 to provide a conservative estimate of total emissions.

The NESHAP standard of EDE to a critical receptor from radionuclide emissions is 10 mrem per year. The SLDS did not exceed this standard. The EDE from radionuclide emissions at the SLDS was calculated using soil characterization data, air particulate monitoring data, and the U.S. Environmental Protection Agency (USEPA) CAP88-PC modeling code, which resulted in an EDE at the SLDS of less than 0.1 mrem per year.

The evaluation for the SLDS resulted in less than 10 percent of the dose standard prescribed in 40 CFR 61.102. This site is exempt from the reporting requirements of 40 CFR 61.104(a).

DECLARATION STATEMENT - 40 CFR 61.104(a)(xvi)

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See 18 *U.S. Code* 1001.

Signature	Date
Office: Address:	U.S. Army Corps of Engineers, St. Louis District Office
Address.	8945 Latty Ave. Berkeley, MO 63134
Contact:	Jon Rankins

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS PAGE INTENTIONALLY LEFT BLANK	

1.0 PURPOSE

This NESHAP report contains the EDE calculations from radionuclide emissions (exclusive of radon) to critical receptors from the SLDS properties at which a reasonable potential existed for radionuclide emissions due to St. Louis FUSRAP activities. These sites include: Plant 6, Plant 7 (including Destrehan Street), and the Plant 6 Loadout. The air emissions from the SLDS are ground releases of particulate radionuclides in soil as a result of windblown action and remedial activity in the form of excavation and off-site disposal of soil.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016
THIS PAGE INTENTIONALLY LEFT BLANK

2.0 METHOD

Emission rates for the SLDS were modeled using guidance documents (i.e., A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities [USEPA 1989]) referenced in 40 CFR 61, Appendix E, Compliance Procedures Methods for Determining Compliance with Subpart I, and were measured by collection of environmental air samples. Emission rates, along with appropriate meteorological data and distances to critical receptors¹, were input into the USEPA computer code CAP88-PC to obtain the EDE from the air emissions.

Although 40 *CFR* 61.103 requires the use of the USEPA computer code COMPLY, USEPA no longer supplies technical support for COMPLY. However, the USEPA lists both COMPLY and CAP88-PC as atmospheric models for assessing dose and risk from radioactive air emissions (USEPA 2014). The USEPA continues to maintain and update the CAP88-PC modeling program, and has updated it as recently as September, 2014. In previous FUSRAP NESHAP reports, both COMPLY and CAP88-PC results have been compared. This comparison indicated that CAP88-PC is a comparable and conservative method of demonstrating compliance with 40 *CFR* 61, Subpart I. For these reasons, CAP88-PC was used in this NESHAP report to demonstrate compliance with the NESHAP standard.

2.1 EMISSION RATE

The method used to determine particulate radionuclide emission rates from the SLDS was 40 *CFR* 61, Appendix D, *Methods for Estimating Radionuclide Emissions*. Emissions during excavations were evaluated using air sampling data at the excavation and loadout perimeters.

2.2 EFFECTIVE DOSE EQUIVALENT

The EDE to critical receptors¹ is obtained using USEPA computer code CAP88-PC, Version 4.0 (USEPA 2014). CAP88-PC uses a Gaussian plume equation to estimate the dispersion of radionuclides and is referenced by the USEPA to demonstrate compliance with the NESHAP emissions criterion in 40 *CFR* 61. An area ground release at a height of 1.0 m is modeled for the SLDS.

The EDE is calculated by combining doses from ingestion, inhalation, air immersion, and external ground surface. CAP88-PC contains historical weather data libraries for major airports across the country, and the results can be modeled for receptors at multiple distances from the emissions source.

¹ "Critical receptors," as used in this report, are the locations for the nearest residence, farm, business, and school.

St. Louis Downtown Site An	nnual Environmental Monitoring Data and Analy	sis Report for CY 2016
	THIS PAGE INTENTIONALLY	LEFT BLANK

3.0 METEOROLOGICAL DATA

Meteorological data were obtained from the CAP88-PC code for the Lambert – St. Louis International Airport (wind file 13994.WND). Data in the file were accumulated from 1988 through 1992.

Average Annual Wind Velocity: 4.446 m per second
 Average Annual Precipitation Rate: 111 cm per year

• Average Annual Air Temperature: 14.18 °C

Wind speed frequency data were obtained from Lambert – St. Louis International Airport (Table A-1).

Table A-1. St. Louis Wind Speed Frequency

Wind Speed Group (Knots)	Frequency
0 - 3	0.10
4 – 7	0.29
8 – 12	0.36
13 – 18	0.21
19 – 24	0.03
25 – 31	0.01

Knot = 1.151 miles per hour

Wind direction frequency data were obtained from the CAP88-PC wind file, 13994.WND (Table A-2).

Table A-2. St. Louis Wind Rose Frequency

Wind Direction		Wind	Wind Direction		Wind
Wind Toward	Wind From	Frequency	Wind Toward	Wind From	Frequency
N	S	0.131	S	N	0.056
NNW	SSE	0.074	SSE	NNW	0.043
NW	SE	0.068	SE	NW	0.061
WNW	ESE	0.069	ESE	WNW	0.087
W	Е	0.055	Е	W	0.090
WSW	ENE	0.028	ENE	WSW	0.068
SW	NE	0.031	NE	SW	0.054
SSW	NNE	0.037	NNE	SSW	0.050

St. Louis Downtown Site	Annual Environmental Monitoring Data and Analysis Report for	CY 2016
	THIS PAGE INTENTIONALLY LEFT BI	LANK
APPENDIX A	A-6	REVISIO

4.0 ST. LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE REMEDIATION

4.1 SITE HISTORY

From 1942 until 1957, Mallinckrodt LLC (Mallinckrodt) was contracted by the Manhattan Engineer District (MED) and the U.S. Atomic Energy Commission (AEC) to process uranium ore for the production of uranium metal. Residuals of the process, including spent pitchblende ore, and radium, thorium, uranium, and their radioactive decay products, were inadvertently released from the Mallinckrodt property into the environment. Residuals from the uranium process had elevated levels of radioactive radium, thorium, and uranium. From 1942 to 1945, Plants 1, 2, 6, 7, and 4 (now Plant 10) were involved in the development of uranium-processing techniques, uranium compounds and metal production, and uranium metal recovery from residues and scrap. Mallinckrodt decontaminated Plants 1 and 2 from 1948 through 1950 to meet the AEC criteria then in effect, and the AEC released these plants for use without radiological restrictions in 1951.

4.2 MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2016

Excavation activities were performed at the SLDS areas of Plant 6 and Plant 7 (including Destrehan Street). Additionally, loadout activities were performed at Plant 6. Excavated soils placed in the loadout area remained covered for most of the year, except during normal working hours. The excavated soils were removed from the site by rail. General area air samples were collected around excavation and loadout perimeters during CY 2016, with the results used to determine the excavation emissions. In situ emissions from inactive areas of the SLDS were not calculated, because the ground surface soil at the SLDS is generally covered with asphalt or concrete that limits the potential for material to become airborne.

4.3 SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS

For the SLDS excavation areas, the activity fraction for each radionuclide was determined from radionuclide concentrations listed in the *St. Louis-FUSRAP Internal Dosimetry Technical Basis Manual* (USACE 2000) or in property-specific pre-design investigation reports. Attachment A-1 contains summary tables of the radionuclide concentrations for each area or plant and vicinity properties (VPs). The averaged total alpha and total beta air particulate concentrations at each SLDS property and the activity fraction for each corresponding property were used to calculate the emission rate for each area.

4.4 LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2016

Wind erosion during periods of remedial action (RA) excavations and periods in which the loadout pile was uncovered is assumed for the particulate radionuclide emission determinations from the SLDS. Unexcavated plants and VPs do not contribute to the emission determinations for periods of inactivity due to the low activity and cover.

4.5 DISTANCES TO CRITICAL RECEPTORS

The distances to critical receptors are shown on Figure A-1 and listed in Table A-3. Distances and directions to critical receptors are determined by using tools in a geographic information system (GIS).

Table A-3. SLDS Critical Receptors for CY 2016

	Nearest Residence		Far	m	Busi	ness	Sch	ool
Sources	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction
Plant 6	495	SW	2,915	NE	160	SSE	750	W
Plant 7	495	SW	2,915	NE	90	SSE	750	W
Plant 6 Loadout	495	SW	2,915	NE	160	SSE	750	W

4.6 EMISSIONS DETERMINATION

4.6.1 Measured Airborne Radioactive Particulate Emissions

Particulate air samples were collected from several locations around the perimeter of the SLDS excavations and loadout area to measure the radionuclide emissions from remedial activities. The sample locations were established at the start of each remedial activity and provide the basis for determining the radionuclide emission rates during CY 2016. The average gross alpha and beta concentrations (in μ Ci/mL) are determined for each area or plant location for CY 2016. The area or plant average concentrations are presented in Table A-4.

Table A-4. SLDS Average Gross Alpha and Beta Airborne Particulate Emissions for CY 2016

Compley Leastion	Average Concentration (μCi/mL)			
Sampler Location	Gross Alpha	Gross Beta		
Plant 6	3.65E-15	2.32E-14		
Plant 7	5.85E-15	3.95E-14		
Plant 6 Loadout	4.04E-15	3.21E-14		
Background Concentration ^a	3.61E-15	1.88E-14		

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of the EDE.

The activity fractions for all radionuclides at each SLDS property were determined as discussed in Section 4.3 of this NESHAP report. The product of the radionuclide activity fraction and the gross concentration for each property provides the radionuclide emission concentration (in μ Ci/cm³) for that area. The gross average concentration (μ Ci/cm³) is converted to a release (emission) rate, measured in Ci per year using Equations 1 and 2.

A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities (USEPA 1989) (page 3-21, [2]) provides Equation 1 for determination of the effective diameter of a non-circular stack or vent.

$$D = (1.3 \text{ A})^{1/2}$$
 Equation 1

where:

D = effective diameter of the release in m

A = area of the stack, vent, or release point (in m^2)

Table A-5 provides the effective surface area available for release of airborne radionuclides normalized to one year and the effective diameter for each area or plant of the SLDS where excavation or loadout was conducted in CY 2016. Calculation of the effective surface area is contained in Attachment A-1.

Table A-5. SLDS Excavation Effective Areas and Effective Diameters for CY 2016

SLDS Location	Effective Area (m²)	Effective Diameter (m)
Plant 6	2,568	58
Plant 7	150	14
Plant 6 Loadout	461	24

The average annual wind speed for the Lambert – St. Louis International Airport is provided in CAP88-PC as 4.446 m per second. Conversion of this wind speed to a flow rate through stacks with the listed effective diameters for each area is completed using Equation 2.

$$F = V \pi (D)^2 / 4$$
 Equation 2

where:

V = wind velocity (in m per minute) = 266.76 m per minute

F = flow rate (in m³ per minute)

 π = mathematical constant

D = effective diameter of the release (in m) determined using Equation 1

Converting the velocity of emissions from the sites to an effective flow rate, results in the following site release flow rates for the SLDS areas, as listed in Table A-6. The product of the flow rate, the activity fraction associated with each radionuclide, and the appropriate conversion factors provide the site emission rate for each radionuclide, as listed in Table A-7. Flow rate and average radionuclide concentration data are contained in Attachment A-1.

Table A-6. SLDS Site Release Flow Rates for CY 2016

SLDS Location	Site Release Flow Rate (m ³ /minute)
Plant 6	7.0E+05
Plant 7	4.1E+04
Plant 6 Loadout	1.3E+05

4.6.2 St. Louis Downtown Site Total Airborne Radioactive Particulate Emission Rates

The CY 2016 emission rates for each excavated SLDS area are presented in Table A-7 and are based on the air samples collected from the perimeter of the excavated areas.

Table A-7. SLDS Area Airborne Radioactive Particulate Emission Rates Based on Excavation Perimeter Air Samples for CY 2016

Dodiomolido	Emission (Ci/year) ^a			
Radionuclide	Plant 6	Plant 7	Plant 6 Loadout	
Uranium (U)-238	4.7E-04	3.1E-05	8.8E-05	
U-235	2.3E-05	1.5E-06	4.4E-06	
U-234	4.7E-04	3.1E-05	8.8E-05	
Radium (Ra)-226	9.1E-05	1.9E-05	2.2E-05	
Thorium (Th)-232	2.3E-05	7.3E-06	6.6E-06	
Th-230	1.7E-04	2.0E-05	3.6E-05	
Th-228	2.3E-05	7.3E-06	6.6E-06	
Ra-224	2.3E-05	7.3E-06	6.6E-06	
Th-234	4.0E-03	3.4E-04	9.7E-04	
Protactinium (Pa)-234m	4.0E-03	3.4E-04	9.7E-04	

Table A-7. SLDS Area Airborne Radioactive Particulate Emission Rates Based on Excavation Perimeter Air Samples for CY 2016 (Continued)

Do diama di Ja	Emission (Ci/year) ^a				
Radionuclide	Plant 6	Plant 7	Plant 6 Loadout		
Th-231	2.0E-04	1.6E-05	4.8E-05		
Ra-228	2.0E-04	8.0E-05	7.2E-05		
Actinium (Ac)-228	2.0E-04	8.0E-05	7.2E-05		
Pa-231	2.3E-05	1.5E-06	4.4E-06		
Ac-227	2.3E-05	1.5E-06	4.4E-06		

Release rate based on 366-day period at a respective flow rate (as presented in Table A-6) as determined from the average annual wind speed (4.446 m per second) and the effective site area (as presented in Table A-5) for each location.

4.7 CAP88-PC RESULTS

The CAP88-PC report is contained in Attachment A-2. The effective area factor input was taken from Table A-5. This evaluation demonstrates that all SLDS critical receptors receive less than 10 percent of the dose standard prescribed in 40 *CFR* 61.102; therefore, the SLDS is exempt from the reporting requirements of 40 *CFR* 61.104(a). The results are summarized in Table A-8.

Table A-8. SLDS CAP88-PC Results for Critical Receptors for CY 2016

	Dose (mrem/year)					
Source	Nearest Residence ^a	Farm ^a	Business ^b	School ^b		
Plant 6	< 0.1	< 0.1	< 0.1	< 0.1		
Plant 7	<0.1	< 0.1	< 0.1	< 0.1		
Plant 6 Loadout	< 0.1	< 0.1	< 0.1	< 0.1		
SLDS Total Dose ^c	< 0.1	< 0.1	< 0.1	< 0.1		

¹⁰⁰ percent occupancy factor.

b Corrected for the 23 percent occupancy factor (40 hours per week for 50 weeks per year).

c Combined dose from all sources at the SLDS.

5.0 REFERENCES

- USACE 1999. U.S. Army Corps of Engineers, St. Louis-FUSRAP Internal Dosimetry Technical Basis Manual. Draft. November.
- USACE 2000. U.S. Army Corps of Engineers, St. Louis District Office. St. Louis-FUSRAP Internal Dosimetry Technical Basis Manual. September.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Radiation Programs, Washington, D.C. A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities. EPA 520/1-89-002. October.
- USEPA 2014. U.S. Environmental Protection Agency. CAP88-PC Version 4.0 Computer Code, U.S. Environmental Protection Agency. September.
- 18 U.S. Code 1001. U.S. Code, Title 18, Crimes and Criminal Procedure; Part I, Crimes; Chapter 47, Fraud and False Statements; Section 1001, Statements or entries generally.
- 40 CFR 61, Subpart I. National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 61, Appendix D. Methods for Estimating Radionuclide Emissions.
- 40 CFR 61, Appendix E. Compliance Procedures Methods for Determining Compliance with Subpart I.

ADDENIDIY A	Λ 12	DEVISION
	THIS PAGE INTENTIONALLY LEFT BLANK	
	<u> </u>	
St. Louis Downtown Site A	Annual Environmental Monitoring Data and Analysis Report for CY 2010	5

APPENDIX A

FIGURE

THIS PAGE INTENTIONALLY LEFT BLANK

Figure A-1. SLDS Critical Receptors

ATTACHMENT A-1

CALCULATED EMISSION RATES FROM ST. LOUIS DOWNTOWN SITE PROPERTIES

THIS PAGE INTENTIONALLY LEFT BLANK

Table A-1-1. SLDS Excavation/Loadout Area Soil Radionuclide Concentrations for CY 2016

Property	Plant 6 ^a	Plant 7 ^a	Plant 6 Loadout Average ^b
Radionuclide	Avera	ge Concentration (pCi/g)
U-238	140	21	81
U-235	7	1	4
U-234	140	21	81
Ra-226	27	13	20
Ra-228	7	5	6
Th-232	7	5	6
Th-230	52	14	33
Th-228	7	5	6

Radionuclides and concentrations from *St. Louis-FUSRAP Internal Dosimetry Technical Basis Manual* (USACE 1999) or in property-specific pre-design investigation reports.

Table A-1-2. SLDS Average Gross Alpha and Beta Airborne Particulate Concentrations for CY 2016

Location	Average Concentration (μCi/mL) for Location ^a		
	Gross Alpha	Gross Beta	
Plant 6	3.65E-15	2.32E-14	
Plant 7	5.85E-15	3.95E-14	
Plant 6 Loadout	4.04E-15	3.21E-14	
Background Concentration ^b	3.61E-15	1.88E-14	

Average concentration values for the sampling period by location.

Table A-1-3. SLDS Excavation Data for CY 2016

Excavation Location Name	Surface Area (m²)	Start Date ^a	Backfill Date ^a
Plant 6WH, Building 101, Survey Unit (SU)-16A	595	01/01/16	04/25/16
Plant 6WH, Building 101, SU-16B	634	01/01/16	05/16/16
Plant 6WH, Building 101, SU-16C	333	01/01/16	05/16/16
Plant 6WH, Building 101, SU-16D	262	01/01/16	07/05/16
Plant 6WH, Building 101, SU-16E	145	01/01/16	07/05/16
Plant 6WH, Building 101, SU-16F	61	01/01/16	10/13/16
Plant 6WH, Building 101, SU-17A	1,156	01/01/16	07/05/16
Plant 6WH, Building 101, SU-17B	882	01/01/16	10/13/16
Plant 6WH, Building 101, SU-18	169	06/20/16	08/01/16
Plant 6WH, Building 101, SU-19A	438	07/18/16	12/31/16
Plant 6WH, Building 101, SU-19B	554	07/18/16	12/31/16
Plant 7W North, SU-5B	365	06/28/16	10/12/16
Plant 7W North, SU-1A	240	09/27/16	12/01/16
Plant 6 Loadout	2,000	01/01/16	12/31/16

Open/close dates set to start or stop at the CY boundary.

Average concentration from the SLDS CY 2016 excavated property and loadout area.

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of EDE.

Table A-1-4. SLDS Average Surface Area and Flow Rate Per Location at the SLDS for CY 2016

Location	Total Days	Surface Area × Total Days	Average Surface Area/year ^a (m ²)	Diameter of Stack $D = (1.3 \text{ A})^{1/2}$ (m)	Flow Rate $F = V \pi (D)^2 / 4$ (m ³ /minute)
Plant 6					
Plant 6WH, Building 101, SU-16A	116	69,020			
Plant 6WH, Building 101, SU-16B	137	86,858			
Plant 6WH, Building 101, SU-16C	137	45,621			
Plant 6WH, Building 101, SU-16D	187	48,994			
Plant 6WH, Building 101, SU-16E	187	27,115			
Plant 6WH, Building 101, SU-16F	287	17,507			
Plant 6WH, Building 101, SU-17A	187	216,172			
Plant 6WH, Building 101, SU-17B	287	253,134			
Plant 6WH, Building 101, SU-18	43	7,267			
Plant 6WH, Building 101, SU-19A	167	73,146			
Plant 6WH, Building 101, SU-19B	167	92,518			
	Total	937,352	2,568	58	7.0E+05
Plant 7					
Plant 7W North, SU-5B	107	39,055			
Plant 7W North, SU-1A	66	15,840			
	Total	54,895	150	14	4.1E+04
Plant 6 Loadout					
Plant 6 Loadout	366	167,900			
	Total	167,900	461	24	$1.3E+05^{b}$

Average surface area/year = $[\Sigma(\text{surface area x total days})]/366$.

Table A-1-5. SLDS Airborne Radioactive Particulate Emissions Based on Excavation Perimeter Air Samples for CY 2016

Property		Plant 6			Plant 7		F	Plant 6 Loado	ut
Radionuclide	Activity Fraction ^a	Emission Conc. (µCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (µCi/cm³) ^b	Release Rate (Ci/year) ^c
U-238	0.35	1.3E-15	4.7E-04	0.24	1.4E-15	3.1E-05	0.33	1.3E-15	8.8E-05
U-235	0.02	6.4E-17	2.3E-05	0.01	6.7E-17	1.5E-06	0.02	6.6E-17	4.4E-06
U-234 ^d	0.35	1.3E-15	4.7E-04	0.24	1.4E-15	3.1E-05	0.33	1.3E-15	8.8E-05
Ra-226	0.07	2.5E-16	9.1E-05	0.15	8.7E-16	1.9E-05	0.08	3.3E-16	2.2E-05
Th-232	0.02	6.4E-17	2.3E-05	0.06	3.4E-16	7.3E-06	0.02	9.9E-17	6.6E-06
Th-230	0.13	4.7E-16	1.7E-04	0.16	9.4E-16	2.0E-05	0.14	5.5E-16	3.6E-05
Th-228 ^d	0.02	6.4E-17	2.3E-05	0.06	3.4E-16	7.3E-06	0.02	9.9E-17	6.6E-06
Ra-224 ^d	0.02	6.4E-17	2.3E-05	0.06	3.4E-16	7.3E-06	0.02	9.9E-17	6.6E-06
Th-234 ^d	0.47	1.1E-14	4.0E-03	0.40	1.6E-14	3.4E-04	0.45	1.5E-14	9.7E-04
Pa-234m ^d	0.47	1.1E-14	4.0E-03	0.40	1.6E-14	3.4E-04	0.45	1.5E-14	9.7E-04
Th-231 ^d	0.02	5.4E-16	2.0E-04	0.02	7.4E-16	1.6E-05	0.02	7.2E-16	4.8E-05
Ra-228 ^d	0.02	5.4E-16	2.0E-04	0.09	3.7E-15	8.0E-05	0.03	1.1E-15	7.2E-05
Ac-228 ^d	0.02	5.4E-16	2.0E-04	0.09	3.7E-15	8.0E-05	0.03	1.1E-15	7.2E-05
Pa-231 ^d	0.02	6.4E-17	2.3E-05	0.01	6.7E-17	1.5E-06	0.02	6.6E-17	4.4E-06
Ac-227 ^d	0.02	6.4E-17	2.3E-05	0.01	6.7E-17	1.5E-06	0.02	6.6E-17	4.4E-06

^a Derived from the average soil radionuclide concentrations for the SLDS, as presented in Table A-1-1.

Conc. - concentration

This value has been multiplied by a factor of 0.23 to account for the loadout pile being uncovered for 2,000 hours per year.

Emission concentration is equal to the activity fraction times the gross alpha or gross beta airborne particulate concentrations listed in Table A-1-2.

Release rate based on 366-day period at measured flow rate (Table A-1-4) for each site, as determined from the average annual wind speed (4.446 m per second) and calculated site area (Table A-1-4). (Note: $1 \text{ mL} = 1 \text{ cm}^3$).

When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide.

ATTACHMENT A-2

CAP88-PC OUTPUT REPORT FOR ST. LOUIS DOWNTOWN SITE PROPERTIES

THIS PAGE INTENTIONALLY LEFT BLANK

CAP88 OUTPUT RESULTS

Plant 6

C A P 8 8 - P C

Version 4.0

Clean Air Act Assessment Package - 1988

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Tue Mar 14 13:38:48 2017

Facility: Plant 6
Address: Destrehan
City: Saint Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2016 DOSE Age Group: Adult

Comments: Air Air

Dataset Name: Plant6 2016.

Dataset Date: Mar 14, 2017 01:38 PM

Wind File: C:\Users\hansenra\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenal UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg Lung 66	1.39E-01 1.50E-01 1.24E+01 1.45E-01 1.57E-01 1.46E-01 1.55E-01 1.76E-01 3.58E-01 8.24E-01 1.60E-01 2.35E-01 1.40E-01 2.61E+00 1.47E-01 2.54E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 2.56E+00 2.56E+00
Effectiv	7.06E-01

PATHWAY COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
INGESTION	2.74E-02
INHALATION	5.43E-01
AIR IMMERSION	4.75E-06
GROUND SURFACE	1.36E-01
INTERNAL	5.70E-01
EXTERNAL	1.36E-01
TOTAL	7.06E-01

SUMMARY Page 2

NUCLIDE COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238 Th-234 Pa-234m	5.62E-02 3.36E-03 2.12E-02
Pa-234	4.18E-04
U-234 Th-230	6.78E-02 1.19E-01
Ra-226	1.77E-02
Rn-222 Po-218	1.36E-05 2.43E-10
Pb-214	8.87E-03
At-218 Bi-214	9.13E-10 5.18E-02
Rn-218	5.29E-12
Po-214	2.87E-06
T1-210 Pb-210	2.02E-05 4.36E-05
Bi-210	7.05E-04
Hg-206 Po-210	5.69E-11 1.83E-07
T1-206	1.65E-09
U-235 Th-231	4.31E-03 1.41E-04
Pa-231	1.10E-01
Ac-227 Th-227	8.32E-02 1.03E-03
Fr-223	9.73E-06
Ra-223 Rn-219	1.15E-03 5.00E-04
At-219	0.00E+00
Bi-215	2.25E-09
Po-215 Pb-211	1.53E-06 9.82E-04
Bi-211	4.04E-04
Tl-207 Po-211	5.08E-04 1.95E-07
Th-232	2.96E-02
Ra-228 Ac-228	4.03E-02 1.74E-02
Th-228	3.99E-02
Ra-224 Rn-220	2.74E-03 1.21E-05
Po-216	2.91E-07
Pb-212 Bi-212	2.65E-03 3.09E-03
Po-212	0.00E+00
T1-208	2.13E-02
TOTAL	7.06E-01

SUMMARY Page 3

CANCER RISK SUMMARY

	Selected Individual
	Total Lifetime
Cancer	Fatal Cancer Risk

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk
INGESTION	6.66E-09
INHALATION	1.15E-07
AIR IMMERSION	2.28E-12
GROUND SURFACE	6.38E-08
INTERNAL	1.22E-07
EXTERNAL	6.38E-08
TOTAL	1.86E-07

SUMMARY Page 4

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
U-238	1.88E-08
Th-234	1.39E-09
Pa-234m	3.71E-09
Pa-234	2.27E-10
U-234	2.33E-08
Th-230	2.63E-08
Ra-226	9.30E-09
Rn-222	7.41E-12
Po-218	1.08E-16
Pb-214	4.74E-09
At-218	1.12E-16
Bi-214 Rn-218	2.74E-08 2.89E-18
Po-214	1.58E-12
T1-210	1.08E-11
Pb-210	1.95E-11
Bi-210	7.81E-11
На-206	2.52E-17
Po-210	1.00E-13
T1-206	1.85E-16
U-235	1.72E-09
Th-231	6.41E-11
Pa-231	4.75E-09
Ac-227	1.04E-08
Th-227	5.59E-10
Fr-223	3.62E-12
Ra-223	6.23E-10
Rn-219	2.74E-10
At-219	0.00E+00
Bi-215	1.00E-15
Po-215	8.37E-13
Pb-211 Bi-211	3.51E-10 2.21E-10
T1-207	6.53E-11
Po-211	1.07E-13
Th-232	6.48E-09
Ra-228	5.84E-09
Ac-228	9.24E-09
Th-228	1.43E-08
Ra-224	1.03E-09
Rn-220	6.60E-12
Po-216	1.60E-13
Pb-212	1.44E-09
Bi-212	1.19E-09
Po-212	0.00E+00
T1-208	1.16E-08
TOTAL	1.86E-07

SUMMARY Page 5

INDIVIDUAL COMMITTED EFFECTIVE DOSE EQUIVALENT (mrem)^a (All Radionuclides and Pathways)

	Distance (m)				
Directio	n 160	495	750	2915	
N	7.1E-01	1.0E-01			
NNW NW	3.7E-01 4.4E-01	6.3E-02 7.1E-02	4.0E-02 4.3E-02		
WNW	5.3E-01	8.2E-02	4.3E-02 4.8E-02		
M	4.0E-01	6.6E-02	4.1E-02		School
WSW		4.2E-02	3.0E-02		
SW	2.8E-01	5.1E-02	3.4E-02	2.1E-02	Residence
SSW	3.4E-01	5.9E-02	3.7E-02	2.1E-02	
S	3.0E-01	5.4E-02	3.6E-02	2.1E-02	
SSE	2.2E-01	4.4E-02	3.1E-02	2.1E-02	Business
SSE	3.0E-01	5.5E-02	3.6E-02	2.1E-02	
ESE	5.1E-01	8.0E-02	4.7E-02	2.2E-02	
E	6.7E-01	9.8E-02	5.5E-02	2.3E-02	
ENE	5.6E-01	8.5E-02	4.9E-02	2.2E-02	
NE	3.5E-01	5.9E-02	3.8E-02	2.1E-02	Farm
NNE	2.9E-01	5.3E-02	3.5E-02	2.1E-02	

^a Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2016 Radionuclide Emissions NESHAP Report (Appendix A) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

Direction 160 495 750 2915 N 1.9E-07 2.7E-08 1.5E-08 5.8E-09 NNW 9.7E-08 1.6E-08 1.0E-08 5.3E-09 NW 1.1E-07 1.8E-08 1.1E-08 5.4E-09 WNW 1.4E-07 2.1E-08 1.2E-08 5.5E-09 W 1.1E-07 1.7E-08 1.0E-08 5.3E-09
NNW 9.7E-08 1.6E-08 1.0E-08 5.3E-09 NW 1.1E-07 1.8E-08 1.1E-08 5.4E-09 WNW 1.4E-07 2.1E-08 1.2E-08 5.5E-09 W 1.1E-07 1.7E-08 1.0E-08 5.3E-09
NW 1.1E-07 1.8E-08 1.1E-08 5.4E-09 WNW 1.4E-07 2.1E-08 1.2E-08 5.5E-09 W 1.1E-07 1.7E-08 1.0E-08 5.3E-09
W 1.1E-07 1.7E-08 1.0E-08 5.3E-09
WSW 5.3E-08 1.1E-08 7.5E-09 5.0E-09
SW 7.4E-08 1.3E-08 8.6E-09 5.1E-09
SSW 9.0E-08 1.5E-08 9.5E-09 5.2E-09
S 7.9E-08 1.4E-08 9.1E-09 5.2E-09
SSE 5.6E-08 1.1E-08 7.8E-09 5.1E-09
SSE 8.0E-08 1.4E-08 9.1E-09 5.2E-09
ESE 1.3E-07 2.1E-08 1.2E-08 5.5E-09
E 1.8E-07 2.6E-08 1.4E-08 5.7E-09
ENE 1.5E-07 2.2E-08 1.3E-08 5.5E-09
NE 9.0E-08 1.5E-08 9.6E-09 5.3E-09
NNE 7.7E-08 1.4E-08 8.9E-09 5.2E-09

CAP88 OUTPUT RESULTS

Plant 7

C A P 8 8 - P C

Version 4.0

Clean Air Act Assessment Package - 1988

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Tue Mar 14 11:47:43 2017

Facility: Plant 7
Address: Destrehan
City: Saint Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2016 DOSE Age Group: Adult

Comments: Air Air

Dataset Name: Plant7 2016.

Dataset Date: Mar 14, 2017 11:47 AM

Wind File: C:\Users\hansenra\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenal UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg	8.11E-02 8.93E-02 3.97E+00 8.52E-02 9.27E-02 8.61E-02 8.56E-02 8.91E-02 9.68E-02 1.51E-01 2.54E-01 9.54E-02 1.09E-01 8.18E-02 2.96E-01 8.68E-02 1.21E-01 8.56E-02 8.88E-02 8.22E-02 8.46E-02 3.86E-01
Lung_66	1.10E+00
Effectiv	2.97E-01

PATHWAY COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
	
INGESTION	1.88E-02
INHALATION	1.94E-01
AIR IMMERSION	3.27E-06
GROUND SURFACE	8.48E-02
INTERNAL	2.13E-01
EXTERNAL	8.48E-02
TOTAL	2.97E-01

SUMMARY Page 2

NUCLIDE COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238 Th-234 Pa-234m	1.02E-02 6.96E-04 3.82E-03
Pa-234	7.54E-05
U-234	1.23E-02
Th-230 Ra-226	3.85E-02 9.95E-03
Rn-222	7.62E-06
Po-218	1.36E-10
Pb-214	4.98E-03
At-218	5.12E-10
Bi-214	2.91E-02
Rn-218 Po-214	2.97E-12 1.61E-06
T1-210	1.14E-05
Pb-210	2.45E-05
Bi-210	3.96E-04
Hg-206	3.19E-11
Po-210	1.03E-07
T1-206 U-235	9.24E-10 7.70E-04
Th-231	2.52E-05
Pa-231	1.97E-02
Ac-227	1.50E-02
Th-227	1.83E-04
Fr-223 Ra-223	1.72E-06 2.05E-04
Rn-219	8.86E-05
At-219	0.00E+00
Bi-215	3.99E-10
Po-215	2.71E-07
Pb-211	1.74E-04
Bi-211 Tl-207	7.17E-05 9.02E-05
Po-211	3.45E-08
Th-232	2.59E-02
Ra-228	4.30E-02
Ac-228	1.75E-02
Th-228 Ra-224	3.50E-02 2.43E-03
Rn-220	1.21E-05
Po-216	2.91E-07
Pb-212	2.65E-03
Bi-212	3.09E-03
Po-212	0.00E+00 2.14E-02
T1-208	Z.14E-UZ
TOTAL	2.97E-01

SUMMARY Page 3

CANCER RISK SUMMARY

	Selected Individual
	Total Lifetime
Cancer	Fatal Cancer Risk

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime	
Pathway	Fatal Cancer Risk	
		
INGESTION	3.59E-09	
INHALATION	4.60E-08	
AIR IMMERSION	1.71E-12	
GROUND SURFACE	4.32E-08	
INTERNAL	4.96E-08	
EXTERNAL	4.32E-08	
TOTAL	9.29E-08	

SUMMARY Page 4

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
U-238	3.42E-09
Th-234	2.80E-10
Pa-234m	6.69E-10
Pa-234	4.10E-11
U-234	4.23E-09
Th-230	8.53E-09
Ra-226	5.11E-09
Rn-222	4.16E-12
Po-218	6.08E-17
Pb-214	2.66E-09
At-218	6.31E-17
Bi-214	1.54E-08
Rn-218	1.62E-18
Po-214	8.85E-13
T1-210	6.06E-12
Pb-210	1.10E-11
Bi-210	4.39E-11
Hg-206	1.42E-17
Po-210	5.63E-14
T1-206	1.04E-16
U-235	3.08E-10
Th-231	1.14E-11 8.55E-10
Pa-231 Ac-227	1.87E-09
Th-227	9.91E-11
Fr-223	6.42E-13
Ra-223	1.11E-10
Rn-219	4.85E-11
At-219	0.00E+00
Bi-215	1.78E-16
Po-215	1.48E-13
Pb-211	6.22E-11
Bi-211	3.92E-11
T1-207	1.16E-11
Po-211	1.89E-14
Th-232	5.68E-09
Ra-228	6.36E-09
Ac-228	9.29E-09
Th-228	1.26E-08
Ra-224	9.15E-10
Rn-220	6.61E-12
Po-216	1.60E-13
Pb-212	1.44E-09
Bi-212	1.19E-09
Po-212 Tl-208	0.00E+00 1.16E-08
11-200	1.106-00
TOTAL	9.29E-08

Tue Mar 14 11:47:43 2017

SUMMARY Page 5

INDIVIDUAL COMMITTED EFFECTIVE DOSE EQUIVALENT (mrem) a (All Radionuclides and Pathways)

			Dist		
Direction	ı 90	495	750	2915	
N	3.0E-01	2.6E-02	1.9E-02	1.4E-02	
NNW	1.6E-01	2.0E-02	1.6E-02	1.4E-02	
NW	1.8E-01	2.1E-02	1.7E-02	1.4E-02	
WNW	2.2E-01	2.3E-02	1.8E-02	1.4E-02	
W	1.7E-01	2.0E-02	1.6E-02	1.4E-02	School
WSW	9.0E-02	1.7E-02	1.5E-02	1.3E-02	
SW	1.2E-01	1.8E-02	1.5E-02	1.3E-02	Residence
SSW	1.5E-01	1.9E-02	1.6E-02	1.3E-02	
S	1.3E-01	1.9E-02	1.6E-02	1.3E-02	
SSE	9.5E-02	1.7E-02	1.5E-02	1.3E-02	Business
SSE	1.3E-01	1.9E-02	1.6E-02	1.3E-02	
ESE	2.2E-01	2.2E-02	1.7E-02	1.4E-02	
E	2.8E-01	2.5E-02	1.9E-02	1.4E-02	
ENE	2.3E-01	2.3E-02	1.8E-02	1.4E-02	
NE	1.5E-01	1.9E-02	1.6E-02	1.4E-02	Farm
NNE	1.3E-01	1.8E-02	1.6E-02	1.3E-02	

^a Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2016 Radionuclide Emissions NESHAP Report (Appendix A) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

Tue Mar 14 11:47:43 2017

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

	Distance (m)			
Direction	n 90	90 495	750	2915
N NNW NW WNW	9.3E-08 4.9E-08 5.7E-08 6.9E-08	6.6E-09 4.6E-09 5.0E-09 5.5E-09	4.4E-09 3.5E-09 3.7E-09 3.9E-09	2.7E-09 2.6E-09 2.6E-09 2.6E-09
W WSW SW SSW	5.3E-08 2.7E-08 3.7E-08 4.5E-08	4.8E-09 3.6E-09 4.0E-09 4.4E-09	3.6E-09 3.0E-09 3.2E-09 3.4E-09	2.6E-09 2.6E-09 2.6E-09
SSW SSE SSE	4.0E-08 4.0E-08 2.8E-08 4.0E-08	4.4E-09 4.2E-09 3.7E-09 4.2E-09	3.4E-09 3.3E-09 3.1E-09 3.3E-09	2.6E-09 2.6E-09 2.6E-09
ESE E ENE NE	6.7E-08 8.7E-08 7.2E-08	5.5E-09 6.3E-09 5.7E-09 4.4E-09	3.9E-09 4.3E-09 4.0E-09 3.4E-09	2.6E-09 2.7E-09 2.6E-09 2.6E-09
NNE	3.8E-08	4.1E-09	3.3E-09	2.6E-09

CAP88 OUTPUT RESULTS

Plant 6 Loadout

C A P 8 8 - P C

Version 4.0

Clean Air Act Assessment Package - 1988

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Tue Mar 14 11:51:02 2017

Facility: Plant 6 Loadout Address: Destrehan City: Saint Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2016 DOSE Age Group: Adult

Comments: Air Air

Dataset Name: Plant6 Loadout 2
Dataset Date: Mar 14, 2017 11:50 AM

Wind File: C:\Users\hansenra\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenal	3.54E-02
UB_Wall	3.86E-02
Bone_Sur	2.67E+00
Brain	3.70E-02
Breasts	4.02E-02
St_Wall	3.74E-02
SI_Wall	3.72E-02
ULI_Wall	3.95E-02
LLI_Wall	4.43E-02
Kidneys	8.22E-02
Liver	1.75E-01
Muscle	4.11E-02
Ovaries	5.56E-02
Pancreas	3.57E-02
R_Marrow	1.60E-01
Skin	5.54E-01
Spleen	3.77E-02
Testes	6.06E-02
Thymus	3.72E-02
Thyroid	3.85E-02
GB_Wall	3.58E-02
Ht_Wall	3.70E-02
Uterus	3.67E-02
ET_Reg	1.94E-01
Lung_66	5.80E-01
Effectiv	1.61E-01

PATHWAY COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
INGESTION	7.98E-03
INHALATION	1.18E-01
AIR IMMERSION	1.44E-06
GROUND SURFACE	3.54E-02
INTERNAL	1.26E-01
EXTERNAL	3.54E-02
TOTAL	1.61E-01

SUMMARY Page 2

NUCLIDE COMMITTED EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238 Th-234 Pa-234m	1.05E-02 7.30E-04 3.99E-03
Pa-234	7.87E-05
U-234	1.27E-02
Th-230	2.52E-02
Ra-226	4.28E-03
Rn-222 Po-218	3.27E-06 5.85E-11
Pb-214	2.14E-03
At-218	2.20E-10
Bi-214	1.25E-02
Rn-218	1.27E-12
Po-214	6.92E-07
T1-210 Pb-210	4.88E-06 1.05E-05
Bi-210	1.70E-04
Hg-206	1.37E-11
Po-210	4.40E-08
T1-206	3.97E-10
U-235	8.24E-04
Th-231	2.71E-05
Pa-231 Ac-227	2.10E-02 1.59E-02
Th-227	1.97E-04
Fr-223	1.86E-06
Ra-223	2.21E-04
Rn-219	9.56E-05
At-219	0.00E+00
Bi-215 Po-215	4.30E-10 2.92E-07
Pb-211	1.88E-04
Bi-211	7.74E-05
T1-207	9.73E-05
Po-211	3.72E-08
Th-232	8.49E-03
Ra-228 Ac-228	1.45E-02 5.81E-03
Th-228	1.15E-02
Ra-224	7.96E-04
Rn-220	4.00E-06
Po-216	9.65E-08
Pb-212	8.79E-04
Bi-212	1.03E-03
Po-212 T1-208	0.00E+00 7.08E-03
TOTAL	1.61E-01

SUMMARY Page 3

CANCER RISK SUMMARY

	Selected Individual
	Total Lifetime
Cancer	Fatal Cancer Risk

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	1.67E-09 2.55E-08 7.10E-13 1.71E-08 2.72E-08 1.71E-08
TOTAL	4.43E-08

SUMMARY Page 4

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
U-238	3.52E-09
Th-234	2.93E-10
Pa-234m	6.99E-10
Pa-234	4.28E-11
U-234	4.37E-09
Th-230	5.57E-09
Ra-226	2.25E-09 1.79E-12
Rn-222 Po-218	2.61E-17
Pb-214	1.14E-09
At-218	2.71E-17
Bi-214	6.60E-09
Rn-218	6.97E-19
Po-214	3.80E-13
T1-210	2.60E-12
Pb-210	4.71E-12
Bi-210	1.88E-11
Hg-206	6.08E-18
Po-210	2.41E-14
T1-206	4.46E-17
U-235	3.30E-10
Th-231	1.23E-11
Pa-231	9.09E-10
Ac-227	1.99E-09
Th-227 Fr-223	1.07E-10 6.93E-13
Ra-223	1.19E-10
Rn-219	5.23E-11
At-219	0.00E+00
Bi-215	1.92E-16
Po-215	1.60E-13
Pb-211	6.71E-11
Bi-211	4.22E-11
T1-207	1.25E-11
Po-211	2.04E-14
Th-232	1.86E-09
Ra-228	2.10E-09
Ac-228	3.08E-09
Th-228	4.12E-09
Ra-224	3.00E-10
Rn-220	2.19E-12
Po-216 Pb-212	5.31E-14 4.78E-10
Bi-212	4.78E-10 3.95E-10
Po-212	0.00E+00
T1-208	3.85E-09
TOTAL	4.43E-08
1011111	1.155 00

SUMMARY Page 5

INDIVIDUAL COMMITTED EFFECTIVE DOSE EQUIVALENT (mrem)^a (All Radionuclides and Pathways)

			Dist	ance (m)
Direction	n 160	495	750	2915
N	1.6E-01	2.5E-02	1.5E-02	6.6E-03
NNW	8.5E-02	1.6E-02	1.0E-02	6.2E-03
NW	1.0E-01	1.7E-02	1.1E-02	6.3E-03
WNW	1.2E-01	2.0E-02	1.2E-02	6.4E-03
W	9.2E-02	1.6E-02	1.1E-02	6.2E-03 School
WSW	4.7E-02	1.1E-02	8.1E-03	6.0E-03
SW	6.5E-02	1.3E-02	9.0E-03	6.1E-03 Residence
SSW	7.9E-02	1.5E-02	9.8E-03	6.1E-03
S	6.9E-02	1.4E-02	9.4E-03	6.1E-03
SSE	5.0E-02	1.1E-02	8.3E-03	6.0E-03Business
SSE	7.0E-02	1.4E-02	9.4E-03	6.1E-03
ESE	1.2E-01	1.9E-02	1.2E-02	6.4E-03
E	1.5E-01	2.4E-02	1.4E-02	6.5E-03
ENE	1.3E-01	2.1E-02	1.2E-02	6.4E-03
NE	7.9E-02	1.5E-02	9.9E-03	<mark>6.1E-03</mark> Farm
NNE	6.7E-02	1.3E-02	9.2E-03	6.1E-03

^a Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2016 Radionuclide Emissions NESHAP Report (Appendix A) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

	Distance (m)			
Direction	n 160	495	750	2915
N	4.4E-08	6.6E-09	3.7E-09	1.5E-09
NNW	2.3E-08	4.0E-09	2.5E-09	1.3E-09
NW	2.7E-08	4.4E-09	2.7E-09	1.3E-09
WNW	3.3E-08	5.1E-09	3.0E-09	1.4E-09
W	2.5E-08	4.2E-09	2.6E-09	1.3E-09
WSW	1.3E-08	2.6E-09	1.9E-09	1.3E-09
SW	1.8E-08	3.2E-09	2.1E-09	1.3E-09
SSW	2.2E-08	3.7E-09	2.3E-09	1.3E-09
S	1.9E-08	3.4E-09	2.2E-09	1.3E-09
SSE	1.4E-08	2.7E-09	1.9E-09	1.3E-09
SSE	1.9E-08	3.5E-09	2.2E-09	1.3E-09
ESE	3.2E-08	5.0E-09	3.0E-09	1.4E-09
E	4.2E-08	6.2E-09	3.5E-09	1.4E-09
ENE	3.5E-08	5.3E-09	3.1E-09	1.4E-09
NE	2.2E-08	3.7E-09	2.4E-09	1.3E-09
NNE	1.8E-08	3.3E-09	2.2E-09	1.3E-09

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016					
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				
	THIS PAGE INTENTIONALLY LEFT BLANK				

St Louis Downtown	Site Annual Environments	al Monitoring Data and A	analysis Report for CY 2016
St. Louis Downtown	i Site Aimuai Environmenta	ai Mointoinig Data and A	marysis report for C 1 2010

APPENDIX B

ENVIRONMENTAL THERMOLUMINESCENT DOSIMETER, ALPHA TRACK DETECTOR, AND PERIMETER AIR DATA

(On the CD-ROM on the Back Cover of this Report)

st. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS DACE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	

Table B-1. Background Air Particulate Data Results for CY 2016

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
HIS184809	BAP-001	01/04/16	Gross Alpha/Beta	Gross Alpha	8.09E-15	1.68E-15	7.25E-16	μCi/mL	=		HISS (General Air)-Perimeter Air
HIS184809	BAP-001	01/04/16	Gross Alpha/Beta	Gross Beta	2.51E-14	2.91E-15	1.17E-15	μCi/mL	=		HISS (General Air)-Perimeter Air
HIS184810	BAP-001	01/11/16	Gross Alpha/Beta	Gross Alpha	2.98E-15	9.60E-16	6.43E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184810	BAP-001	01/11/16	Gross Alpha/Beta	Gross Beta	1.24E-14	1.83E-15	1.03E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184811	BAP-001	01/19/16	Gross Alpha/Beta	Gross Alpha	6.80E-15	1.33E-15	5.37E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184811	BAP-001	01/19/16	Gross Alpha/Beta	Gross Beta	2.49E-14	2.62E-15	8.63E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184812	BAP-001	01/25/16	Gross Alpha/Beta	Gross Alpha	2.74E-15	1.01E-15	7.54E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184812	BAP-001	01/25/16	Gross Alpha/Beta	Gross Beta	1.80E-14	2.42E-15	1.21E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184813	BAP-001	02/01/16	Gross Alpha/Beta	Gross Alpha	3.72E-15	1.06E-15	6.34E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184813	BAP-001	02/01/16	Gross Alpha/Beta	Gross Beta	1.62E-14	2.11E-15	1.02E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184814	BAP-001	02/08/16	Gross Alpha/Beta	Gross Alpha	4.25E-15	1.16E-15	6.67E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184814	BAP-001	02/08/16	Gross Alpha/Beta	Gross Beta	1.74E-14	2.25E-15	1.07E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184815	BAP-001	02/15/16	Gross Alpha/Beta	Gross Alpha	1.67E-15	7.10E-16	5.95E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184815	BAP-001	02/15/16	Gross Alpha/Beta	Gross Beta	1.70E-14	2.12E-15	9.56E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184816	BAP-001	02/22/16	Gross Alpha/Beta	Gross Alpha	2.37E-15	8.86E-16	6.72E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184816	BAP-001	02/22/16	Gross Alpha/Beta	Gross Beta	2.01E-14	2.46E-15	1.08E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184817	BAP-001	02/29/16	Gross Alpha/Beta	Gross Alpha	2.70E-15	8.80E-16	5.95E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184817	BAP-001	02/29/16	Gross Alpha/Beta	Gross Beta	1.76E-14	2.16E-15	9.56E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184818	BAP-001	03/07/16	Gross Alpha/Beta	Gross Alpha	2.43E-15	8.54E-16	6.17E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184818	BAP-001	03/07/16	Gross Alpha/Beta	Gross Beta	1.58E-14	2.06E-15	9.92E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184819	BAP-001	03/14/16	Gross Alpha/Beta	Gross Alpha	1.62E-15	7.19E-16	6.22E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184819	BAP-001	03/14/16	Gross Alpha/Beta	Gross Beta	1.59E-14	2.07E-15	9.99E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184820	BAP-001	03/21/16	Gross Alpha/Beta	Gross Alpha	1.31E-15	6.43E-16	5.96E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184820	BAP-001	03/21/16	Gross Alpha/Beta	Gross Beta	1.13E-14	1.68E-15	9.58E-16	μCi/mL	=	TO 4	HISS Air (Particulate Air)-Environmental Monitoring
HIS184821	BAP-001	03/28/16	Gross Alpha/Beta	Gross Alpha	1.15E-15	5.76E-16	5.45E-16	μCi/mL	J	T04	HISS Air (Particulate Air)-Environmental Monitoring
HIS184821	BAP-001	03/28/16	Gross Alpha/Beta	Gross Beta	1.36E-14	1.79E-15	8.76E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184822 HIS184822	BAP-001 BAP-001	04/04/16 04/04/16	Gross Alpha/Beta	Gross Alpha	4.80E-15 1.42E-14	1.18E-15 1.88E-15	6.08E-16 9.71E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
			Gross Alpha/Beta	Gross Beta				μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184823 HIS184823	BAP-001 BAP-001	04/11/16 04/11/16	Gross Alpha/Beta	Gross Alpha Gross Beta	4.03E-15 1.10E-14	1.12E-15 1.67E-15	6.43E-16 1.03E-15	μCi/mL μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184824	BAP-001	04/11/16	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	4.46E-15	1.07E-13 1.38E-15	8.84E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring HISS Air (Particulate Air)-Environmental Monitoring
HIS184824	BAP-001	04/16/16	Gross Alpha/Beta	Gross Beta	1.70E-14	2.45E-15	1.41E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184825	BAP-001	04/25/16	Gross Alpha/Beta	Gross Alpha	3.90E-15	1.04E-15	5.83E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184825	BAP-001	04/25/16	Gross Alpha/Beta	Gross Beta	1.54E-14	1.94E-15	9.32E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184826	BAP-001	05/02/16	Gross Alpha/Beta	Gross Alpha	3.71E-15	1.10E-15	6.80E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184826	BAP-001	05/02/16	Gross Alpha/Beta	Gross Beta	1.27E-14	1.85E-15	1.09E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184827	BAP-001	05/09/16	Gross Alpha/Beta	Gross Alpha	3.07E-15	9.32E-16	5.85E-16	μCi/mL	=	 	HISS Air (Particulate Air)-Environmental Monitoring
HIS184827	BAP-001	05/09/16	Gross Alpha/Beta	Gross Beta	1.26E-14	1.73E-15	9.34E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184828	BAP-001	05/16/16	Gross Alpha/Beta	Gross Alpha	2.69E-15	8.82E-16	5.92E-16	μCi/mL	=	 	HISS Air (Particulate Air)-Environmental Monitoring
HIS184828	BAP-001	05/16/16	Gross Alpha/Beta	Gross Beta	1.23E-14	1.71E-15	9.45E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184829	BAP-001	05/23/16	Gross Alpha/Beta	Gross Alpha	2.87E-15	9.40E-16	6.31E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184829	BAP-001	05/23/16	Gross Alpha/Beta	Gross Beta	1.78E-14	2.20E-15	1.01E-15	μCi/mL	 	 	HISS Air (Particulate Air)-Environmental Monitoring
HIS184830	BAP-001	05/31/16	Gross Alpha/Beta	Gross Alpha	-2.29E-16	1.61E-16	5.21E-16	μCi/mL	UJ	T06	HISS Air (Particulate Air)-Environmental Monitoring
HIS184830	BAP-001	05/31/16	Gross Alpha/Beta	Gross Beta	1.40E-17	4.85E-16	8.32E-16	μCi/mL	UJ	T06	HISS Air (Particulate Air)-Environmental Monitoring
HIS184831	BAP-001	06/06/16	Gross Alpha/Beta	Gross Alpha	2.57E-15	9.39E-16	6.89E-16	μCi/mL	=	100	HISS Air (Particulate Air)-Environmental Monitoring

Table B-1. Background Air Particulate Data Results for CY 2016

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
HIS184831	BAP-001	06/06/16	Gross Alpha/Beta	Gross Beta	1.96E-14	2.41E-15	1.10E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184832	BAP-001	06/13/16	Gross Alpha/Beta	Gross Alpha	2.99E-15	9.57E-16	6.29E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184832	BAP-001	06/13/16	Gross Alpha/Beta	Gross Beta	2.11E-14	2.44E-15	1.01E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184833	BAP-001	06/20/16	Gross Alpha/Beta	Gross Alpha	1.57E-15	6.88E-16	5.79E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184833	BAP-001	06/20/16	Gross Alpha/Beta	Gross Beta	1.76E-14	2.11E-15	9.25E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184834	BAP-001	06/27/16	Gross Alpha/Beta	Gross Alpha	1.28E-15	7.22E-16	7.15E-16	μCi/mL	J	T04	HISS Air (Particulate Air)-Environmental Monitoring
HIS184834	BAP-001	06/27/16	Gross Alpha/Beta	Gross Beta	1.76E-14	2.29E-15	1.14E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184835	BAP-001	07/05/16	Gross Alpha/Beta	Gross Alpha	3.96E-15	9.49E-16	4.88E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184835	BAP-001	07/05/16	Gross Alpha/Beta	Gross Beta	1.29E-14	1.60E-15	7.47E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184836	BAP-001	07/11/16	Gross Alpha/Beta	Gross Alpha	8.16E-15	1.70E-15	7.49E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184836	BAP-001	07/11/16	Gross Alpha/Beta	Gross Beta	2.63E-14	2.95E-15	1.15E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184837	BAP-001	07/18/16	Gross Alpha/Beta	Gross Alpha	5.34E-15	1.25E-15	6.27E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184837	BAP-001	07/18/16	Gross Alpha/Beta	Gross Beta	1.69E-14	2.08E-15	9.60E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184838	BAP-001	07/25/16	Gross Alpha/Beta	Gross Alpha	4.00E-15	1.10E-15	6.53E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184838	BAP-001	07/25/16	Gross Alpha/Beta	Gross Beta	1.82E-14	2.21E-15	1.00E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184839	BAP-001	08/01/16	Gross Alpha/Beta	Gross Alpha	3.98E-15	1.03E-15	5.75E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184839	BAP-001	08/01/16	Gross Alpha/Beta	Gross Beta	1.74E-14	2.05E-15	8.80E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184840	BAP-001	08/09/16	Gross Alpha/Beta	Gross Alpha	4.02E-15	1.07E-15	6.08E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184840	BAP-001	08/09/16	Gross Alpha/Beta	Gross Beta	1.55E-14	1.94E-15	9.31E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184841	BAP-001	08/15/16	Gross Alpha/Beta	Gross Alpha	3.33E-15	1.08E-15	7.36E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184841 HIS184842	BAP-001 BAP-001	08/15/16 08/22/16	Gross Alpha/Beta Gross Alpha/Beta	Gross Beta Gross Alpha	1.67E-14 2.76E-15	2.19E-15 9.62E-16	1.13E-15 7.03E-16	μCi/mL μCi/mL	= =		HISS Air (Particulate Air)-Environmental Monitoring HISS Air (Particulate Air)-Environmental Monitoring
HIS184842	BAP-001	08/22/16	Gross Alpha/Beta	Gross Beta	1.41E-14	1.95E-15	1.08E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184843	BAP-001	08/29/16	Gross Alpha/Beta	Gross Alpha	4.13E-15	1.93E-13 1.11E-15	6.43E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184843	BAP-001	08/29/16	Gross Alpha/Beta	Gross Beta	2.03E-14	2.36E-15	9.84E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184844	BAP-001	09/06/16	Gross Alpha/Beta	Gross Alpha	2.84E-15	8.60E-16	5.55E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184844	BAP-001	09/06/16	Gross Alpha/Beta	Gross Beta	2.01E-14	2.23E-15	8.50E-16	μCi/mL			HISS Air (Particulate Air)-Environmental Monitoring
HIS184845	BAP-001	09/12/16	Gross Alpha/Beta	Gross Alpha	1.08E-15	6.76E-16	7.49E-16	μCi/mL		T04	HISS Air (Particulate Air)-Environmental Monitoring
HIS184845	BAP-001	09/12/16	Gross Alpha/Beta	Gross Beta	1.36E-14	1.96E-15	1.15E-15	μCi/mL	=	101	HISS Air (Particulate Air)-Environmental Monitoring
HIS184846	BAP-001	09/19/16	Gross Alpha/Beta	Gross Alpha	1.66E-15	7.75E-16	7.11E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184846	BAP-001	09/19/16	Gross Alpha/Beta	Gross Beta	2.79E-14	3.02E-15	1.09E-15	μCi/mL	 		HISS Air (Particulate Air)-Environmental Monitoring
HIS184847	BAP-001	09/26/16	Gross Alpha/Beta	Gross Alpha	2.09E-15	7.59E-16	5.75E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184847	BAP-001	09/26/16	Gross Alpha/Beta	Gross Beta	3.40E-14	3.28E-15	8.80E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184848	BAP-001	10/03/16	Gross Alpha/Beta	Gross Alpha	4.84E-15	1.22E-15	5.36E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184848	BAP-001	10/03/16	Gross Alpha/Beta	Gross Beta	1.37E-14	1.91E-15	1.09E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184849	BAP-001	10/11/16	Gross Alpha/Beta	Gross Alpha	6.13E-15	1.21E-15	4.05E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184849	BAP-001	10/11/16	Gross Alpha/Beta	Gross Beta	2.42E-14	2.49E-15	8.19E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184850	BAP-001	10/17/16	Gross Alpha/Beta	Gross Alpha	6.81E-15	1.56E-15	6.16E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184850	BAP-001	10/17/16	Gross Alpha/Beta	Gross Beta	2.14E-14	2.64E-15	1.25E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184851	BAP-001	10/24/16	Gross Alpha/Beta	Gross Alpha	6.30E-15	1.32E-15	4.72E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184851	BAP-001	10/24/16	Gross Alpha/Beta	Gross Beta	1.94E-14	2.25E-15	9.55E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184852	BAP-001	10/31/16	Gross Alpha/Beta	Gross Alpha	6.41E-15	1.37E-15	4.99E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184852	BAP-001	10/31/16	Gross Alpha/Beta	Gross Beta	2.41E-14	2.65E-15	1.01E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184853	BAP-001	11/07/16	Gross Alpha/Beta	Gross Alpha	5.30E-15	1.26E-15	5.21E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184853	BAP-001	11/07/16	Gross Alpha/Beta	Gross Beta	2.54E-14	2.78E-15	1.06E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring

Table B-1. Background Air Particulate Data Results for CY 2016

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
HIS184854	BAP-001	11/14/16	Gross Alpha/Beta	Gross Alpha	4.99E-15	1.20E-15	5.04E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184854	BAP-001	11/14/16	Gross Alpha/Beta	Gross Beta	2.41E-14	2.66E-15	1.02E-15	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184855	BAP-001	11/21/16	Gross Alpha/Beta	Gross Alpha	6.21E-15	1.30E-15	4.65E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184855	BAP-001	11/21/16	Gross Alpha/Beta	Gross Beta	3.63E-14	3.48E-15	9.42E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184856	BAP-001	11/28/16	Gross Alpha/Beta	Gross Alpha	4.52E-15	1.11E-15	4.74E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184856	BAP-001	11/28/16	Gross Alpha/Beta	Gross Beta	2.87E-14	2.94E-15	9.60E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184857	BAP-001	12/05/16	Gross Alpha/Beta	Gross Alpha	2.43E-15	8.23E-16	4.91E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184857	BAP-001	12/05/16	Gross Alpha/Beta	Gross Beta	2.03E-14	2.35E-15	9.95E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184858	BAP-001	12/12/16	Gross Alpha/Beta	Gross Alpha	2.81E-15	8.55E-16	4.61E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184858	BAP-001	12/12/16	Gross Alpha/Beta	Gross Beta	1.78E-14	2.11E-15	9.33E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184859	BAP-001	12/19/16	Gross Alpha/Beta	Gross Alpha	2.71E-15	8.45E-16	4.65E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184859	BAP-001	12/19/16	Gross Alpha/Beta	Gross Beta	2.84E-14	2.91E-15	9.42E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184860	BAP-001	12/27/16	Gross Alpha/Beta	Gross Alpha	1.47E-15	6.45E-16	4.87E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring
HIS184860	BAP-001	12/27/16	Gross Alpha/Beta	Gross Beta	2.33E-14	2.57E-15	9.85E-16	μCi/mL	=		HISS Air (Particulate Air)-Environmental Monitoring

VQs:

Validation Reason Code:

T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.

T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.

⁼ Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ Indicates that the parameter was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table B-2. SLDS TLD (External Gamma Radiation) Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS184884	BA-1	04/05/16	Radiological	External gamma radiation	19.4	0	0.1	mrem	J	Y01	HISS Air (TLDs)-Environmental Monitoring
HIS184885	BA-1	07/07/16	Radiological	External gamma radiation	20.1	0	0.1	mrem	J	Y01	HISS Air (TLDs)-Environmental Monitoring
HIS184886	BA-1	10/03/16	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	HISS Air (TLDs)-Environmental Monitoring
HIS194367	BA-1	01/04/17	Radiological	External gamma radiation	19	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016
SLD184927	DA-1	04/05/16	Radiological	External gamma radiation	16.8	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184927-1	DA-1 dup	04/05/16	Radiological	External gamma radiation	17.4	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184928	DA-2	04/05/16	Radiological	External gamma radiation	19.1	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184929	DA-3	04/05/16	Radiological	External gamma radiation	18.2	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184930	DA-6	04/05/16	Radiological	External gamma radiation	20.9	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184931	DA-1	07/07/16	Radiological	External gamma radiation	16.1	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184931-1	DA-1 dup	07/07/16	Radiological	External gamma radiation	18	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184932	DA-2	07/07/16	Radiological	External gamma radiation	20.6	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184933	DA-3	07/07/16	Radiological	External gamma radiation	18.8	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184934	DA-6	07/07/16	Radiological	External gamma radiation	19.4	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184935	DA-1	10/03/16	Radiological	External gamma radiation	17.5	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184935-1	DA-1 dup	10/03/16	Radiological	External gamma radiation	17.7	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184936	DA-2	10/03/16	Radiological	External gamma radiation	19	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184937	DA-3	10/03/16	Radiological	External gamma radiation	18.9	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD184938	DA-6	10/03/16	Radiological	External gamma radiation	20.8	0	0.1	mrem	J	Y01	SLDS Air (TLDs)-Environmental Monitoring
SLD194387	DA-1	01/04/17	Radiological	External gamma radiation	17.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016
SLD194387-1	DA-1 dup	01/04/17	Radiological	External gamma radiation	17.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016
SLD194388	DA-2	01/04/17	Radiological	External gamma radiation	18.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016
SLD194389	DA-3	01/04/17	Radiological	External gamma radiation	19.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016
SLD194390	DA-6	01/04/17	Radiological	External gamma radiation	19.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2016

VQ:

J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

Validation Reason Code:

Y01 FUSRAP Only: Not enough supporting documentation to perform validation.

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184620	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Alpha	1.25E-15	5.85E-15	8.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184620	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Beta	1.18E-14	1.76E-14	2.52E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184621	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Alpha	1.22E-15	5.69E-15	8.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184621	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Beta	1.65E-14	1.75E-14	2.45E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184622	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Alpha	-1.02E-15	4.68E-15	8.28E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184622	Plant 6WH Loadout	01/04/16	Gross Alpha/Beta	Gross Beta	1.85E-14	1.76E-14	2.43E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184652	Building 101	01/05/16	Gross Alpha/Beta	Gross Alpha	5.26E-16	5.25E-15	1.05E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184652	Building 101	01/05/16	Gross Alpha/Beta	Gross Alpha	3.68E-15	6.40E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184652	Building 101	01/05/16	Gross Alpha/Beta	Gross Beta	1.56E-14	1.23E-14	1.60E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184652	Building 101	01/05/16	Gross Alpha/Beta	Gross Beta	1.29E-14	1.20E-14	1.60E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184653	Building 101	01/06/16	Gross Alpha/Beta	Gross Alpha	5.20E-16	5.19E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184653	Building 101	01/06/16	Gross Alpha/Beta	Gross Beta	3.21E-14	1.40E-14	1.58E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184654	Building 101	01/07/16	Gross Alpha/Beta	Gross Alpha	4.64E-15	6.60E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184654	Building 101	01/07/16	Gross Alpha/Beta	Gross Beta	2.85E-14	1.35E-14	1.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184655	Building 101	01/11/16	Gross Alpha/Beta	Gross Alpha	5.11E-16	5.10E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184655	Building 101	01/11/16	Gross Alpha/Beta	Gross Beta	3.94E-14	1.46E-14	1.56E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184656	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Alpha	-5.47E-16	5.00E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184656	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Beta	7.82E-15	1.18E-14	1.67E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184657	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Alpha	1.69E-15	6.06E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184657	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Beta	1.02E-14	1.24E-14	1.72E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184658	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Alpha	2.87E-15	6.59E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184658	Plant 6WH Loadout	01/05/16	Gross Alpha/Beta	Gross Beta	1.34E-14	1.30E-14	1.75E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184659	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Alpha	5.74E-15	7.00E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184659	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Beta	2.15E-14	1.29E-14	1.59E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184660	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Alpha	5.42E-16	5.41E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184660	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Beta	4.98E-15	1.13E-14	1.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184661	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Alpha	5.91E-15	7.21E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184661	Plant 6WH Loadout	01/06/16	Gross Alpha/Beta	Gross Beta	2.56E-14	1.37E-14	1.64E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184662	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Alpha	2.76E-15	6.33E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184662	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.35E-14	1.68E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184663	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Alpha	5.69E-16	5.68E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184663	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Beta	2.93E-14	1.47E-14	1.73E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184664	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Alpha	-5.61E-16	5.13E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184664	Plant 6WH Loadout	01/07/16	Gross Alpha/Beta	Gross Beta	2.10E-14	1.36E-14	1.71E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184665	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Alpha	1.68E-15	6.01E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184665	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Beta	3.59E-14	1.52E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184666	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Alpha	1.66E-15	5.96E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184666	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Beta	2.64E-14	1.41E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184667	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Alpha	5.52E-16	5.50E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184667	Plant 6WH Loadout	01/11/16	Gross Alpha/Beta	Gross Beta	3.33E-14	1.48E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184668	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Alpha	1.57E-14	9.86E-15	9.06E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184668	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Alpha	1.02E-14	8.56E-15	9.06E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184668	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Beta	3.94E-14	2.34E-14	2.40E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184668	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Beta	4.99E-14	2.40E-14	2.40E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184669	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Alpha	1.50E-15	6.10E-15	9.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184669	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Beta	3.92E-14	2.40E-14	2.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184670	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Alpha	-7.38E-16	5.11E-15	9.18E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184670	P6WH Loadout	01/12/16	Gross Alpha/Beta	Gross Beta	5.84E-14	2.48E-14	2.43E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184671	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Alpha	9.06E-15	8.24E-15	9.02E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184671	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Beta	6.57E-14	2.49E-14	2.38E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184672	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Alpha	4.80E-15	7.12E-15	9.18E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184672	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Beta	5.27E-14	2.45E-14	2.43E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184673	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Alpha	3.72E-16	5.62E-15	9.26E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184673	P6WH Loadout	01/13/16	Gross Alpha/Beta	Gross Beta	5.82E-14	2.50E-14	2.45E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184674	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Alpha	1.23E-14	9.03E-15	8.99E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184674	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Beta	1.04E-13	2.69E-14	2.37E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184675	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Alpha	2.62E-15	6.48E-15	9.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184675	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Beta	6.71E-14	2.56E-14	2.46E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184676	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Alpha	5.93E-15	7.49E-15	9.22E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184676	P6WH Loadout	01/14/16	Gross Alpha/Beta	Gross Beta	8.29E-14	2.63E-14	2.44E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184677	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Alpha	-7.19E-16	4.98E-15	8.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184677	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Beta	2.65E-14	2.23E-14	2.36E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184678	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Alpha	5.09E-15	7.55E-15	9.74E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184678	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Beta	3.18E-14	2.45E-14	2.57E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184679	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Alpha	-7.86E-16	5.45E-15	9.78E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184679	P6WH Loadout	01/18/16	Gross Alpha/Beta	Gross Beta	4.71E-14	2.55E-14	2.59E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184680	Building 101	01/14/16	Gross Alpha/Beta	Gross Alpha	2.76E-15	6.84E-15	9.83E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184680	Building 101	01/14/16	Gross Alpha/Beta	Gross Beta	5.19E-14	2.59E-14	2.60E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184681	Building 101	01/15/16	Gross Alpha/Beta	Gross Alpha	5.41E-15	8.03E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184681	Building 101	01/15/16	Gross Alpha/Beta	Gross Beta	7.63E-14	2.86E-14	2.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184682	Building 101	01/18/16	Gross Alpha/Beta	Gross Alpha	-9.67E-16	6.70E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184682	Building 101	01/18/16	Gross Alpha/Beta	Gross Beta	6.91E-14	3.20E-14	3.18E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184683	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Alpha	5.30E-15	6.13E-15	9.43E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184683	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.91E-15	9.43E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184683	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Beta	2.80E-14	1.43E-14	1.52E-14	μCi/mL	-		SLDS (General Area)-Perimeter Air
SLD184683	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Beta	2.61E-14	1.41E-14	1.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184684	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Alpha	5.90E-15	6.82E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184684	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Beta	1.39E-14	1.41E-14	1.69E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184685	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Alpha	1.39E-15	5.04E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184685	Plant 6WH Loadout	01/19/16	Gross Alpha/Beta	Gross Beta	1.65E-14	1.42E-14	1.67E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184686	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Alpha	1.31E-15	4.77E-15	9.79E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184686	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Beta	3.17E-14	1.51E-14	1.58E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184687	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Alpha	1.07E-14	8.41E-15	1.08E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184687	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Beta	2.75E-14	1.58E-14	1.74E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184688	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Alpha	9.48E-15	8.04E-15	1.07E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184688	Plant 6WH Loadout	01/20/16	Gross Alpha/Beta	Gross Beta	3.55E-14	1.66E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184689	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Alpha	5.30E-15	6.13E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184689	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Beta	2.80E-14	1.43E-14	1.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184690	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Alpha	5.98E-15	6.91E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184690	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Beta	5.05E-14	1.79E-14	1.71E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD184691	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Alpha	1.39E-15	5.07E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184691	Plant 6WH Loadout	01/21/16	Gross Alpha/Beta	Gross Beta	4.44E-14	1.70E-14	1.67E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD184692	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Alpha	2.56E-16	4.18E-15	9.55E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184692	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Beta	3.42E-14	1.50E-14	1.54E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184693	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Alpha	3.54E-15	5.84E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184693	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Beta	2.39E-14	1.47E-14	1.64E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184694	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Alpha	6.99E-15	7.15E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184694	Plant 6WH Loadout	01/25/16	Gross Alpha/Beta	Gross Beta	3.53E-14	1.62E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184695	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Alpha	-1.87E-15	3.15E-15	9.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184695	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Beta	5.41E-14	1.74E-14	1.60E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184696	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Alpha	1.41E-15	5.13E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184696	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Beta	3.78E-14	1.66E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184697	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Alpha	3.52E-15	5.81E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184697	Plant 6WH Loadout	01/26/16	Gross Alpha/Beta	Gross Beta	4.32E-14	1.66E-14	1.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184698	Building 101	01/16/16	Gross Alpha/Beta	Gross Alpha	5.57E-15	6.24E-15	7.92E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184698	Building 101	01/16/16	Gross Alpha/Beta	Gross Alpha	1.26E-15	4.51E-15	7.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184698	Building 101	01/16/16	Gross Alpha/Beta	Gross Beta	1.98E-14	2.41E-14	2.50E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184698	Building 101	01/16/16	Gross Alpha/Beta	Gross Beta	2.80E-14	2.46E-14	2.50E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184699	Building 101	01/20/16	Gross Alpha/Beta	Gross Alpha	8.81E-15	7.28E-15	7.92E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184699	Building 101	01/20/16	Gross Alpha/Beta	Gross Beta	1.42E-14	2.38E-14	2.50E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184700	Building 101	01/21/16	Gross Alpha/Beta	Gross Alpha	5.62E-15	6.30E-15	7.99E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184700	Building 101	01/21/16	Gross Alpha/Beta	Gross Beta	2.76E-14	2.48E-14	2.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184701	Building 101	01/26/16	Gross Alpha/Beta	Gross Alpha	3.47E-15	5.54E-15	8.06E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184701	Building 101	01/26/16	Gross Alpha/Beta	Gross Beta	4.19E-14	2.58E-14	2.54E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184702	Building 101	01/25/16	Gross Alpha/Beta	Gross Alpha	1.82E-16	4.01E-15	8.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184702	Building 101	01/25/16	Gross Alpha/Beta	Gross Beta	1.09E-14	2.39E-14	2.53E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184703	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Alpha	8.32E-15	7.95E-15	8.30E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184703	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Alpha	1.06E-14	8.59E-15	8.30E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184703	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Beta	1.76E-14	1.58E-14	2.57E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184703	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Beta	4.84E-14	1.85E-14	2.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184704	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Alpha	1.40E-15	5.49E-15	8.11E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184704	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Beta	1.36E-14	1.51E-14	2.52E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184705	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Alpha	5.61E-15	6.76E-15	7.74E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184705	P6WH Loadout	01/27/16	Gross Alpha/Beta	Gross Beta	1.50E-14	1.46E-14	2.40E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184706	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Alpha	2.47E-15	5.80E-15	7.94E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184706	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Beta	1.19E-14	1.47E-14	2.46E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184707	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Alpha	5.86E-15	7.06E-15	8.08E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184707	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Beta	1.07E-14	1.48E-14	2.51E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184708	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Alpha	5.50E-15	6.62E-15	7.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184708	P6WH Loadout	01/28/16	Gross Alpha/Beta	Gross Beta	2.01E-14	1.48E-14	2.35E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184709	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Alpha	8.06E-15	7.70E-15	8.04E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184709	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Beta	2.77E-14	1.63E-14	2.50E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184710	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Alpha	2.78E-16	4.97E-15	8.04E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184710	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Beta	2.35E-14	1.59E-14	2.50E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184711	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Alpha	1.31E-15	5.15E-15	7.61E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184711	P6WH Loadout	02/01/16	Gross Alpha/Beta	Gross Beta	2.49E-14	1.53E-14	2.36E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184712	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Alpha	1.14E-14	8.62E-15	8.04E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184712	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Beta	5.62E-14	1.87E-14	2.50E-14	μCi/mL	=	 	SLDS (General Area)-Perimeter Air
SLD184713	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Alpha	1.95E-15	7.62E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184713	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Beta	3.78E-14	2.28E-14	3.50E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184714	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Alpha	9.81E-15	7.94E-15	7.67E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184714	P6WH Loadout	02/02/16	Gross Alpha/Beta	Gross Beta	6.99E-14	1.90E-14	2.38E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184715	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Alpha	2.50E-15	5.88E-15	8.04E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184715	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Beta	1.28E-14	1.49E-14	2.50E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184716	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Alpha	2.50E-15	5.88E-15	8.04E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184716	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Beta	9.20E-15	1.46E-14	2.50E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184717	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Alpha	1.07E-15	6.88E-15	1.02E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184717	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Alpha	4.26E-15	7.81E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184717	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Beta	6.32E-15	1.05E-14	1.66E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184717	P6WH Loadout	02/03/16	Gross Alpha/Beta	Gross Beta	1.72E-14	1.19E-14	1.66E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184718	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Alpha	2.25E-15	7.59E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184718	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Beta	1.53E-14	1.21E-14	1.75E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184719	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Alpha	5.45E-15	8.28E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184719	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Beta	1.69E-14	1.20E-14	1.70E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184720	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Alpha	2.12E-15	7.17E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184720	P6WH Loadout	02/04/16	Gross Alpha/Beta	Gross Beta	1.04E-14	1.10E-14	1.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184721	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Alpha	1.09E-15	7.03E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184721	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Beta	2.39E-14	1.29E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184722	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Alpha	6.51E-15	8.52E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184722	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Beta	3.07E-14	1.36E-14	1.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184723	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Alpha	7.22E-15	8.37E-15	9.85E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184723	P6WH Loadout	02/08/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.21E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184724	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Alpha	3.48E-15	8.17E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184724	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Beta	3.58E-14	1.49E-14	1.80E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184725	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Alpha	5.69E-15	8.65E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184725	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Beta	1.99E-14	1.28E-14	1.77E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184726	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Alpha	7.59E-15	8.80E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184726	P6WH Loadout	02/09/16	Gross Alpha/Beta	Gross Beta	2.45E-14	1.29E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184727	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Alpha	5.19E-15	9.50E-15	1.24E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184727	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Beta	2.35E-14	1.47E-14	2.02E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184728	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Alpha	3.85E-15	9.05E-15	1.23E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184728	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Beta	2.24E-14	1.45E-14	2.00E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184729	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Alpha	0	7.79E-15	1.21E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184729	P6WH Loadout	02/10/16	Gross Alpha/Beta	Gross Beta	3.93E-14	1.63E-14	1.98E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184730	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Alpha	1.05E-14	1.00E-14	1.11E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184730	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Beta	3.15E-14	1.44E-14	1.81E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184731	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Alpha	2.15E-15	4.86E-15	8.58E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184731	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Alpha	2.15E-15	4.86E-15	8.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184731	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Beta	2.53E-14	1.85E-14	2.47E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184731	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Beta	2.68E-14	1.86E-14	2.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184732	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Alpha	3.12E-15	7.05E-15	1.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184732	P6WH Loadout	02/11/16	Gross Alpha/Beta	Gross Beta	2.22E-14	2.56E-14	3.59E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184733	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Alpha	1.01E-15	4.25E-15	8.46E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184733	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Beta	3.28E-14	1.88E-14	2.44E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184734	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Alpha	2.10E-15	4.75E-15	8.39E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184734	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Beta	3.46E-14	1.88E-14	2.42E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184735	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Alpha	9.56E-16	4.01E-15	7.97E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184735	P6WH Loadout	02/15/16	Gross Alpha/Beta	Gross Beta	3.36E-14	1.79E-14	2.30E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184736	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Alpha	7.75E-15	1.27E-14	2.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184736	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Beta	3.45E-14	4.16E-14	5.86E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184737	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Alpha	-1.50E-16	5.92E-15	1.38E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184737	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Beta	2.92E-14	2.87E-14	3.98E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184738	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Alpha	2.34E-15	9.80E-15	1.95E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184738	P6WH Loadout	02/16/16	Gross Alpha/Beta	Gross Beta	3.96E-14	4.05E-14	5.62E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184739	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Alpha	2.02E-15	4.56E-15	8.04E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184739	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Beta	3.25E-14	1.80E-14	2.32E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184740	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Alpha	3.20E-15	5.24E-15	8.39E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184740	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Beta	3.39E-14	1.88E-14	2.42E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184741	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Alpha	-1.07E-15	2.58E-15	7.57E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184741	P6WH Loadout	02/17/16	Gross Alpha/Beta	Gross Beta	3.00E-14	1.69E-14	2.18E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184742	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Alpha	4.21E-15	5.56E-15	8.21E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184742	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Beta	3.66E-14	1.86E-14	2.37E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184743	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Alpha	4.33E-15	5.73E-15	8.46E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184743	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Beta	2.50E-14	1.82E-14	2.44E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184744	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Alpha	-1.09E-15	2.62E-15	7.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184744	P6WH Loadout	02/18/16	Gross Alpha/Beta	Gross Beta	3.24E-14	1.73E-14	2.22E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184745	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Alpha	5.47E-16	4.63E-15	9.97E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184745	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Alpha	6.02E-15	6.75E-15	9.97E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184745	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Beta	3.03E-14	1.35E-14	1.63E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184745	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Beta	2.53E-14	1.29E-14	1.63E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184746	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Alpha	-5.59E-16	4.17E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184746	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Beta	2.52E-14	1.31E-14	1.66E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184747	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Alpha	5.22E-16	4.42E-15	9.51E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184747	P6WH Loadout	02/22/16	Gross Alpha/Beta	Gross Beta	1.42E-14	1.11E-14	1.55E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184748	Building 101	01/27/16	Gross Alpha/Beta	Gross Alpha	3.85E-15	6.02E-15	1.00E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184748	Building 101	01/27/16	Gross Alpha/Beta	Gross Beta	2.33E-14	1.27E-14	1.63E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184749	Building 101	01/28/16	Gross Alpha/Beta	Gross Alpha	8.42E-15	7.63E-15	1.02E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184749	Building 101	01/28/16	Gross Alpha/Beta	Gross Beta	2.10E-14	1.26E-14	1.67E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184750	Building 101	02/01/16	Gross Alpha/Beta	Gross Alpha	5.38E-16	4.55E-15	9.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184750	Building 101	02/01/16	Gross Alpha/Beta	Gross Beta	3.80E-14	1.42E-14	1.60E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184751	Building 101	02/02/16	Gross Alpha/Beta	Gross Alpha	7.49E-16	6.34E-15	1.36E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184751	Building 101	02/02/16	Gross Alpha/Beta	Gross Beta	2.41E-14	1.64E-14	2.23E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184752	Building 101	02/03/16	Gross Alpha/Beta	Gross Alpha	1.66E-15	5.19E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184752	Building 101	02/03/16	Gross Alpha/Beta	Gross Beta	1.43E-14	1.17E-14	1.65E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184753	Building 101	02/04/16	Gross Alpha/Beta	Gross Alpha	1.58E-15	4.93E-15	9.59E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184753	Building 101	02/04/16	Gross Alpha/Beta	Gross Beta	2.44E-14	1.24E-14	1.57E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184754	Building 101	02/08/16	Gross Alpha/Beta	Gross Alpha	8.98E-15	7.49E-15	9.63E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184754	Building 101	02/08/16	Gross Alpha/Beta	Gross Beta	3.13E-14	1.32E-14	1.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184755	Building 101	02/09/16	Gross Alpha/Beta	Gross Alpha	4.00E-15	6.26E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184755	Building 101	02/09/16	Gross Alpha/Beta	Gross Beta	2.14E-14	1.29E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184756	Building 101	02/10/16	Gross Alpha/Beta	Gross Alpha	7.69E-15	8.62E-15	1.27E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184756	Building 101	02/10/16	Gross Alpha/Beta	Gross Beta	2.70E-14	1.58E-14	2.08E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184757	Building 101	02/11/16	Gross Alpha/Beta	Gross Alpha	1.63E-15	5.10E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184757	Building 101	02/11/16	Gross Alpha/Beta	Gross Beta	2.24E-14	1.25E-14	1.62E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184758	Building 101	02/15/16	Gross Alpha/Beta	Gross Alpha	-5.44E-16	4.06E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184758	Building 101	02/15/16	Gross Alpha/Beta	Gross Beta	2.94E-14	1.33E-14	1.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184759	Building 101	02/16/16	Gross Alpha/Beta	Gross Alpha	8.18E-15	1.34E-14	2.14E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184759	Building 101	02/16/16	Gross Alpha/Beta	Gross Alpha	5.37E-15	1.22E-14	2.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184759	Building 101	02/16/16	Gross Alpha/Beta	Gross Beta	4.18E-14	4.44E-14	6.18E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184759	Building 101	02/16/16	Gross Alpha/Beta	Gross Beta	4.90E-14	4.50E-14	6.18E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184760	Building 101	02/17/16	Gross Alpha/Beta	Gross Alpha	4.30E-15	5.68E-15	8.39E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184760	Building 101	02/17/16	Gross Alpha/Beta	Gross Beta	2.48E-14	1.81E-14	2.42E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184761	Building 101	02/18/16	Gross Alpha/Beta	Gross Alpha	1.13E-15	4.76E-15	9.46E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184761	Building 101	02/18/16	Gross Alpha/Beta	Gross Beta	1.84E-14	1.96E-14	2.73E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184762	Building 101	02/22/16	Gross Alpha/Beta	Gross Alpha	-8.90E-17	3.51E-15	8.18E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184762	Building 101	02/22/16	Gross Alpha/Beta	Gross Beta	2.42E-14	1.76E-14	2.36E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184763	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Alpha	4.21E-15	7.34E-15	1.07E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184763	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Alpha	-2.38E-15	4.99E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184763	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Beta	2.42E-14	1.26E-14	1.69E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184763	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Beta	2.07E-14	1.21E-14	1.69E-14	μCi/mL	J	F01, T04	SLDS (General Area)-Perimeter Air
SLD184764	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Alpha	5.33E-15	7.70E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184764	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Beta	2.65E-14	1.29E-14	1.70E-14	μCi/mL	J	F01	SLDS (General Area)-Perimeter Air
SLD184765	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Alpha	8.01E-15	7.98E-15	9.92E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184765	P6WH Loadout	02/23/16	Gross Alpha/Beta	Gross Beta	2.58E-14	1.21E-14	1.57E-14	μCi/mL	J	F01	SLDS (General Area)-Perimeter Air
SLD184766	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Alpha	9.40E-16	6.44E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184766	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Beta	2.42E-14	1.28E-14	1.73E-14	μCi/mL	J	F01, T04	SLDS (General Area)-Perimeter Air
SLD184767	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Alpha	4.25E-15	7.41E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184767	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Beta	2.09E-14	1.23E-14	1.70E-14	μCi/mL	J	F01, T04	SLDS (General Area)-Perimeter Air
SLD184768	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Alpha	2.87E-15	6.47E-15	9.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184768	P6WH Loadout	02/25/16	Gross Alpha/Beta	Gross Beta	3.08E-14	1.26E-14	1.56E-14	μCi/mL	J	F01	SLDS (General Area)-Perimeter Air
SLD184769	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Alpha	6.52E-15	8.12E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184769	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Beta	1.89E-14	1.21E-14	1.72E-14	μCi/mL	J	F01, T04	SLDS (General Area)-Perimeter Air
SLD184770	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Alpha	-1.28E-15	5.42E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184770	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Beta	2.97E-14	1.32E-14	1.68E-14	μCi/mL	J	F01	SLDS (General Area)-Perimeter Air
SLD184771	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Alpha	4.88E-15	7.05E-15	9.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184771	P6WH Loadout	02/29/16	Gross Alpha/Beta	Gross Beta	2.42E-14	1.18E-14	1.55E-14	μCi/mL	ı	F01	SLDS (General Area)-Perimeter Air
SLD184772	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Alpha	3.15E-15	7.10E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184772	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Beta	6.00E-15	1.03E-14	1.71E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184773	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Alpha	3.15E-15	7.10E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184773	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Beta	2.24E-14	1.25E-14	1.71E-14	μCi/mL	ı	F01, T04	SLDS (General Area)-Perimeter Air
SLD184774	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Alpha	8.04E-15	8.01E-15	9.96E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184774	P6WH Loadout	03/01/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.17E-14	1.58E-14	μCi/mL	ī	F01, T04	SLDS (General Area)-Perimeter Air
SLD184775	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Alpha	-3.57E-15	4.60E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184775	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Beta	2.05E-14	1.24E-14	1.73E-14	μCi/mL	I	F01, T04	SLDS (General Area)-Perimeter Air
SLD184776	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Alpha	3.07E-15	6.91E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184776	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Beta	3.09E-14	1.32E-14	1.67E-14	μCi/mL	ī	F01	SLDS (General Area)-Perimeter Air
SLD184777	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Alpha	6.29E-16	6.53E-15	9.01E-15	μCi/mL	,	101	SLDS (General Area)-Perimeter Air
SLD184777 SLD184777	P6WH Loadout	03/02/16	Gross Alpha/Beta	Gross Alpha Gross Alpha	6.29E-16 6.29E-16	6.53E-15	9.01E-15 9.01E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184777 SLD184777	P6WH Loadout	03/02/16	•	Gross Alpha Gross Beta	0.29E-10 2.71E-14	5.75E-14	9.01E-13 2.01E-14	μCi/mL	O J	100	SLDS (General Area)-Perimeter Air
SLD184777 SLD184777	P6WH Loadout	03/02/16	Gross Alpha/Beta Gross Alpha/Beta	Gross Beta Gross Beta	2.71E-14 1.94E-14	5.74E-14	2.01E-14 2.01E-14	•	UJ	T06	SLDS (General Area)-Perimeter Air SLDS (General Area)-Perimeter Air
SLD184777 SLD184778	P6WH Loadout	03/02/16	•		-2.72E-15	6.31E-15	2.01E-14 1.03E-14	μCi/mL	UJ	T06	
			Gross Alpha/Beta	Gross Alpha				μCi/mL		_	SLDS (General Area) Perimeter Air
SLD184778	P6WH Loadout	03/03/16	Gross Alpha/Beta	Gross Beta	3.17E-14	6.57E-14	2.29E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184779	P6WH Loadout	03/03/16	Gross Alpha/Beta	Gross Alpha	-4.11E-16	6.78E-15	9.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184779	P6WH Loadout	03/03/16	Gross Alpha/Beta	Gross Beta	2.54E-14	6.27E-14	2.19E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD184780	P6WH Loadout	03/03/16	Gross Alpha/Beta	Gross Alpha	-1.39E-15	5.93E-15	9.09E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184780	P6WH Loadout	03/03/16	Gross Alpha/Beta	Gross Beta	2.93E-14	5.81E-14	2.03E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD184781	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Alpha	-1.56E-15	6.62E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184781	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Beta	8.79E-15	6.43E-14	2.26E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184782	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Alpha	5.10E-15	8.41E-15	9.88E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184782	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Beta	4.18E-14	6.33E-14	2.20E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD184783	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Alpha	-3.82E-16	6.32E-15	9.16E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184783	P6WH Loadout	03/07/16	Gross Alpha/Beta	Gross Beta	3.28E-14	5.86E-14	2.04E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD184784	Building 101	02/23/16	Gross Alpha/Beta	Gross Alpha	1.92E-15	6.34E-15	1.02E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184784	Building 101	02/23/16	Gross Alpha/Beta	Gross Alpha	1.92E-15	6.34E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184784	Building 101	02/23/16	Gross Alpha/Beta	Gross Beta	1.57E-14	1.11E-14	1.61E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184784	Building 101	02/23/16	Gross Alpha/Beta	Gross Beta	2.38E-14	1.21E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184785	Building 101	02/25/16	Gross Alpha/Beta	Gross Alpha	1.97E-15	6.50E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184785	Building 101	02/25/16	Gross Alpha/Beta	Gross Beta	2.37E-14	1.23E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184786	Building 101	02/29/16	Gross Alpha/Beta	Gross Alpha	-2.24E-15	4.70E-15	1.00E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184786	Building 101	02/29/16	Gross Alpha/Beta	Gross Beta	2.61E-14	1.23E-14	1.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184787	Building 101	03/01/16	Gross Alpha/Beta	Gross Alpha	2.98E-15	6.71E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184787	Building 101	03/01/16	Gross Alpha/Beta	Gross Beta	2.05E-14	1.17E-14	1.62E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184788	Building 101	03/02/16	Gross Alpha/Beta	Gross Alpha	-1.21E-15	5.13E-15	1.00E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184788	Building 101	03/02/16	Gross Alpha/Beta	Gross Beta	1.82E-14	1.13E-14	1.59E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184789	Building 101	03/03/16	Gross Alpha/Beta	Gross Alpha	-1.79E-16	5.75E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184789	Building 101	03/03/16	Gross Alpha/Beta	Gross Beta	8.55E-15	1.04E-14	1.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184790	Building 101	03/07/16	Gross Alpha/Beta	Gross Alpha	-2.71E-15	5.68E-15	1.21E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184790	Building 101	03/07/16	Gross Alpha/Beta	Gross Beta	1.48E-14	1.27E-14	1.92E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184791	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Alpha	-2.14E-15	4.48E-15	9.57E-15	μCi/mL		, , ,	SLDS (General Area)-Perimeter Air
SLD184791	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Alpha	3.78E-15	6.59E-15	9.57E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184791	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Beta	2.43E-14	1.16E-14	1.52E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD184791	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Beta	2.05E-14	1.11E-14	1.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184792	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Alpha	-3.46E-15	4.46E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184792	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Beta	3.18E-14	1.34E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD184793	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Alpha	8.81E-16	6.03E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184793	Plant 6WH Loadout	03/08/16	Gross Alpha/Beta	Gross Beta	2.40E-14	1.22E-14	1.62E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184794	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Alpha	5.87E-15	7.31E-15	9.76E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184794	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Beta	3.49E-15	9.06E-15	1.55E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184795	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Alpha	9.28E-16	6.36E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184795	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Beta	9.57E-15	1.08E-14	1.71E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184796	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Alpha	6.30E-15	7.84E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184796	Plant 6WH Loadout	03/09/16	Gross Alpha/Beta	Gross Beta	9.80E-16	9.32E-15	1.66E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184797	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Alpha	1.88E-15	6.19E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184797	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Beta	2.12E-14	1.16E-14	1.57E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184798	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Alpha	-1.29E-15	5.50E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184798	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Beta	3.08E-14	1.34E-14	1.70E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD184799	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Alpha	5.38E-15	7.77E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184799	Plant 6WH Loadout	03/10/16	Gross Alpha/Beta	Gross Beta	4.74E-14	1.53E-14	1.71E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD184800	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Alpha	-1.21E-15	5.13E-15	1.00E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD184800	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Beta	1.16E-14	1.04E-14	1.59E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD184801	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Alpha	9.36E-16	6.41E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184801	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Beta	2.04E-14	1.23E-14	1.73E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD184802	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Alpha	2.08E-15	6.86E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD184802	Plant 6WH Loadout	03/14/16	Gross Alpha/Beta	Gross Beta	6.11E-15	1.05E-14	1.74E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187208	Building 101	03/08/16	Gross Alpha/Beta	Gross Alpha	4.10E-15	6.86E-15	1.04E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187208	Building 101	03/08/16	Gross Alpha/Beta	Gross Alpha	1.96E-15	6.15E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187208	Building 101	03/08/16	Gross Alpha/Beta	Gross Beta	1.61E-14	1.16E-14	1.64E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187208	Building 101	03/08/16	Gross Alpha/Beta	Gross Beta	2.44E-14	1.26E-14	1.64E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187209	Building 101	03/09/16	Gross Alpha/Beta	Gross Alpha	1.03E-15	6.65E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187209	Building 101	03/09/16	Gross Alpha/Beta	Gross Beta	1.78E-14	1.33E-14	1.89E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187210	Building 101	03/10/16	Gross Alpha/Beta	Gross Alpha	3.38E-15	7.26E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187210	Building 101	03/10/16	Gross Alpha/Beta	Gross Beta	3.09E-14	1.45E-14	1.83E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187211	Building 101	03/14/16	Gross Alpha/Beta	Gross Alpha	-2.07E-16	6.20E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187211	Building 101	03/14/16	Gross Alpha/Beta	Gross Beta	1.23E-14	1.27E-14	1.90E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187212	Building 101	03/15/16	Gross Alpha/Beta	Gross Alpha	4.00E-15	8.61E-15	1.37E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187212	Building 101	03/15/16	Gross Alpha/Beta	Gross Beta	3.31E-14	1.68E-14	2.17E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187213	Building 101	03/16/16	Gross Alpha/Beta	Gross Alpha	-1.25E-15	4.93E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187213	Building 101	03/16/16	Gross Alpha/Beta	Gross Beta	1.41E-14	1.14E-14	1.65E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187214	Building 101	03/17/16	Gross Alpha/Beta	Gross Alpha	-1.69E-16	5.08E-15	9.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187214	Building 101	03/17/16	Gross Alpha/Beta	Gross Beta	2.24E-14	1.19E-14	1.56E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187215	Building 101	03/21/16	Gross Alpha/Beta	Gross Alpha	4.42E-15	7.40E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187215	Building 101	03/21/16	Gross Alpha/Beta	Gross Beta	1.59E-14	1.24E-14	1.77E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187216	Building 101	03/22/16	Gross Alpha/Beta	Gross Alpha	5.87E-15	7.06E-15	9.76E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187216	Building 101	03/22/16	Gross Alpha/Beta	Gross Beta	2.55E-14	1.22E-14	1.54E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187217	Building 101	03/23/16	Gross Alpha/Beta	Gross Alpha	4.75E-15	7.95E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187217	Building 101	03/23/16	Gross Alpha/Beta	Gross Beta	3.30E-14	1.52E-14	1.90E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187218	Building 101	03/24/16	Gross Alpha/Beta	Gross Alpha	1.96E-15	6.15E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187218	Building 101	03/24/16	Gross Alpha/Beta	Gross Beta	1.82E-14	1.19E-14	1.64E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187219	Building 101	03/28/16	Gross Alpha/Beta	Gross Alpha	5.20E-15	7.22E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187219	Building 101	03/28/16	Gross Alpha/Beta	Gross Beta	3.41E-14	1.38E-14	1.65E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187220	Building 101	03/29/16	Gross Alpha/Beta	Gross Alpha	3.05E-15	6.55E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187220	Building 101	03/29/16	Gross Alpha/Beta	Gross Beta	2.38E-14	1.26E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187221	Building 101	03/29/16	Gross Alpha/Beta	Gross Alpha	9.19E-16	5.95E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187221	Building 101	03/29/16	Gross Alpha/Beta	Gross Beta	1.24E-14	1.15E-14	1.69E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187222	Building 101	03/30/16	Gross Alpha/Beta	Gross Alpha	5.02E-15	1.08E-14	1.72E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187222	Building 101	03/30/16	Gross Alpha/Beta	Gross Beta	3.58E-14	2.04E-14	2.72E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187223	Building 101	03/30/16	Gross Alpha/Beta	Gross Alpha	1.06E-14	1.47E-14	2.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187223	Building 101	03/30/16	Gross Alpha/Beta	Gross Beta	2.17E-14	2.23E-14	3.36E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187224	Building 101	03/31/16	Gross Alpha/Beta	Gross Alpha	-1.86E-16	5.57E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187224	Building 101	03/31/16	Gross Alpha/Beta	Gross Beta	2.10E-14	1.26E-14	1.71E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187225	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Alpha	5.06E-15	6.19E-15	8.03E-15	μCi/mL	-		SLDS (General Area)-Perimeter Air
SLD187225	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Alpha	6.20E-15	6.61E-15	8.03E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187225	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Beta	2.66E-14	1.82E-14	2.64E-14	μCi/mL		- 00	SLDS (General Area)-Perimeter Air
SLD187225	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Beta	9.21E-15	1.67E-14	2.64E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187226	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Alpha	6.71E-15	7.15E-15	8.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187226	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.91E-14	2.85E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
522101220	Tium O 11 II Dougout	03/13/10	oross rupila beta	Gross Dem	2.1/12/17	1.711117	2.050 17	μCI/IIIL	U	101, 100	SEES (Scherm rinea) I chimeter All

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187227	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Alpha	1.55E-15	4.54E-15	7.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187227	Plant 6WH Loadout	03/15/16	Gross Alpha/Beta	Gross Beta	1.85E-14	1.68E-14	2.52E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187228	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Alpha	3.81E-15	5.60E-15	7.82E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187228	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Beta	6.16E-15	1.60E-14	2.57E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187229	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Alpha	6.07E-15	6.46E-15	7.86E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187229	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Beta	2.65E-15	1.57E-14	2.58E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187230	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Alpha	1.48E-15	4.34E-15	7.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187230	Plant 6WH Loadout	03/16/16	Gross Alpha/Beta	Gross Beta	1.04E-14	1.54E-14	2.41E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187231	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Alpha	-1.82E-15	2.61E-15	8.07E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187231	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Beta	1.58E-14	1.73E-14	2.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187232	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Alpha	6.52E-16	5.67E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187232	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Beta	6.66E-15	2.22E-14	3.60E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187233	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Alpha	2.68E-15	5.11E-15	7.79E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187233	Plant 6WH Loadout	03/17/16	Gross Alpha/Beta	Gross Beta	1.17E-14	1.64E-14	2.56E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187234	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Alpha	2.73E-15	5.20E-15	7.93E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187234	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Beta	1.76E-14	1.72E-14	2.60E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187235	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Alpha	2.32E-15	7.15E-15	1.06E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187235	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Alpha	9.30E-17	6.42E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187235	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Beta	1.52E-14	1.17E-14	1.77E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187235	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Beta	2.80E-14	1.33E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187236	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Alpha	3.19E-15	6.97E-15	9.82E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187236	Plant 6WH Loadout	03/21/16	Gross Alpha/Beta	Gross Beta	2.40E-14	1.21E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187237	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Alpha	3.27E-15	7.15E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187237	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Beta	3.08E-14	1.32E-14	1.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187238	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Alpha	1.17E-15	6.57E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187238	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Beta	1.95E-14	1.19E-14	1.71E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187239	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Alpha	8.30E-17	5.74E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187239	Plant 6WH Loadout	03/22/16	Gross Alpha/Beta	Gross Beta	1.67E-14	1.09E-14	1.58E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187240	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Alpha	3.36E-15	7.33E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187240	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Beta	2.95E-14	1.33E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187241	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Alpha	9.98E-15	9.17E-15	1.04E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187241	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Beta	1.14E-14	1.11E-14	1.75E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187242	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Alpha	4.14E-15	7.13E-15	9.62E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187242	Plant 6WH Loadout	03/23/16	Gross Alpha/Beta	Gross Beta	1.90E-14	1.14E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187243	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Alpha	9.10E-17	6.31E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187243	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Beta	1.42E-14	1.14E-14	1.74E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187244	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Alpha	1.17E-15	6.59E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187244	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Beta	1.06E-14	1.09E-14	1.72E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187245	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Alpha	3.01E-15	6.22E-15	1.15E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187245	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Alpha	-8.60E-17	5.09E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187245	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Beta	1.59E-14	1.23E-14	1.63E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187245	Plant 6WH Loadout	03/24/16	Gross Alpha/Beta	Gross Beta	1.78E-14	1.25E-14	1.63E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187246	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Alpha	-1.20E-15	5.01E-15	1.24E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187246	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Beta	3.20E-14	1.48E-14	1.75E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187247	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Alpha	-3.39E-15	3.88E-15	1.23E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187247	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Beta	1.83E-14	1.32E-14	1.73E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187248	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Alpha	2.05E-15	6.10E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187248	Plant 6WH Loadout	03/28/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.34E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187249	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Alpha	-2.27E-15	4.41E-15	1.21E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187249	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Beta	2.02E-14	1.34E-14	1.72E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187250	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Alpha	-2.18E-15	4.25E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187250	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Beta	1.88E-14	1.28E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187251	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Alpha	-2.21E-15	4.30E-15	1.18E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187251	Plant 6WH Loadout	03/29/16	Gross Alpha/Beta	Gross Beta	1.70E-14	1.27E-14	1.68E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187252	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Alpha	4.28E-15	6.96E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187252	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Beta	3.36E-14	1.49E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187253	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Alpha	-3.61E-15	7.03E-15	1.94E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187253	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Beta	3.22E-14	2.13E-14	2.74E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187254	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Alpha	5.03E-15	6.82E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187254	Plant 6WH Loadout	03/30/16	Gross Alpha/Beta	Gross Beta	1.31E-14	1.19E-14	1.61E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187255	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Alpha	-2.39E-15	4.66E-15	1.28E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187255	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Beta	1.91E-14	1.38E-14	1.81E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187256	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Alpha	3.06E-15	6.33E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187256	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Beta	2.28E-14	1.32E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187257	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Alpha	-8.50E-17	5.05E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187257	Plant 6WH Loadout	03/31/16	Gross Alpha/Beta	Gross Beta	1.97E-14	1.26E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187258	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Alpha	1.16E-15	7.25E-15	1.02E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187258	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Alpha	7.58E-15	8.96E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187258	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Beta	1.45E-14	1.17E-14	1.61E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187258	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Beta	2.82E-14	1.33E-14	1.61E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187259	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Alpha	2.15E-15	7.28E-15	9.78E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187259	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Beta	1.86E-14	1.18E-14	1.55E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187260	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Alpha	1.24E-14	1.04E-14	1.06E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187260	Plant 6WH Loadout	04/04/16	Gross Alpha/Beta	Gross Beta	5.10E-14	1.62E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187261	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Alpha	1.00E-16	7.75E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187261	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Beta	2.39E-14	1.40E-14	1.80E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187262	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Alpha	4.45E-15	8.29E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187262	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.27E-14	1.64E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187263	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Alpha	1.07E-14	1.05E-14	1.12E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187263	Plant 6WH Loadout	04/05/16	Gross Alpha/Beta	Gross Beta	2.06E-14	1.35E-14	1.78E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187264	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Alpha	3.84E-15	9.15E-15	1.18E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187264	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Beta	4.32E-14	1.66E-14	1.87E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187265	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Alpha	3.49E-15	8.32E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187265	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Beta	2.63E-14	1.37E-14	1.71E-14	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187266	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Alpha	-3.60E-15	6.75E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187266	Plant 6WH Loadout	04/06/16	Gross Alpha/Beta	Gross Beta	3.02E-14	1.51E-14	1.86E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD187267	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Alpha	2.22E-15	7.53E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187267	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Beta	2.06E-14	1.24E-14	1.60E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187268	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Alpha	2.24E-15	7.59E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187268	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Beta	6.31E-15	1.07E-14	1.62E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187269	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Alpha	-1.01E-15	6.79E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187269	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Beta	1.78E-14	1.24E-14	1.66E-14	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187270	Plant 6WH Loadout	04/07/16	Gross Alpha/Beta	Gross Alpha	-1.07E-15	7.17E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187270	Plant 6WH Loadout	04/11/16	Gross Alpha/Beta	Gross Beta	2.40E-14	1.37E-14	1.75E-14	μCi/mL	I J	T04	SLDS (General Area)-Perimeter Air
SLD10/2/0	I failt 0 W II Loadout	U 1 /11/1U	Oross Aipha/Deta	Oross Deta	4.40L-14	1.5/E-14	1./JL:-14	μCI/IIIL	J	104	SLDS (Ochciai Alea)-i chilletei All

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187271	Building 101	04/04/16	Gross Alpha/Beta	Gross Alpha	1.61E-15	4.41E-15	7.96E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187271	Building 101	04/04/16	Gross Alpha/Beta	Gross Alpha	9.55E-15	7.48E-15	7.96E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187271	Building 101	04/04/16	Gross Alpha/Beta	Gross Beta	2.27E-15	1.92E-14	2.82E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187271	Building 101	04/04/16	Gross Alpha/Beta	Gross Beta	4.42E-15	1.93E-14	2.82E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187272	Building 101	04/05/16	Gross Alpha/Beta	Gross Alpha	4.30E-15	6.05E-15	8.82E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187272	Building 101	04/05/16	Gross Alpha/Beta	Gross Beta	1.05E-14	2.18E-14	3.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187273	Building 101	04/06/16	Gross Alpha/Beta	Gross Alpha	-2.99E-15	1.37E-14	3.60E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187273	Building 101	04/06/16	Gross Alpha/Beta	Gross Beta	-6.42E-14	8.09E-14	1.28E-13	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187274	Building 101	04/07/16	Gross Alpha/Beta	Gross Alpha	2.95E-15	5.34E-15	8.57E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187274	Building 101	04/07/16	Gross Alpha/Beta	Gross Beta	-2.15E-14	1.88E-14	3.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187275	Building 101	04/12/16	Gross Alpha/Beta	Gross Alpha	3.90E-15	5.48E-15	8.00E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187275	Building 101	04/12/16	Gross Alpha/Beta	Gross Alpha	5.04E-15	5.94E-15	8.00E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187275	Building 101	04/12/16	Gross Alpha/Beta	Gross Beta	-3.48E-15	1.88E-14	2.83E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187275	Building 101	04/12/16	Gross Alpha/Beta	Gross Beta	-2.76E-15	1.89E-14	2.83E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187276	Building 101	04/13/16	Gross Alpha/Beta	Gross Alpha	4.99E-15	5.89E-15	7.93E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187276	Building 101	04/13/16	Gross Alpha/Beta	Gross Beta	3.68E-15	1.92E-14	2.81E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187277	Building 101	04/14/16	Gross Alpha/Beta	Gross Alpha	2.62E-15	4.73E-15	7.59E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187277	Building 101	04/14/16	Gross Alpha/Beta	Gross Beta	-5.69E-16	1.81E-14	2.69E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187278	Building 101	04/18/16	Gross Alpha/Beta	Gross Alpha	2.76E-15	4.98E-15	8.00E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187278	Building 101	04/18/16	Gross Alpha/Beta	Gross Beta	1.38E-14	2.01E-14	2.83E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187279	Building 101	04/19/16	Gross Alpha/Beta	Gross Alpha	5.47E-15	6.46E-15	8.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187279	Building 101	04/19/16	Gross Alpha/Beta	Gross Beta	-4.56E-15	2.04E-14	3.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187281	Building 101	04/20/16	Gross Alpha/Beta	Gross Alpha	3.32E-15	6.00E-15	9.62E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187281	Building 101	04/20/16	Gross Alpha/Beta	Gross Beta	-5.05E-15	2.26E-14	3.41E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187282	Building 101	04/21/16	Gross Alpha/Beta	Gross Alpha	5.64E-15	6.65E-15	8.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187282	Building 101	04/21/16	Gross Alpha/Beta	Gross Beta	8.19E-15	2.20E-14	3.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187283	Building 101	04/25/16	Gross Alpha/Beta	Gross Alpha	4.10E-15	5.77E-15	8.41E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187283	Building 101	04/25/16	Gross Alpha/Beta	Gross Beta	1.60E-14	2.13E-14	2.98E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187284	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Alpha	1.20E-14	8.26E-15	8.07E-15	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD187284	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Beta	6.65E-15	1.97E-14	2.86E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187285	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Alpha	2.70E-15	4.88E-15	7.82E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187285	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Beta	1.14E-14	1.95E-14	2.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187286	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Alpha	5.70E-15	5.87E-15	7.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187286	P6WH Loadout	04/12/16	Gross Alpha/Beta	Gross Beta	6.08E-15	1.80E-14	2.61E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187287	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Alpha	8.31E-15	7.03E-15	7.86E-15	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187287	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Beta	2.20E-14	2.04E-14	2.78E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187288	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Alpha	4.47E-16	2.42E-15	3.06E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187288	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Beta	-5.82E-14	1.23E-14	1.36E-14	μCi/mL	UJ	T06, T07	SLDS (General Area)-Perimeter Air
SLD187289	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Alpha	1.48E-15	4.07E-15	7.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187289 SLD187289	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Alpha Gross Beta	5.36E-14	2.15E-14	7.55E-15 2.60E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD187290	P6WH Loadout	04/13/16	Gross Alpha/Beta	Gross Alpha	4.93E-15	5.81E-15	7.82E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187290 SLD187290	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Alpha Gross Beta	-4.93E-13	1.83E-14	2.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187290 SLD187291	P6WH Loadout	04/14/16	•		2.74E-15	4.96E-15	7.96E-15	_	UJ	T06	SLDS (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Alpha				μCi/mL			,
SLD187291	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Beta	2.98E-15	1.92E-14	2.82E-14	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD187292	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Alpha	1.12E-15	7.01E-15	9.82E-15	μCi/mL	111	TOC	SLDS (General Area) Perimeter Air
SLD187292	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Alpha	-3.02E-15	5.66E-15	9.82E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD187292	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Beta	2.07E-14	1.21E-14	1.56E-14	μCi/mL			SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187292	P6WH Loadout	04/14/16	Gross Alpha/Beta	Gross Beta	1.67E-14	1.16E-14	1.56E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187293	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Alpha	9.20E-17	7.11E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187293	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Beta	2.41E-14	1.31E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187294	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Alpha	4.55E-15	8.47E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187294	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Beta	2.22E-14	1.30E-14	1.68E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187295	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Alpha	-9.37E-16	6.30E-15	9.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187295	P6WH Loadout	04/18/16	Gross Alpha/Beta	Gross Beta	2.83E-14	1.29E-14	1.54E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187296	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Alpha	2.23E-15	7.56E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187296	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Beta	3.30E-14	1.39E-14	1.61E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187297	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Alpha	7.99E-15	9.45E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187297	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Beta	2.11E-14	1.30E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187298	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Alpha	2.13E-15	7.22E-15	9.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187298	P6WH Loadout	04/19/16	Gross Alpha/Beta	Gross Beta	2.44E-14	1.24E-14	1.54E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187299	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Alpha	2.40E-15	8.15E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187299	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Beta	3.34E-14	1.47E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187300	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Alpha	9.20E-17	7.14E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187300	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Beta	3.41E-14	1.43E-14	1.66E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187301	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Alpha	2.23E-15	7.56E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187301	P6WH Loadout	04/20/16	Gross Alpha/Beta	Gross Beta	3.37E-14	1.39E-14	1.61E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187302	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Alpha	9.40E-17	7.27E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187302	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Beta	1.81E-14	1.26E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187303	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Alpha	3.30E-15	7.86E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187303	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Beta	2.48E-14	1.29E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187304	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Alpha	3.25E-15	7.73E-15	9.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187304	P6WH Loadout	04/21/16	Gross Alpha/Beta	Gross Beta	2.91E-14	1.32E-14	1.58E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187305	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Alpha	1.09E-15	6.79E-15	9.50E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187305	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Beta	4.06E-14	1.40E-14	1.51E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187306	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Alpha	9.64E-15	9.39E-15	1.01E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187306	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Beta	2.66E-14	1.30E-14	1.60E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187307	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Alpha	5.16E-15	7.99E-15	9.62E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187307	P6WH Loadout	04/25/16	Gross Alpha/Beta	Gross Beta	4.30E-14	1.44E-14	1.53E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187308	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Alpha	1.29E-16	5.07E-15	1.15E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187308	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Alpha	1.29E-16	5.07E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187308	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Beta	3.58E-14	2.36E-14	3.38E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187308	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Beta	5.52E-15	2.08E-14	3.38E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187309	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Alpha	5.92E-15	7.51E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187309	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Beta	3.26E-14	2.21E-14	3.17E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187310	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Alpha	3.13E-15	6.51E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187310	Plant 6WH Loadout	04/26/16	Gross Alpha/Beta	Gross Beta	3.38E-14	2.28E-14	3.29E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187311	Plant 6WH Loadout	04/27/16	Gross Alpha/Beta	Gross Alpha	1.10E-15	3.91E-15	7.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187311	Plant 6WH Loadout	04/27/16	Gross Alpha/Beta	Gross Beta	2.93E-14	1.61E-14	2.23E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187312	Plant 6WH Loadout	04/28/16	Gross Alpha/Beta	Gross Alpha	5.72E-15	6.26E-15	8.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187312	Plant 6WH Loadout	04/28/16	Gross Alpha/Beta	Gross Beta	1.47E-14	1.62E-14	2.46E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187313	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Alpha	1.23E-15	4.36E-15	8.45E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187313	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Beta	4.27E-14	1.88E-14	2.49E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187314	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Alpha	1.13E-15	4.03E-15	7.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187314	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Beta	3.08E-14	1.66E-14	2.29E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187315	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Alpha	5.62E-15	6.15E-15	8.23E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187315	Plant 6WH Loadout	05/02/16	Gross Alpha/Beta	Gross Beta	3.47E-14	1.77E-14	2.42E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187316	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Alpha	5.70E-15	6.23E-15	8.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187316	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Beta	4.78E-14	1.90E-14	2.45E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187317	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Alpha	-9.44E-16	2.68E-15	7.67E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187317	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Beta	3.29E-14	1.66E-14	2.26E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187318	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Alpha	1.61E-15	4.36E-15	8.73E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187318	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Alpha	5.91E-15	6.14E-15	8.73E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187318	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Beta	9.30E-15	1.16E-14	1.69E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187318	Plant 6WH Loadout	05/03/16	Gross Alpha/Beta	Gross Beta	1.45E-13	2.47E-14	1.69E-14	μCi/mL	J	J01	SLDS (General Area)-Perimeter Air
SLD187319	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Alpha	5.42E-16	3.83E-15	8.81E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187319	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Beta	1.49E-14	1.24E-14	1.70E-14	μCi/mL	UJ	J01, T04, T05	SLDS (General Area)-Perimeter Air
SLD187320	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Alpha	4.58E-15	5.44E-15	8.27E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187320	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Beta	2.06E-14	1.24E-14	1.60E-14	μCi/mL	J	J01, T04	SLDS (General Area)-Perimeter Air
SLD187321	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Alpha	5.74E-15	5.96E-15	8.48E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187321	Plant 6WH Loadout	05/04/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.28E-14	1.64E-14	μCi/mL	J	J01, T04	SLDS (General Area)-Perimeter Air
SLD187322	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Alpha	5.12E-15	6.08E-15	9.24E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187322	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Beta	1.50E-14	1.29E-14	1.79E-14	μCi/mL	J	J01, T04, T05	SLDS (General Area)-Perimeter Air
SLD187323	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Alpha	5.65E-15	5.86E-15	8.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187323	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Beta	1.28E-14	1.16E-14	1.61E-14	μCi/mL	J	J01, T04, T05	SLDS (General Area)-Perimeter Air
SLD187324	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Alpha	4.74E-15	5.62E-15	8.55E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187324	Plant 6WH Loadout	05/05/16	Gross Alpha/Beta	Gross Beta	1.38E-14	1.20E-14	1.65E-14	μCi/mL	J	J01, T04, T05	SLDS (General Area)-Perimeter Air
SLD187325	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Alpha	1.96E-15	5.29E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187325	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Beta	1.88E-14	1.50E-14	2.05E-14	μCi/mL	UJ	J01, T04, T05	SLDS (General Area)-Perimeter Air
SLD187326	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Alpha	6.53E-15	6.77E-15	9.64E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187326	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.42E-14	1.86E-14	μCi/mL	J	J01, T04	SLDS (General Area)-Perimeter Air
SLD187327	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Alpha	-6.11E-16	3.55E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187327	Plant 6WH Loadout	05/09/16	Gross Alpha/Beta	Gross Beta	2.15E-14	1.45E-14	1.92E-14	μCi/mL	J	J01, T04	SLDS (General Area)-Perimeter Air
SLD187328	Building 101	04/26/16	Gross Alpha/Beta	Gross Alpha	6.31E-15	8.01E-15	1.15E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187328	Building 101	04/26/16	Gross Alpha/Beta	Gross Alpha	7.86E-15	8.59E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187328	Building 101	04/26/16	Gross Alpha/Beta	Gross Beta	2.31E-14	2.25E-14	3.38E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187328	Building 101	04/26/16	Gross Alpha/Beta	Gross Beta	6.40E-14	2.61E-14	3.38E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187329	Building 101	04/27/16	Gross Alpha/Beta	Gross Alpha	2.62E-15	9.31E-15	1.80E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187329	Building 101	04/27/16	Gross Alpha/Beta	Gross Beta	-6.62E-15	3.11E-14	5.30E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187330	Building 101	04/28/16	Gross Alpha/Beta	Gross Alpha	2.33E-15	4.86E-15	8.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187330	Building 101	04/28/16	Gross Alpha/Beta	Gross Beta	1.11E-14	1.58E-14	2.45E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187331	Building 101	05/02/16	Gross Alpha/Beta	Gross Alpha	6.64E-15	6.45E-15	8.13E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187331	Building 101	05/02/16	Gross Alpha/Beta	Gross Beta	3.01E-14	1.71E-14	2.39E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187332	Building 101	05/03/16	Gross Alpha/Beta	Gross Alpha	7.94E-15	7.00E-15	8.34E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187332	Building 101	05/03/16	Gross Alpha/Beta	Gross Beta	1.25E-14	1.59E-14	2.45E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187333	Building 101	05/04/16	Gross Alpha/Beta	Gross Alpha	5.87E-15	6.42E-15	8.61E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187333	Building 101	05/04/16	Gross Alpha/Beta	Gross Beta	2.02E-14	1.71E-14	2.53E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187334	Building 101	05/05/16	Gross Alpha/Beta	Gross Alpha	3.04E-15	4.71E-15	7.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187334	Building 101	05/05/16	Gross Alpha/Beta	Gross Beta	2.97E-14	1.57E-14	2.16E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187335	Building 101	05/09/16	Gross Alpha/Beta	Gross Alpha	2.89E-15	6.01E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187335	Building 101	05/09/16	Gross Alpha/Beta	Gross Beta	6.18E-14	2.38E-14	3.04E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187336	Building 101	05/10/16	Gross Alpha/Beta	Gross Alpha	-1.65E-15	1.41E-15	7.60E-15	μCi/mL			SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187336	Building 101	05/10/16	Gross Alpha/Beta	Gross Alpha	4.96E-15	5.58E-15	7.60E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187336	Building 101	05/10/16	Gross Alpha/Beta	Gross Beta	1.51E-15	1.52E-14	2.46E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187336	Building 101	05/10/16	Gross Alpha/Beta	Gross Beta	7.06E-15	1.57E-14	2.46E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187337	Building 101	05/11/16	Gross Alpha/Beta	Gross Alpha	5.87E-15	7.81E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187337	Building 101	05/11/16	Gross Alpha/Beta	Gross Beta	6.52E-15	2.35E-14	3.74E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187338	Building 101	05/16/16	Gross Alpha/Beta	Gross Alpha	3.90E-15	5.19E-15	7.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187338	Building 101	05/16/16	Gross Alpha/Beta	Gross Beta	1.98E-14	1.70E-14	2.49E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187339	Building 101	05/17/16	Gross Alpha/Beta	Gross Alpha	-1.54E-15	1.67E-15	3.61E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187339	Building 101	05/17/16	Gross Alpha/Beta	Gross Beta	-4.95E-14	9.48E-15	1.43E-14	μCi/mL	UJ	T06, T07	SLDS (General Area)-Perimeter Air
SLD187340	Building 101	05/18/16	Gross Alpha/Beta	Gross Alpha	5.45E-15	6.14E-15	8.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187340	Building 101	05/18/16	Gross Alpha/Beta	Gross Beta	2.07E-14	1.84E-14	2.70E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187341	Building 101	05/19/16	Gross Alpha/Beta	Gross Alpha	5.13E-15	5.78E-15	7.87E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187341	Building 101	05/19/16	Gross Alpha/Beta	Gross Beta	2.53E-14	1.79E-14	2.54E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187342	Building 101	05/23/16	Gross Alpha/Beta	Gross Alpha	9.21E-15	7.56E-15	8.47E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187342	Building 101	05/23/16	Gross Alpha/Beta	Gross Beta	3.58E-14	2.00E-14	2.74E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187343	Building 101	05/24/16	Gross Alpha/Beta	Gross Alpha	3.84E-15	5.11E-15	7.57E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187343	Building 101	05/24/16	Gross Alpha/Beta	Gross Beta	2.99E-14	1.76E-14	2.44E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187344	Building 101	05/25/16	Gross Alpha/Beta	Gross Alpha	-5.32E-16	2.53E-15	7.35E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187344	Building 101	05/25/16	Gross Alpha/Beta	Gross Beta	1.76E-14	1.61E-14	2.37E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187345	Building 101	05/31/16	Gross Alpha/Beta	Gross Alpha	1.58E-15	3.90E-15	7.28E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187345	Building 101	05/31/16	Gross Alpha/Beta	Gross Beta	3.47E-14	1.75E-14	2.35E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187346	Plant 7W	05/10/16	Gross Alpha/Beta	Gross Alpha	7.40E-15	1.82E-14	3.40E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187346	Plant 7W	05/10/16	Gross Alpha/Beta	Gross Beta	5.03E-14	7.20E-14	1.10E-13	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187347	Plant 7W	05/11/16	Gross Alpha/Beta	Gross Alpha	6.38E-16	3.96E-15	8.81E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187347	Plant 7W	05/11/16	Gross Alpha/Beta	Gross Beta	3.40E-14	2.05E-14	2.85E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187348	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Alpha	1.66E-15	4.08E-15	7.63E-15	μCi/mL	-		SLDS (General Area)-Perimeter Air
SLD187348	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Alpha	3.87E-15	5.15E-15	7.63E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187348	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Beta	9.88E-15	1.60E-14	2.47E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187348	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Beta	1.55E-14	1.65E-14	2.47E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187349	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Alpha	2.68E-15	4.51E-15	7.41E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187349	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Beta	1.30E-14	1.58E-14	2.39E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187350	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Alpha	1.55E-15	3.82E-15	7.14E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187350	Plant 6WH Loadout	05/10/16	Gross Alpha/Beta	Gross Beta	8.59E-15	1.49E-14	2.31E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187351	Plant 6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Alpha	1.54E-14	1.10E-14	1.12E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187351	Plant 6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Beta	4.11E-14	2.59E-14	3.62E-14	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187352	Plant 6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Alpha	-7.82E-16	3.71E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187352	Plant 6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Beta	3.67E-14	2.47E-14	3.49E-14	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187353	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Alpha	2.72E-15	4.57E-15	7.50E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187353	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Beta	2.69E-14	1.73E-14	2.42E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD187354	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Alpha	7.04E-15	6.30E-15	7.47E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187354	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Beta	3.84E-14	1.82E-14	2.41E-14	μCi/mL	=	101, 103	SLDS (General Area)-Perimeter Air
SLD187355	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Alpha	2.64E-15	4.44E-15	7.28E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187355	Plant 6WH Loadout	05/16/16	Gross Alpha/Beta	Gross Beta	2.81E-14	1.69E-14	2.35E-14	μCi/mL	ī	T04	SLDS (General Area)-Perimeter Air
SLD187356	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Alpha	2.67E-15	4.49E-15	7.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187356	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Beta	1.36E-14	1.58E-14	2.38E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187357	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Alpha	2.62E-15	4.40E-15	7.23E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187357 SLD187357	Plant 6WH Loadout	05/17/16	•	Gross Alpha Gross Beta	3.25E-14	1.72E-14	2.33E-14	_	T UJ	T04	SLDS (General Area)-Perimeter Air
SLD10/33/	Fiant own Loadout	03/17/10	Gross Alpha/Beta	Gioss Deta	3.43E-14	1./∠E-14	2.33E-14	μCi/mL	J	104	SLDS (General Area)-Perlineter Alf

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187358	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Alpha	1.65E-15	5.19E-15	8.87E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187358	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Alpha	1.65E-15	5.19E-15	8.87E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187358	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Beta	2.37E-14	1.22E-14	1.47E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187358	Plant 6WH Loadout	05/17/16	Gross Alpha/Beta	Gross Beta	2.44E-14	1.23E-14	1.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187359	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Alpha	-1.42E-15	4.19E-15	9.55E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187359	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Beta	2.28E-14	1.28E-14	1.58E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187360	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Alpha	1.75E-15	5.51E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187360	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Beta	1.78E-14	1.21E-14	1.56E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187361	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Alpha	1.72E-15	5.40E-15	9.24E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187361	Plant 6WH Loadout	05/18/16	Gross Alpha/Beta	Gross Beta	1.35E-14	1.14E-14	1.53E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187362	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Alpha	3.75E-15	6.09E-15	9.16E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187362	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Beta	1.99E-14	1.21E-14	1.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187363	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Alpha	-1.35E-15	3.98E-15	9.09E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187363	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Beta	2.37E-14	1.24E-14	1.50E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187364	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Alpha	2.65E-15	5.58E-15	8.91E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187364	Plant 6WH Loadout	05/19/16	Gross Alpha/Beta	Gross Beta	1.56E-14	1.13E-14	1.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187365	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Alpha	6.82E-15	7.06E-15	9.16E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187365	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Beta	4.16E-14	1.45E-14	1.52E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187366	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Alpha	4.73E-15	6.38E-15	9.09E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187366	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Beta	4.51E-14	1.48E-14	1.50E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187367	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Alpha	9.61E-15	7.69E-15	8.91E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187367	Plant 6WH Loadout	05/23/16	Gross Alpha/Beta	Gross Beta	4.29E-14	1.43E-14	1.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187368	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Alpha	4.08E-15	6.63E-15	9.97E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187368	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Alpha	7.42E-16	5.39E-15	9.97E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187368	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Beta	3.10E-14	1.42E-14	1.65E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187368	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Beta	2.95E-14	1.40E-14	1.65E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187369	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Alpha	6.02E-15	7.01E-15	9.51E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187369	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Beta	3.70E-14	1.44E-14	1.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187370	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Alpha	4.85E-15	6.53E-15	9.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187370	Plant 6WH Loadout	05/24/16	Gross Alpha/Beta	Gross Beta	4.69E-14	1.52E-14	1.54E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187371	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Alpha	1.77E-15	5.56E-15	9.51E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187371	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.27E-14	1.57E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187372	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Alpha	6.79E-16	4.93E-15	9.12E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187372	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Beta	2.12E-14	1.22E-14	1.51E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187373	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Alpha	2.61E-15	5.49E-15	8.77E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187373	Plant 6WH Loadout	05/25/16	Gross Alpha/Beta	Gross Beta	2.28E-14	1.20E-14	1.45E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187374	P6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Alpha	4.48E-15	5.82E-15	8.14E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187374	P6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Alpha	3.26E-15	5.28E-15	8.14E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187374	P6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Beta	2.50E-14	1.74E-14	2.66E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187374	P6WH Loadout	05/11/16	Gross Alpha/Beta	Gross Beta	2.96E-14	1.78E-14	2.66E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187375	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Alpha	5.72E-15	5.61E-15	6.73E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187375	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Beta	9.82E-15	1.33E-14	2.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187376	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Alpha	5.03E-15	5.58E-15	7.18E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187376	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Beta	3.16E-14	1.63E-14	2.35E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187377	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Alpha	5.86E-15	5.74E-15	6.89E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187377	P6WH Loadout	05/31/16	Gross Alpha/Beta	Gross Beta	3.36E-14	1.59E-14	2.26E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187378	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Alpha	6.90E-15	6.11E-15	6.89E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187378	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Beta	2.90E-14	1.55E-14	2.26E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187379	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Alpha	6.21E-15	6.09E-15	7.30E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187379	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Beta	2.03E-14	1.54E-14	2.39E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187380	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Alpha	1.77E-15	4.06E-15	7.06E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187380	P6WH Loadout	06/01/16	Gross Alpha/Beta	Gross Beta	2.30E-14	1.52E-14	2.31E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187381	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Alpha	6.81E-16	3.34E-15	6.81E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187381	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Beta	2.61E-14	1.51E-14	2.23E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187382	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Alpha	2.86E-15	4.64E-15	7.15E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187382	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Beta	2.80E-14	1.59E-14	2.34E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187383	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Alpha	1.76E-15	4.05E-15	7.03E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187383	P6WH Loadout	06/02/16	Gross Alpha/Beta	Gross Beta	1.76E-14	1.47E-14	2.30E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187384	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Alpha	1.62E-15	3.72E-15	6.47E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187384	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Beta	4.62E-14	1.63E-14	2.12E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187385	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Alpha	7.22E-15	6.39E-15	7.21E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187385	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Beta	3.78E-14	1.69E-14	2.36E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187386	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Alpha	6.53E-15	5.78E-15	6.52E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187386	P6WH Loadout	06/06/16	Gross Alpha/Beta	Gross Beta	3.79E-14	1.56E-14	2.14E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD187387	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Alpha	-3.26E-16	2.53E-15	6.52E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187387	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Beta	1.14E-14	1.31E-14	2.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187388	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Alpha	2.61E-16	5.39E-15	1.06E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187388	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Alpha	2.35E-15	6.14E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187388	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Beta	7.75E-15	1.28E-14	1.66E-14	μCi/mL		100	SLDS (General Area)-Perimeter Air
SLD187388	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Beta	-5.63E-15	1.13E-14	1.66E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187389	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Alpha	2.50E-16	5.15E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187389	P6WH Loadout	06/07/16	Gross Alpha/Beta	Gross Beta	8.05E-15	1.23E-14	1.58E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187390	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Alpha	-7.31E-16	4.64E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187390	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Beta	1.91E-14	1.32E-14	1.55E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD187391	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Alpha	-7.99E-16	5.07E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187391	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Beta	2.09E-14	1.44E-14	1.69E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD187392	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Alpha	2.55E-16	5.26E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187392	P6WH Loadout	06/08/16	Gross Alpha/Beta	Gross Beta	1.02E-14	1.28E-14	1.61E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187393	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Alpha	1.20E-15	5.29E-15	9.73E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187393	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Beta	2.43E-14	1.35E-14	1.52E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD187394	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Alpha	4.53E-15	6.97E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187394	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Beta	2.16E-14	1.45E-14	1.69E-14	μCi/mL	I	T04	SLDS (General Area)-Perimeter Air
SLD187395	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Alpha	8.24E-15	7.66E-15	1.02E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187395	P6WH Loadout	06/09/16	Gross Alpha/Beta	Gross Beta	3.62E-14	1.52E-14	1.58E-14	μCi/mL	=	104, 103	SLDS (General Area)-Perimeter Air
SLD187396	P6WH Loadout	06/13/16	Gross Alpha/Beta	Gross Alpha	7.10E-15	7.25E-15	9.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187396	P6WH Loadout	06/13/16	Gross Alpha/Beta	Gross Beta	3.30E-14	1.46E-14	1.55E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD187397	P6WH Loadout	06/13/16	Gross Alpha/Beta	Gross Alpha	-7.96E-16	5.05E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187397 SLD187397	P6WH Loadout	06/13/16		Gross Beta	4.60E-14	1.68E-14	1.68E-14	μCi/mL	=	100	,
SLD187397 SLD187398	P6WH Loadout	06/13/16	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	6.29E-15	7.17E-15	1.08E-14 1.02E-14	μCi/mL	 UJ	T06	SLDS (General Area)-Perimeter Air SLDS (General Area)-Perimeter Air
SLD187398 SLD187398	P6WH Loadout		•		6.29E-15 4.68E-14					100	
		06/13/16	Gross Alpha/Beta	Gross Beta		1.63E-14	1.60E-14	μCi/mL	=	+ +	SLDS (General Area) Perimeter Air
SLD187399	Building 101	06/01/16	Gross Alpha/Beta	Gross Alpha	5.62E-15	6.23E-15	8.02E-15	μCi/mL	TTT	TOC	SLDS (General Area) Perimeter Air
SLD187399	Building 101	06/01/16	Gross Alpha/Beta	Gross Alpha	2.01E-15	4.62E-15	8.02E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD187399	Building 101	06/01/16	Gross Alpha/Beta	Gross Beta	1.93E-14	1.67E-14	2.63E-14	μCi/mL		+	SLDS (General Area)-Perimeter Air
SLD187399	Building 101	06/01/16	Gross Alpha/Beta	Gross Beta	3.76E-14	1.84E-14	2.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD187400	Building 101	06/02/16	Gross Alpha/Beta	Gross Alpha	5.42E-15	6.01E-15	7.73E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187400	Building 101	06/02/16	Gross Alpha/Beta	Gross Beta	1.13E-14	1.53E-14	2.53E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187401	Building 101	06/06/16	Gross Alpha/Beta	Gross Alpha	7.74E-15	6.86E-15	7.73E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187401	Building 101	06/06/16	Gross Alpha/Beta	Gross Beta	1.06E-14	1.53E-14	2.53E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187402	Building 101	06/07/16	Gross Alpha/Beta	Gross Alpha	6.32E-15	6.19E-15	7.43E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187402	Building 101	06/07/16	Gross Alpha/Beta	Gross Beta	1.51E-14	1.51E-14	2.43E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187403	Building 101	06/08/16	Gross Alpha/Beta	Gross Alpha	4.34E-15	5.64E-15	7.87E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187403	Building 101	06/08/16	Gross Alpha/Beta	Gross Beta	2.94E-14	1.73E-14	2.58E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187404	Building 101	06/09/16	Gross Alpha/Beta	Gross Alpha	5.76E-15	6.38E-15	8.21E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187404	Building 101	06/09/16	Gross Alpha/Beta	Gross Beta	2.76E-14	1.78E-14	2.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187405	Building 101	06/13/16	Gross Alpha/Beta	Gross Alpha	7.46E-15	7.30E-15	8.76E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD187405	Building 101	06/13/16	Gross Alpha/Beta	Gross Beta	2.94E-14	1.90E-14	2.87E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187406	Building 101	06/14/16	Gross Alpha/Beta	Gross Alpha	-2.96E-16	4.34E-15	9.27E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187406	Building 101	06/14/16	Gross Alpha/Beta	Gross Alpha	1.15E-14	8.68E-15	9.27E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD187406	Building 101	06/14/16	Gross Alpha/Beta	Gross Beta	2.31E-14	2.13E-14	2.63E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD187406	Building 101	06/14/16	Gross Alpha/Beta	Gross Beta	2.09E-14	2.11E-14	2.63E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187407	Building 101	06/15/16	Gross Alpha/Beta	Gross Alpha	-1.54E-15	3.79E-15	9.67E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD187407	Building 101	06/15/16	Gross Alpha/Beta	Gross Beta	2.57E-14	2.23E-14	2.74E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191745	Building 101	06/16/16	Gross Alpha/Beta	Gross Alpha	3.21E-15	5.89E-15	9.15E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191745	Building 101	06/16/16	Gross Alpha/Beta	Gross Beta	3.53E-14	2.20E-14	2.59E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191746	Building 101	06/20/16	Gross Alpha/Beta	Gross Alpha	2.09E-15	5.53E-15	9.36E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191746	Building 101	06/20/16	Gross Alpha/Beta	Gross Beta	3.31E-14	2.22E-14	2.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191747	Building 101	06/21/16	Gross Alpha/Beta	Gross Alpha	3.03E-15	5.56E-15	8.64E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191747	Building 101	06/21/16	Gross Alpha/Beta	Gross Beta	2.01E-14	1.97E-14	2.44E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191748	Building 101	06/22/16	Gross Alpha/Beta	Gross Alpha	8.92E-15	7.78E-15	9.02E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191748	Building 101	06/22/16	Gross Alpha/Beta	Gross Beta	1.45E-14	2.01E-14	2.55E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191749	Building 101	06/23/16	Gross Alpha/Beta	Gross Alpha	5.72E-15	6.98E-15	9.45E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191749	Building 101	06/23/16	Gross Alpha/Beta	Gross Beta	4.33E-14	2.32E-14	2.67E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191750	Building 101	06/27/16	Gross Alpha/Beta	Gross Alpha	8.26E-16	4.60E-15	8.64E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191750	Building 101	06/27/16	Gross Alpha/Beta	Gross Beta	2.22E-14	1.99E-14	2.44E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191751	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Alpha	2.73E-15	6.24E-15	1.01E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191751	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Alpha	6.82E-16	5.52E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191751	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Beta	2.26E-14	1.22E-14	1.61E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191751	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Beta	2.32E-14	1.23E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191752	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Alpha	6.40E-16	5.19E-15	9.44E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191752	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Beta	1.69E-14	1.09E-14	1.51E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191753	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Alpha	2.54E-15	5.81E-15	9.37E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191753	P6WH Loadout	06/14/16	Gross Alpha/Beta	Gross Beta	1.92E-14	1.12E-14	1.50E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191754	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Alpha	3.83E-15	6.70E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191754	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Beta	3.37E-14	1.37E-14	1.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191755	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Alpha	-3.42E-16	5.15E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191755	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Beta	2.26E-14	1.22E-14	1.61E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191756	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Alpha	5.53E-15	6.85E-15	9.59E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191756	P6WH Loadout	06/15/16	Gross Alpha/Beta	Gross Beta	2.71E-14	1.23E-14	1.53E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191757	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Alpha	3.94E-15	6.90E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191757	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Beta	2.58E-14	1.31E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191758	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Alpha	2.82E-15	6.45E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191758	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Beta	4.09E-14	1.46E-14	1.66E-14	μCi/mL	П		SLDS (General Area)-Perimeter Air
SLD191759	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Alpha	7.20E-16	5.83E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191759	P6WH Loadout	06/16/16	Gross Alpha/Beta	Gross Beta	4.11E-14	1.48E-14	1.70E-14	μCi/mL	Ш		SLDS (General Area)-Perimeter Air
SLD191760	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Alpha	-3.61E-16	5.44E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191760	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Beta	2.32E-14	1.29E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191761	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Alpha	7.36E-16	5.96E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191761	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Beta	3.92E-14	1.48E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191762	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Alpha	8.94E-15	8.09E-15	1.01E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191762	P6WH Loadout	06/20/16	Gross Alpha/Beta	Gross Beta	2.87E-14	1.30E-14	1.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191763	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Alpha	1.80E-15	6.22E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191763	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Beta	2.38E-14	1.29E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191764	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Alpha	3.83E-15	6.70E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191764	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Beta	2.90E-14	1.31E-14	1.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191765	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Alpha	-2.55E-15	2.65E-15	8.90E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191765	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Alpha	1.99E-15	5.26E-15	8.90E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191765	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Beta	1.86E-14	2.02E-14	2.52E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191765	P6WH Loadout	06/21/16	Gross Alpha/Beta	Gross Beta	3.01E-14	2.10E-14	2.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191766	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Alpha	-2.73E-16	4.00E-15	8.56E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191766	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Beta	2.07E-14	1.96E-14	2.42E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191767	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Alpha	3.03E-15	5.56E-15	8.64E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191767	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Beta	3.40E-14	2.08E-14	2.44E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191768	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Alpha	7.79E-16	4.34E-15	8.15E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191768	P6WH Loadout	06/22/16	Gross Alpha/Beta	Gross Beta	3.21E-14	1.96E-14	2.31E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191769	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Alpha	5.04E-15	6.14E-15	8.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191769	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Beta	1.54E-14	1.87E-14	2.35E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191770	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Alpha	4.01E-15	5.81E-15	8.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191770	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Beta	3.64E-14	2.04E-14	2.37E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191771	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Alpha	4.71E-15	5.74E-15	7.77E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191771	P6WH Loadout	06/23/16	Gross Alpha/Beta	Gross Beta	4.31E-14	1.96E-14	2.20E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191772	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Alpha	2.94E-15	5.40E-15	8.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191772	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Beta	3.37E-14	2.02E-14	2.37E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191773	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Alpha	2.94E-15	5.40E-15	8.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191773	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Beta	2.83E-14	1.98E-14	2.37E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191774	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Alpha	2.80E-15	5.14E-15	7.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191774	P6WH Loadout	06/27/16	Gross Alpha/Beta	Gross Beta	1.86E-14	1.82E-14	2.26E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191775	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Alpha	5.77E-15	5.86E-15	7.71E-15	μCi/mL		10., 100	SLDS (General Area)-Perimeter Air
SLD191775	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Alpha	4.69E-15	5.44E-15	7.71E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191775	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Beta	2.48E-14	1.62E-14	2.34E-14	μCi/mL		100	SLDS (General Area)-Perimeter Air
SLD191775	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Beta	1.46E-14	1.53E-14	2.34E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191776	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Alpha	4.81E-15	5.58E-15	7.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191776	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Beta	2.76E-14	1.68E-14	2.40E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191777	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Alpha	5.50E-15	5.58E-15	7.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191777	Plant 6WH Loadout	06/28/16	Gross Alpha/Beta	Gross Beta	3.14E-14	1.62E-14	2.22E-14	μCi/mL	ī	T04	SLDS (General Area)-Perimeter Air
SLD191777	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Alpha	1.41E-15	3.85E-15	7.56E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191778	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Beta	1.69E-14	1.52E-14	2.29E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191778 SLD191779	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Alpha	1.09E-14 1.48E-15	4.03E-15	7.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191779 SLD191779	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Beta	2.83E-14	1.69E-14	2.40E-14	μCi/mL	I OJ	T04	SLDS (General Area)-Perimeter Air
SLD131//3	riani own Loadout	00/29/10	Gross Aipiia/Deta	Gioss Deta	2.03E-14	1.09E-14	∠.40E-14	μCI/IIIL	J	104	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191780	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Alpha	5.50E-15	5.58E-15	7.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191780	Plant 6WH Loadout	06/29/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.53E-14	2.22E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191781	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Alpha	3.17E-14	1.74E-14	1.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191781	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Beta	3.48E-13	5.57E-14	4.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191782	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Alpha	2.83E-14	1.61E-14	1.41E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191782	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Beta	3.10E-13	5.15E-14	4.26E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191783	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Alpha	1.10E-14	1.12E-14	1.47E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191783	Plant 6WH Loadout	06/30/16	Gross Alpha/Beta	Gross Beta	2.39E-14	2.88E-14	4.47E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191784	Building 101	06/28/16	Gross Alpha/Beta	Gross Alpha	4.02E-15	7.14E-15	1.23E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191784	Building 101	06/28/16	Gross Alpha/Beta	Gross Beta	7.97E-14	2.94E-14	3.72E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191785	Plant 7W	06/28/16	Gross Alpha/Beta	Gross Alpha	1.30E-14	1.79E-14	2.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191785	Plant 7W	06/28/16	Gross Alpha/Beta	Gross Beta	4.01E-14	5.37E-14	8.39E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191786	Building 101	06/29/16	Gross Alpha/Beta	Gross Alpha	-1.09E-15	1.51E-15	2.90E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191786	Building 101	06/29/16	Gross Alpha/Beta	Gross Beta	-4.79E-14	7.69E-15	1.12E-14	μCi/mL	UJ	T06, T07	SLDS (General Area)-Perimeter Air
SLD191787	Plant 7W	06/30/16	Gross Alpha/Beta	Gross Alpha	2.95E-15	2.68E-14	6.31E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191787	Plant 7W	06/30/16	Gross Alpha/Beta	Gross Beta	2.75E-13	1.39E-13	1.91E-13	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191788	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Alpha	1.28E-15	4.35E-15	8.05E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191788	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Alpha	5.66E-15	6.19E-15	8.05E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191788	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Beta	2.73E-14	1.91E-14	2.52E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191788	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Beta	2.10E-14	1.86E-14	2.52E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191789	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Alpha	5.26E-15	5.74E-15	7.48E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191789	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Beta	2.60E-14	1.78E-14	2.34E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191790	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Alpha	3.36E-15	5.17E-15	7.78E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191790	P6WH Loadout	07/05/16	Gross Alpha/Beta	Gross Beta	1.50E-14	1.76E-14	2.43E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191791	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Alpha	5.84E-15	9.00E-15	1.36E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191791	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Beta	2.03E-14	3.01E-14	4.23E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191792	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Alpha	9.02E-15	9.85E-15	1.28E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191792	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Beta	2.36E-14	2.88E-14	4.00E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191793	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Alpha	2.14E-15	7.26E-15	1.35E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191793	P6WH Loadout	07/06/16	Gross Alpha/Beta	Gross Beta	-4.14E-15	2.79E-14	4.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191794	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Alpha	6.22E-15	7.86E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191794	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Beta	1.92E-14	2.46E-14	3.42E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191795	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Alpha	8.94E-15	8.68E-15	1.06E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191795	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Beta	2.05E-14	2.40E-14	3.32E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191796	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Alpha	3.81E-15	7.80E-15	1.29E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191796	P6WH Loadout	07/07/16	Gross Alpha/Beta	Gross Beta	1.71E-14	2.85E-14	4.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191797	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Alpha	1.81E-16	3.72E-15	7.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191797	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Beta	2.34E-15	1.70E-14	2.49E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191798	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Alpha	5.39E-15	5.88E-15	7.66E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191798	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Beta	2.33E-14	1.80E-14	2.39E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191799	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Alpha	3.36E-15	5.17E-15	7.78E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191799	P6WH Loadout	07/11/16	Gross Alpha/Beta	Gross Beta	3.24E-14	1.90E-14	2.43E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191800	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Alpha	1.21E-15	4.12E-15	7.63E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191800	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Beta	1.93E-14	1.76E-14	2.38E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191801	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Alpha	4.36E-15	5.52E-15	7.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191801	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Beta	3.86E-14	1.92E-14	2.40E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191802	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Alpha	3.29E-16	5.22E-15	9.97E-15	μCi/mL		+ +	SLDS (General Area)-Perimeter Air
500171002	1 0 11 11 Loudout	07/12/10	Gross rupila beta	Gross mpna	J.2/11 10	J.22D 1J	7.711110	μCI/IIIL		1	SEES (Conciui incu) i cinnecci All

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191802	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Alpha	1.32E-15	5.58E-15	9.97E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191802	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Beta	1.08E-14	1.14E-14	1.56E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191802	P6WH Loadout	07/12/16	Gross Alpha/Beta	Gross Beta	2.47E-14	1.30E-14	1.56E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191803	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Alpha	5.34E-15	8.19E-15	1.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191803	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Beta	3.17E-14	1.63E-14	1.94E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191804	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Alpha	-1.56E-15	4.18E-15	9.45E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191804	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Beta	4.02E-14	1.40E-14	1.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191805	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Alpha	3.44E-15	6.52E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191805	P6WH Loadout	07/13/16	Gross Alpha/Beta	Gross Beta	5.82E-14	1.68E-14	1.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191806	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Alpha	-7.32E-16	5.38E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191806	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Beta	1.70E-14	1.33E-14	1.73E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191807	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Alpha	3.44E-15	6.52E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191807	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Beta	3.04E-14	1.40E-14	1.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191808	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Alpha	3.63E-16	5.76E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191808	P6WH Loadout	07/14/16	Gross Alpha/Beta	Gross Beta	1.61E-14	1.31E-14	1.72E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191809	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Alpha	6.75E-15	7.70E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191809	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Beta	3.56E-14	1.49E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191810	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Alpha	4.41E-15	6.76E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191810	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Beta	3.79E-14	1.47E-14	1.61E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191811	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Alpha	3.51E-16	5.57E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191811	P6WH Loadout	07/18/16	Gross Alpha/Beta	Gross Beta	3.45E-14	1.47E-14	1.66E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191812	Building 101	07/05/16	Gross Alpha/Beta	Gross Alpha	2.54E-15	6.54E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191812	Building 101	07/05/16	Gross Alpha/Beta	Gross Beta	3.22E-14	1.48E-14	1.72E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191813	Building 101	07/12/16	Gross Alpha/Beta	Gross Alpha	3.17E-15	8.16E-15	1.37E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191813	Building 101	07/12/16	Gross Alpha/Beta	Gross Beta	1.31E-14	1.56E-14	2.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191814	Plant 7W	07/06/16	Gross Alpha/Beta	Gross Alpha	2.97E-15	1.26E-14	2.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191814	Plant 7W	07/06/16	Gross Alpha/Beta	Gross Beta	1.58E-14	2.48E-14	3.51E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191815	Plant 7W	07/11/16	Gross Alpha/Beta	Gross Alpha	6.67E-15	7.60E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191815	Plant 7W	07/11/16	Gross Alpha/Beta	Gross Beta	3.38E-14	1.46E-14	1.66E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191816	Plant 7W	07/13/16	Gross Alpha/Beta	Gross Alpha	1.79E-15	7.61E-15	1.36E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191816	Plant 7W	07/13/16	Gross Alpha/Beta	Gross Beta	1.65E-14	1.58E-14	2.12E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191817	Plant 7W	07/14/16	Gross Alpha/Beta	Gross Alpha	-2.96E-15	4.44E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191817	Plant 7W	07/14/16	Gross Alpha/Beta	Gross Beta	1.85E-14	1.36E-14	1.75E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD191818	Plant 7W	07/18/16	Gross Alpha/Beta	Gross Alpha	3.68E-15	6.98E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191818	Plant 7W	07/18/16	Gross Alpha/Beta	Gross Beta	4.53E-14	1.63E-14	1.74E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191819	P6WH Loadout	07/19/16	Gross Alpha/Beta	Gross Alpha	6.14E-15	6.54E-15	8.76E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191819	P6WH Loadout	07/19/16	Gross Alpha/Beta	Gross Alpha	7.46E-15	7.05E-15	8.76E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191819	P6WH Loadout	07/19/16	Gross Alpha/Beta	Gross Beta	2.84E-14	2.07E-14	3.03E-14	μCi/mL	U	104, 103	SLDS (General Area)-Perimeter Air
SLD191819	P6WH Loadout	07/19/16	Gross Alpha/Beta	Gross Beta	3.34E-14	2.11E-14	3.03E-14 3.03E-14	μCi/mL	ī	T04	SLDS (General Area)-Perimeter Air
SLD191819 SLD191820	P6WH Loadout	07/19/16	Gross Alpha/Beta	Gross Alpha	6.08E-15	6.47E-15	8.67E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191820	P6WH Loadout	07/19/16	•	Gross Beta	2.73E-14	2.04E-14	3.00E-14	μCi/mL	U	T04, T05	,
SLD191820 SLD191821	P6WH Loadout	07/19/16	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	2.73E-14 2.04E-15	4.34E-15	8.14E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air SLDS (General Area)-Perimeter Air
	P6WH Loadout		•	*	2.04E-15 3.80E-14	2.02E-14	2.82E-14		UJ T		
SLD191821		07/19/16	Gross Alpha/Beta	Gross Alpha				μCi/mL	J	T04	SLDS (General Area) Perimeter Air
SLD191822	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Alpha	3.01E-15	4.61E-15	7.53E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD191822	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Beta	1.44E-14	1.69E-14	2.61E-14	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD191823	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Alpha	7.40E-15	6.36E-15	7.40E-15	μCi/mL	J	T04	SLDS (General Area) Perimeter Air
SLD191823	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Beta	1.21E-14	1.64E-14	2.56E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191824	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Alpha	1.79E-15	3.81E-15	7.15E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191824	P6WH Loadout	07/20/16	Gross Alpha/Beta	Gross Beta	1.30E-14	1.60E-14	2.48E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191825	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Alpha	4.11E-15	5.09E-15	7.46E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191825	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Beta	1.93E-14	1.72E-14	2.58E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191826	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Alpha	1.85E-15	3.94E-15	7.40E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191826	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Beta	2.68E-14	1.77E-14	2.56E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191827	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Alpha	1.78E-15	3.80E-15	7.12E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191827	P6WH Loadout	07/21/16	Gross Alpha/Beta	Gross Beta	3.19E-14	1.76E-14	2.47E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191828	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Alpha	6.27E-15	5.93E-15	7.37E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191828	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Beta	2.53E-14	1.75E-14	2.55E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191829	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Alpha	2.91E-15	4.45E-15	7.27E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191829	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Beta	3.62E-15	1.54E-14	2.52E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191830	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Alpha	3.78E-15	4.68E-15	6.86E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191830	P6WH Loadout	07/25/16	Gross Alpha/Beta	Gross Beta	2.68E-14	1.66E-14	2.38E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191831	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Alpha	5.12E-15	5.45E-15	7.30E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191831	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Beta	3.68E-14	1.84E-14	2.53E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191832	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Alpha	5.07E-15	5.40E-15	7.24E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191832	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Beta	3.79E-14	1.83E-14	2.51E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191833	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Alpha	-2.40E-15	4.21E-15	9.85E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191833	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Alpha	5.80E-16	5.44E-15	9.85E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191833	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Beta	1.40E-14	1.17E-14	1.59E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191833	P6WH Loadout	07/26/16	Gross Alpha/Beta	Gross Beta	2.54E-14	1.30E-14	1.59E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191834	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Alpha	-1.50E-15	4.97E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191834	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Beta	1.83E-14	1.29E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191835	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Alpha	2.77E-15	6.59E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191835	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Beta	2.74E-14	1.40E-14	1.71E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191836	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Alpha	4.51E-15	8.15E-15	1.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191836	P6WH Loadout	07/27/16	Gross Alpha/Beta	Gross Beta	2.41E-14	1.56E-14	2.01E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191837	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Alpha	7.05E-15	7.87E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191837	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Beta	3.63E-14	1.49E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191838	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Alpha	7.39E-15	9.37E-15	1.31E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191838	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Beta	4.66E-14	1.87E-14	2.11E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191839	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Alpha	-4.31E-16	5.27E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191839	P6WH Loadout	07/28/16	Gross Alpha/Beta	Gross Beta	2.78E-14	1.37E-14	1.65E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191840	Building 101	07/19/16	Gross Alpha/Beta	Gross Alpha	-2.72E-15	8.99E-15	1.90E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191840	Building 101	07/19/16	Gross Alpha/Beta	Gross Beta	3.93E-14	2.40E-14	3.07E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191841	Building 101	07/21/16	Gross Alpha/Beta	Gross Alpha	6.67E-16	6.25E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191841	Building 101	07/21/16	Gross Alpha/Beta	Gross Beta	2.27E-14	1.42E-14	1.83E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191842	Building 101	07/25/16	Gross Alpha/Beta	Gross Alpha	7.65E-15	1.82E-14	2.93E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191842	Building 101	07/25/16	Gross Alpha/Beta	Gross Beta	9.32E-15	3.11E-14	4.73E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191843	Building 101	07/26/16	Gross Alpha/Beta	Gross Alpha	7.17E-15	8.01E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191843	Building 101	07/26/16	Gross Alpha/Beta	Gross Beta	6.55E-14	1.80E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191844	Building 101	07/27/16	Gross Alpha/Beta	Gross Alpha	1.77E-15	6.51E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191844	Building 101	07/27/16	Gross Alpha/Beta	Gross Beta	2.43E-14	1.42E-14	1.79E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191845	Building 101	07/28/16	Gross Alpha/Beta	Gross Alpha	-6.28E-16	7.66E-15	1.49E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191845	Building 101	07/28/16	Gross Alpha/Beta	Gross Beta	2.31E-14	1.80E-14	2.41E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191846	Plant 7W	07/19/16	Gross Alpha/Beta	Gross Alpha	9.44E-15	9.50E-15	1.23E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191846	Plant 7W	07/19/16	Gross Alpha/Beta	Gross Beta	2.23E-14	1.52E-14	1.99E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191847	Plant 7W	07/20/16	Gross Alpha/Beta	Gross Alpha	3.69E-15	8.80E-15	1.42E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191847	Plant 7W	07/20/16	Gross Alpha/Beta	Gross Beta	1.18E-14	1.59E-14	2.28E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191848	Plant 7W	07/21/16	Gross Alpha/Beta	Gross Alpha	8.19E-15	1.48E-14	2.27E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191848	Plant 7W	07/21/16	Gross Alpha/Beta	Gross Beta	1.45E-14	2.49E-14	3.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191849	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Alpha	1.71E-15	4.92E-15	8.66E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191849	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Alpha	6.29E-16	4.43E-15	8.66E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191849	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Beta	2.78E-14	1.96E-14	2.43E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191849	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Beta	1.97E-14	1.90E-14	2.43E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191850	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Alpha	1.58E-15	4.56E-15	8.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191850	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Beta	2.77E-14	1.83E-14	2.25E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191851	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Alpha	6.01E-16	4.23E-15	8.27E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191851	P6WH Loadout	08/01/16	Gross Alpha/Beta	Gross Beta	3.37E-14	1.93E-14	2.32E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191852	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Alpha	8.46E-15	7.49E-15	8.96E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191852	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Beta	2.60E-14	2.00E-14	2.52E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191853	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Alpha	4.84E-15	6.06E-15	8.48E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191853	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Beta	2.59E-14	1.91E-14	2.38E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191854	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Alpha	1.71E-15	4.92E-15	8.66E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191854	P6WH Loadout	08/02/16	Gross Alpha/Beta	Gross Beta	2.44E-14	1.93E-14	2.43E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191855	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Alpha	6.40E-16	4.50E-15	8.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191855	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Beta	2.00E-14	1.93E-14	2.47E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191856	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Alpha	2.64E-15	5.10E-15	8.21E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191856	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Beta	1.93E-14	1.80E-14	2.31E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191857	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Alpha	1.72E-15	4.97E-15	8.73E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191857	P6WH Loadout	08/03/16	Gross Alpha/Beta	Gross Beta	2.12E-14	1.92E-14	2.45E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191858	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Alpha	2.32E-14	1.12E-14	9.03E-15	μCi/mL	=	101, 100	SLDS (General Area)-Perimeter Air
SLD191858	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Beta	4.54E-14	2.17E-14	2.54E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191859	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Alpha	8.11E-15	7.18E-15	8.58E-15	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191859	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Beta	3.57E-14	2.00E-14	2.41E-14	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD191860	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Alpha	1.36E-14	8.73E-15	8.66E-15	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD191860	P6WH Loadout	08/04/16	Gross Alpha/Beta	Gross Beta	3.73E-14	2.03E-14	2.43E-14	μCi/mL	1	T04	SLDS (General Area)-Perimeter Air
SLD191861	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Alpha	1.81E-15	5.23E-15	9.20E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191861	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Beta	4.28E-15	1.89E-14	2.58E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191862	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Alpha	9.83E-15	7.49E-15	8.24E-15	μCi/mL	ı	T04	SLDS (General Area)-Perimeter Air
SLD191862	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Beta	4.46E-14	2.00E-14	2.31E-14	μCi/mL	=	104	SLDS (General Area)-Perimeter Air
SLD191863	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Alpha	5.99E-15	6.53E-15	8.62E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191863	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Alpha	1.70E-15	4.90E-15	8.62E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191863	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Beta	3.45E-14	2.00E-14	2.42E-14	μCi/mL	03	100	SLDS (General Area)-Perimeter Air
SLD191863	P6WH Loadout	08/08/16	Gross Alpha/Beta	Gross Beta	3.18E-14	1.98E-14	2.42E-14 2.42E-14	μCi/mL	ī	T04	SLDS (General Area)-Perimeter Air
SLD191864	P6WH Loadout	08/09/16	Gross Alpha/Beta	Gross Alpha	5.07E-15	6.35E-15	8.88E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191864 SLD191864	P6WH Loadout	08/09/16	Gross Alpha/Beta	Gross Beta	2.72E-14	2.00E-14	2.49E-14	μCi/mL	T UJ	T04	SLDS (General Area)-Perimeter Air
SLD191865	P6WH Loadout	08/09/16	Gross Alpha/Beta	Gross Alpha	5.89E-15	6.42E-15	8.48E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191865	P6WH Loadout	08/09/16	•	-	3.89E-13 4.86E-14	2.08E-14	2.38E-14	•		100	SLDS (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Beta				μCi/mL	=	TOE	
SLD191866	P6WH Loadout	08/09/16	Gross Alpha/Beta	Gross Alpha	4.03E-15	6.05E-15	9.03E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD191866	P6WH Loadout	08/09/16	Gross Alpha/Beta	Gross Beta	4.61E-14	2.17E-14	2.54E-14	μCi/mL	=	TOC	SLDS (General Area) Perimeter Air
SLD191867	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Alpha	6.45E-16	4.54E-15	8.88E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD191867	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Beta	4.88E-14	2.16E-14	2.49E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191868	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Alpha	4.82E-15	6.04E-15	8.44E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191868	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Beta	2.85E-14	1.92E-14	2.37E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191869	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Alpha	7.25E-15	6.40E-15	7.70E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191869	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Alpha	3.90E-15	5.09E-15	7.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191869	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Beta	4.33E-14	1.94E-14	2.62E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191869	P6WH Loadout	08/10/16	Gross Alpha/Beta	Gross Beta	5.39E-14	2.03E-14	2.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191870	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Alpha	-5.41E-16	2.36E-15	7.47E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191870	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Beta	2.57E-14	1.74E-14	2.54E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191871	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Alpha	7.79E-15	6.32E-15	7.17E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191871	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Beta	3.31E-14	1.75E-14	2.44E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191872	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Alpha	8.90E-15	6.71E-15	7.23E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191872	P6WH Loadout	08/11/16	Gross Alpha/Beta	Gross Beta	3.14E-14	1.74E-14	2.46E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191873	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Alpha	8.02E-15	6.50E-15	7.38E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191873	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Beta	3.82E-14	1.83E-14	2.51E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191874	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Alpha	3.59E-15	4.68E-15	7.08E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191874	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Beta	4.44E-14	1.82E-14	2.41E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191875	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Alpha	1.03E-14	7.31E-15	7.50E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191875	P6WH Loadout	08/16/16	Gross Alpha/Beta	Gross Beta	3.54E-14	1.83E-14	2.55E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191876	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Alpha	8.29E-15	6.73E-15	7.63E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191876	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Beta	1.79E-14	1.71E-14	2.59E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191877	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Alpha	8.90E-15	6.71E-15	7.23E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191877	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Beta	2.28E-14	1.67E-14	2.46E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191878	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Alpha	1.04E-14	7.37E-15	7.57E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191878	P6WH Loadout	08/17/16	Gross Alpha/Beta	Gross Beta	4.05E-14	1.89E-14	2.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191879	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.63E-15	7.50E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191879	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Beta	2.10E-14	1.71E-14	2.55E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191880	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Alpha	2.60E-15	4.25E-15	7.17E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191880	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Beta	2.14E-14	1.65E-14	2.44E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191881	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Alpha	9.44E-15	7.12E-15	7.66E-15	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191881	P6WH Loadout	08/18/16	Gross Alpha/Beta	Gross Beta	1.93E-14	1.73E-14	2.61E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191882	Building 101	08/01/16	Gross Alpha/Beta	Gross Alpha	-3.38E-15	2.79E-15	1.08E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191882	Building 101	08/01/16	Gross Alpha/Beta	Gross Alpha	6.77E-15	7.33E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191882	Building 101	08/01/16	Gross Alpha/Beta	Gross Beta	9.34E-15	1.15E-14	1.74E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191882	Building 101	08/01/16	Gross Alpha/Beta	Gross Beta	1.44E-14	1.22E-14	1.74E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191883	Building 101	08/02/16	Gross Alpha/Beta	Gross Alpha	9.87E-15	8.75E-15	1.18E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191883	Building 101	08/02/16	Gross Alpha/Beta	Gross Beta	2.36E-14	1.43E-14	1.91E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191884	Building 101	08/03/16	Gross Alpha/Beta	Gross Alpha	0	4.71E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191884	Building 101	08/03/16	Gross Alpha/Beta	Gross Beta	1.84E-14	1.25E-14	1.71E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191885	Building 101	08/04/16	Gross Alpha/Beta	Gross Alpha	0	4.86E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191885	Building 101	08/04/16	Gross Alpha/Beta	Gross Beta	2.56E-14	1.36E-14	1.77E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191886	Building 101	08/08/16	Gross Alpha/Beta	Gross Alpha	7.49E-15	7.28E-15	1.02E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191886	Building 101	08/08/16	Gross Alpha/Beta	Gross Beta	2.60E-14	1.30E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191887	Building 101	08/09/16	Gross Alpha/Beta	Gross Alpha	2.18E-15	5.56E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191887	Building 101	08/09/16	Gross Alpha/Beta	Gross Beta	3.76E-14	1.45E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191888	Building 101	08/10/16	Gross Alpha/Beta	Gross Alpha	7.22E-15	7.82E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191888	Building 101	08/10/16	Gross Alpha/Beta	Gross Beta	4.62E-14	1.65E-14	1.86E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191889	Building 101	08/11/16	Gross Alpha/Beta	Gross Alpha	5.52E-15	6.82E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191889	Building 101	08/11/16	Gross Alpha/Beta	Gross Beta	2.33E-14	1.30E-14	1.70E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191890	Plant 7W	08/10/16	Gross Alpha/Beta	Gross Alpha	1.76E-14	1.90E-14	2.80E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191890	Plant 7W	08/10/16	Gross Alpha/Beta	Gross Beta	3.73E-14	3.15E-14	4.52E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191891	Plant 7W	08/17/16	Gross Alpha/Beta	Gross Alpha	4.52E-15	8.27E-15	1.44E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191891	Plant 7W	08/17/16	Gross Alpha/Beta	Gross Beta	3.76E-14	1.84E-14	2.33E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191892	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Alpha	4.75E-15	7.03E-15	1.13E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191892	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Alpha	1.58E-15	6.00E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191892	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Beta	1.49E-14	1.16E-14	1.62E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191892	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Beta	2.56E-14	1.29E-14	1.62E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191893	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Alpha	2.77E-15	6.67E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191893	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Beta	2.19E-14	1.29E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191894	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Alpha	-1.67E-15	5.01E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191894	Plant 6WH Loadout	08/22/16	Gross Alpha/Beta	Gross Beta	1.57E-14	1.23E-14	1.70E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191895	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Alpha	3.59E-15	6.52E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191895	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Beta	3.72E-14	1.39E-14	1.57E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191896	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Alpha	5.44E-16	5.78E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191896	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Beta	2.02E-14	1.26E-14	1.66E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191897	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Alpha	-5.51E-16	5.43E-15	1.18E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191897	Plant 6WH Loadout	08/23/16	Gross Alpha/Beta	Gross Beta	1.84E-14	1.25E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191898	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Alpha	3.60E-15	6.54E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191898	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Beta	6.12E-15	1.03E-14	1.58E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191899	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Alpha	-1.62E-15	4.86E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191899	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Beta	2.61E-14	1.32E-14	1.65E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191900	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.86E-15	1.18E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD191900	Plant 6WH Loadout	08/24/16	Gross Alpha/Beta	Gross Beta	2.25E-14	1.30E-14	1.69E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191901	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Alpha	1.57E-15	5.95E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191901	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Beta	2.21E-14	1.24E-14	1.60E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191902	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Alpha	6.14E-15	7.77E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191902	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Beta	3.69E-14	1.47E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191903	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Alpha	-1.69E-15	5.07E-15	1.21E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191903	Plant 6WH Loadout	08/25/16	Gross Alpha/Beta	Gross Beta	2.59E-14	1.36E-14	1.72E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191904	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Alpha	2.61E-15	6.28E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191904	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Beta	4.50E-14	1.49E-14	1.60E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191905	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Alpha	5.58E-16	5.94E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191905	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Beta	5.17E-14	1.63E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191906	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Alpha	7.92E-15	7.94E-15	1.13E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191906	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Alpha	5.81E-15	7.35E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191906	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Beta	3.29E-14	1.37E-14	1.62E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191906	Plant 6WH Loadout	08/29/16	Gross Alpha/Beta	Gross Beta	3.76E-14	1.42E-14	1.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191907	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Alpha	-1.51E-15	4.53E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191907	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Beta	2.50E-14	1.23E-14	1.54E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191908	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Alpha	-3.76E-15	3.77E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191908	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Beta	2.81E-14	1.33E-14	1.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191909	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Alpha	5.44E-16	5.78E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191909	Plant 6WH Loadout	08/30/16	Gross Alpha/Beta	Gross Beta	2.16E-14	1.27E-14	1.66E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191910	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Alpha	1.50E-15	5.69E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191910	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Beta	2.49E-14	1.23E-14	1.53E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191911	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Alpha	-2.67E-15	4.32E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191911	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Beta	3.74E-14	1.43E-14	1.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191912	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Alpha	7.92E-15	7.94E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191912	Plant 6WH Loadout	08/31/16	Gross Alpha/Beta	Gross Beta	4.29E-14	1.48E-14	1.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191913	Building 101	08/23/16	Gross Alpha/Beta	Gross Alpha	-4.99E-16	4.92E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191913	Building 101	08/23/16	Gross Alpha/Beta	Gross Beta	2.29E-14	1.20E-14	1.53E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191914	Building 101	08/24/16	Gross Alpha/Beta	Gross Alpha	-5.60E-16	5.52E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191914	Building 101	08/24/16	Gross Alpha/Beta	Gross Beta	1.37E-14	1.21E-14	1.72E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191915	Building 101	08/25/16	Gross Alpha/Beta	Gross Alpha	4.18E-15	7.59E-15	1.28E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191915	Building 101	08/25/16	Gross Alpha/Beta	Gross Beta	2.59E-14	1.42E-14	1.83E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191916	Building 101	08/29/16	Gross Alpha/Beta	Gross Alpha	3.97E-15	7.21E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191916	Building 101	08/29/16	Gross Alpha/Beta	Gross Beta	3.97E-14	1.52E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191917	Building 101	08/30/16	Gross Alpha/Beta	Gross Alpha	2.39E-15	9.04E-15	1.71E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191917	Building 101	08/30/16	Gross Alpha/Beta	Gross Beta	5.76E-14	2.15E-14	2.43E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191918	Building 101	08/31/16	Gross Alpha/Beta	Gross Alpha	-5.81E-16	5.73E-15	1.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191918	Building 101	08/31/16	Gross Alpha/Beta	Gross Beta	2.16E-14	1.34E-14	1.78E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191919	Building 101	09/01/16	Gross Alpha/Beta	Gross Alpha	7.12E-15	1.29E-14	2.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191919	Building 101	09/01/16	Gross Alpha/Beta	Gross Beta	1.72E-14	2.10E-14	3.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191920	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Alpha	-4.77E-16	4.43E-15	9.20E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191920	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Alpha	1.81E-15	5.49E-15	9.20E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191920	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Beta	9.63E-15	1.56E-14	2.64E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191920	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Beta	2.41E-15	1.49E-14	2.64E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191921	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Alpha	6.15E-15	6.88E-15	8.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191921	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Beta	1.90E-14	1.60E-14	2.54E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191922	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Alpha	-1.57E-15	3.66E-15	8.88E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191922	Plant 6WH Loadout	09/01/16	Gross Alpha/Beta	Gross Beta	1.42E-14	1.56E-14	2.55E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191923	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Alpha	3.58E-15	5.56E-15	8.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191923	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Beta	2.04E-14	1.48E-14	2.30E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191924	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Alpha	1.59E-15	4.82E-15	8.08E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191924	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Beta	7.19E-15	1.36E-14	2.32E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191925	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Alpha	2.69E-15	5.42E-15	8.37E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191925	Plant 6WH Loadout	09/06/16	Gross Alpha/Beta	Gross Beta	1.34E-14	1.47E-14	2.40E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191926	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Alpha	5.30E-15	6.84E-15	9.28E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191926	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Beta	2.07E-14	1.68E-14	2.66E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191927	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Alpha	7.41E-15	7.39E-15	9.03E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191927	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Beta	1.66E-15	1.46E-14	2.59E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191928	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Alpha	3.95E-15	6.13E-15	8.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191928	Plant 6WH Loadout	09/07/16	Gross Alpha/Beta	Gross Beta	2.66E-14	1.67E-14	2.54E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191929	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Alpha	6.74E-16	5.03E-15	9.28E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191929	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Beta	1.56E-14	1.63E-14	2.66E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191930	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Alpha	1.81E-15	5.49E-15	9.20E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191930	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Beta	5.30E-15	1.52E-14	2.64E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191931	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Alpha	2.87E-15	5.77E-15	8.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191931	Plant 6WH Loadout	09/08/16	Gross Alpha/Beta	Gross Beta	1.00E-14	1.52E-14	2.56E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191932	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Alpha	4.20E-15	6.52E-15	9.41E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191932	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Beta	5.72E-14	2.03E-14	2.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191933	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Alpha	6.31E-15	7.06E-15	9.07E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD191933	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Beta	2.09E-14	1.65E-14	2.61E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD191934	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Alpha	2.73E-15	6.51E-15	1.14E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191934	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Alpha	-2.92E-15	4.10E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191934	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Beta	4.36E-14	1.49E-14	1.74E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD191934	Plant 6WH Loadout	09/13/16	Gross Alpha/Beta	Gross Beta	2.72E-14	1.30E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191935	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Alpha	3.93E-15	7.02E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191935	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Beta	3.57E-14	1.42E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191936	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Alpha	4.69E-16	5.64E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191936	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Beta	3.70E-14	1.41E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191937	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Alpha	-2.82E-15	3.96E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191937	Plant 6WH Loadout	09/12/16	Gross Alpha/Beta	Gross Beta	1.94E-14	1.17E-14	1.68E-14	μCi/mL	J	T04	SLDS (General Area)-Perimeter Air
SLD191938	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Alpha	4.04E-15	7.22E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191938	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Beta	4.71E-14	1.57E-14	1.82E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191939	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Alpha	-6.74E-16	5.32E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191939	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Beta	3.80E-14	1.45E-14	1.78E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191940	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Alpha	2.67E-15	6.37E-15	1.11E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191940	Plant 6WH Loadout	09/14/16	Gross Alpha/Beta	Gross Beta	2.80E-14	1.29E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191941	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Alpha	3.93E-15	7.02E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191941	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Beta	4.08E-14	1.47E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191942	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Alpha	5.15E-15	7.49E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191942	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Beta	4.06E-14	1.49E-14	1.79E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD191943	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Alpha	1.58E-15	6.02E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191943	Plant 6WH Loadout	09/15/16	Gross Alpha/Beta	Gross Beta	2.89E-14	1.31E-14	1.71E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD191944	Plant 6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Alpha	5.00E-16	6.02E-15	1.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD191944	Plant 6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Beta	2.81E-14	1.37E-14	1.84E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193133	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Alpha	3.87E-15	6.13E-15	9.63E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193133	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Alpha	7.35E-15	7.35E-15	9.63E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193133	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Beta	2.84E-14	1.68E-14	2.50E-14	μCi/mL	03	101, 103	SLDS (General Area)-Perimeter Air
SLD193133	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Beta	4.97E-14	1.88E-14	2.50E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193134	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Alpha	1.59E-15	5.32E-15	9.90E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193134	P6WH Loadout	09/19/16	Gross Alpha/Beta	Gross Beta	3.83E-14	1.82E-14	2.57E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193135	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Alpha	4.83E-15	6.30E-15	9.26E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193135	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Beta	1.40E-14	1.49E-14	2.40E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193136	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Alpha	1.55E-15	5.17E-15	9.63E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193136	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Beta	2.77E-14	1.68E-14	2.50E-14	μCi/mL	ī	T04, T20	SLDS (General Area)-Perimeter Air
SLD193137	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Alpha	5.12E-15	6.68E-15	9.81E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193137	P6WH Loadout	09/20/16	Gross Alpha/Beta	Gross Beta	2.90E-14	1.71E-14	2.55E-14	μCi/mL	ī	T04, T20	SLDS (General Area)-Perimeter Air
SLD193138	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Alpha	-7.50E-16	3.87E-15	9.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193138 SLD193138	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Beta	3.40E-14	1.69E-14	9.54E-15 2.42E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193138 SLD193139	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Alpha	5.40E-14 5.20E-15	6.78E-15	9.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193139 SLD193139	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Beta	5.20E-13 5.36E-14	1.96E-14	2.58E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193139 SLD193140	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Alpha	1.48E-14	9.63E-15	9.95E-15	μCi/mL		T04, T20	SLDS (General Area)-Perimeter Air
SLD193140 SLD193140	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Beta	5.13E-14	1.94E-14	2.58E-14	μCi/mL	=	104, 120	SLDS (General Area)-Perimeter Air
SLD193141	P6WH Loadout	09/21/16	Gross Alpha/Beta	Gross Alpha	3.13E-14 1.11E-14	8.09E-15	2.38E-14 8.94E-15	μCi/mL		T04, T20	SLDS (General Area)-Perimeter Air
			•	•			8.94E-15 2.32E-14	-		104, 120	,
SLD193141	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Beta	6.38E-14	1.90E-14		μCi/mL	=	T04	SLDS (General Area) Perimeter Air
SLD193142	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Alpha	3.80E-15	6.02E-15	9.46E-15	μCi/mL	UJ	T06	SLDS (General Area) Perimeter Air
SLD193142	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Beta	7.83E-14	2.11E-14	2.45E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193143	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Alpha	9.65E-15	8.93E-15	8.94E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193143	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Alpha	1.30E-14	9.77E-15	8.94E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193143	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Beta	6.25E-14	3.10E-14	1.48E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193143	P6WH Loadout	09/22/16	Gross Alpha/Beta	Gross Beta	6.96E-14	3.14E-14	1.48E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193144	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Alpha	5.10E-15	7.65E-15	8.90E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193144	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Beta	2.81E-14	2.90E-14	1.47E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD193145	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Alpha	7.69E-15	8.68E-15	9.32E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193145	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Beta	2.57E-14	3.01E-14	1.54E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD193146	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Alpha	4.10E-15	7.54E-15	9.19E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193146	P6WH Loadout	09/26/16	Gross Alpha/Beta	Gross Beta	3.19E-14	3.00E-14	1.52E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193147	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Alpha	3.86E-15	7.09E-15	8.64E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193147	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Beta	2.59E-14	2.80E-14	1.43E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD193148	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Alpha	7.52E-15	8.48E-15	9.11E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193148	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Beta	3.45E-14	2.99E-14	1.50E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193149	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Alpha	-5.32E-16	5.80E-15	8.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193149	P6WH Loadout	09/27/16	Gross Alpha/Beta	Gross Beta	3.19E-14	2.94E-14	1.48E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193150	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Alpha	6.14E-15	7.87E-15	8.79E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193150	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Beta	1.72E-14	2.80E-14	1.45E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD193151	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Alpha	6.28E-15	8.05E-15	8.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193151	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Beta	3.34E-14	2.95E-14	1.48E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193152	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Alpha	3.07E-15	7.48E-15	9.58E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193152	P6WH Loadout	09/28/16	Gross Alpha/Beta	Gross Beta	1.95E-14	3.06E-14	1.58E-14	μCi/mL	UJ	T02	SLDS (General Area)-Perimeter Air
SLD193153	Destrehan Street	09/22/16	Gross Alpha/Beta	Gross Alpha	7.31E-16	8.73E-15	1.82E-14	μCi/mL		102	SLDS (General Area)-Perimeter Air
SLD193153	Destrehan Street	09/22/16	Gross Alpha/Beta	Gross Alpha	1.39E-14	1.39E-14	1.82E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193153	Destrehan Street	09/22/16	Gross Alpha/Beta	Gross Beta	8.41E-14	3.46E-14	4.72E-14	μCi/mL		10., 100	SLDS (General Area)-Perimeter Air
SLD193153	Destrehan Street	09/22/16	Gross Alpha/Beta	Gross Beta	6.48E-14	3.28E-14	4.72E-14	μCi/mL	I	T04, T20	SLDS (General Area)-Perimeter Air
SLD193154	Destrehan Street	09/26/16	Gross Alpha/Beta	Gross Alpha	1.50E-15	5.01E-15	9.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193154	Destrehan Street	09/26/16	Gross Alpha/Beta	Gross Beta	3.25E-14	1.68E-14	2.42E-14	μCi/mL	ı	T04, T20	SLDS (General Area)-Perimeter Air
SLD193155	Destrehan Street	09/27/16	Gross Alpha/Beta	Gross Alpha	4.19E-16	5.01E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193155	Destrehan Street	09/27/16	Gross Alpha/Beta	Gross Beta	4.27E-14	1.94E-14	2.71E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193156	Destrehan Street	09/28/16	Gross Alpha/Beta	Gross Alpha	1.60E-15	5.34E-15	9.95E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193156	Destrehan Street	09/28/16	Gross Alpha/Beta	Gross Beta	2.03E-14	1.65E-14	2.58E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193157	Destrehan Street	09/29/16	Gross Alpha/Beta	Gross Alpha	3.70E-15	5.87E-15	9.22E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193157	Destrehan Street	09/29/16	Gross Alpha/Beta	Gross Beta	1.74E-14	1.52E-14	2.39E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193158	Plant 7W	09/01/16	Gross Alpha/Beta	Gross Alpha	1.78E-14	2.00E-14	2.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193158	Plant 7W	09/01/16	Gross Alpha/Beta	Gross Beta	1.65E-14	4.19E-14	7.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193159	Plant 7W	09/06/16	Gross Alpha/Beta	Gross Alpha	5.01E-15	6.53E-15	9.59E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193159	Plant 7W	09/06/16	Gross Alpha/Beta	Gross Beta	2.18E-14	1.61E-14	2.49E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193160	Plant 7W	09/07/16	Gross Alpha/Beta	Gross Alpha	8.35E-15	6.96E-15	8.32E-15	μCi/mL	I	T04, T20	SLDS (General Area)-Perimeter Air
SLD193160 SLD193160	Plant 7W	09/07/16	Gross Alpha/Beta	Gross Beta	2.39E-14	1.45E-14	2.16E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193161	Plant 7W	09/08/16	Gross Alpha/Beta	Gross Alpha	2.39E-14 1.76E-14	3.69E-14	6.26E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193161	Plant 7W	09/08/16	Gross Alpha/Beta	Gross Beta	7.54E-14	9.87E-14	1.62E-13	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193161 SLD193162	Plant 7W	09/12/16	Gross Alpha/Beta	Gross Alpha	1.45E-15	4.84E-15	9.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193162 SLD193162	Plant 7W	09/12/16	Gross Alpha/Beta	Gross Beta	3.35E-14	1.64E-14	2.34E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD193162 SLD193163	Plant 7W	09/12/16	Gross Alpha/Beta	Gross Alpha	-7.85E-16	4.05E-15	9.77E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193163 SLD193163	Plant 7W	09/13/16	Gross Alpha/Beta	Gross Alpha Gross Beta	4.07E-14	1.82E-14	9.77E-13 2.53E-14	μCi/mL		100	SLDS (General Area)-Perimeter Air
			•					-	=	+ +	
SLD193164	Destrehan Street	10/03/16	Gross Alpha/Beta	Gross Alpha	5.78E-16	3.53E-15	7.97E-15	μCi/mL			SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193164	Destrehan Street	10/03/16	Gross Alpha/Beta	Gross Alpha	6.36E-15	6.27E-15	7.97E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193164	Destrehan Street	10/03/16	Gross Alpha/Beta	Gross Beta	2.18E-14	1.89E-14	2.49E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193164	Destrehan Street	10/03/16	Gross Alpha/Beta	Gross Beta	3.56E-14	2.01E-14	2.49E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193165	Destrehan Street	10/04/16	Gross Alpha/Beta	Gross Alpha	6.24E-15	6.16E-15	7.83E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193165	Destrehan Street	10/04/16	Gross Alpha/Beta	Gross Beta	4.50E-14	2.05E-14	2.44E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193166	Destrehan Street	10/05/16	Gross Alpha/Beta	Gross Alpha	4.22E-15	5.57E-15	8.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193166	Destrehan Street	10/05/16	Gross Alpha/Beta	Gross Beta	2.72E-14	2.01E-14	2.59E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193167	Destrehan Street	10/06/16	Gross Alpha/Beta	Gross Alpha	8.83E-15	7.22E-15	8.12E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193167	Destrehan Street	10/06/16	Gross Alpha/Beta	Gross Beta	1.84E-14	1.90E-14	2.53E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193168	Destrehan Street	10/11/16	Gross Alpha/Beta	Gross Alpha	5.42E-15	6.07E-15	8.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193168	Destrehan Street	10/11/16	Gross Alpha/Beta	Gross Beta	5.99E-14	2.28E-14	2.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193169	Destrehan Street	10/12/16	Gross Alpha/Beta	Gross Alpha	6.79E-16	4.15E-15	9.37E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193169	Destrehan Street	10/12/16	Gross Alpha/Beta	Gross Beta	5.55E-14	2.47E-14	2.92E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193170	Destrehan Street	10/13/16	Gross Alpha/Beta	Gross Alpha	1.75E-15	4.26E-15	8.05E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193170	Destrehan Street	10/13/16	Gross Alpha/Beta	Gross Beta	1.02E-14	1.81E-14	2.51E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193171	Destrehan Street	10/17/16	Gross Alpha/Beta	Gross Alpha	5.00E-15	5.60E-15	7.66E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193171	Destrehan Street	10/17/16	Gross Alpha/Beta	Gross Beta	8.99E-15	1.72E-14	2.39E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193172	Destrehan Street	10/18/16	Gross Alpha/Beta	Gross Alpha	6.02E-16	3.68E-15	8.31E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193172	Destrehan Street	10/18/16	Gross Alpha/Beta	Gross Beta	5.19E-15	1.83E-14	2.59E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193173	Destrehan Street	10/19/16	Gross Alpha/Beta	Gross Alpha	7.75E-15	7.65E-15	9.73E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193173	Destrehan Street	10/19/16	Gross Alpha/Beta	Gross Beta	2.21E-14	2.27E-14	3.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193174	Building 101	10/12/16	Gross Alpha/Beta	Gross Alpha	1.06E-14	1.40E-14	2.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193174	Building 101	10/12/16	Gross Alpha/Beta	Gross Beta	4.35E-14	4.83E-14	6.50E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193175	Building 101	10/13/16	Gross Alpha/Beta	Gross Alpha	8.69E-15	7.74E-15	9.22E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193175	Building 101	10/13/16	Gross Alpha/Beta	Gross Beta	2.43E-14	2.18E-14	2.88E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193176	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Alpha	2.92E-15	4.86E-15	8.05E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193176	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Alpha	5.25E-15	5.88E-15	8.05E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193176	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Beta	2.71E-14	1.95E-14	2.51E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193176	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Beta	1.39E-14	1.84E-14	2.51E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193177	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Alpha	4.98E-15	5.58E-15	7.63E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193177	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Beta	2.57E-14	1.85E-14	2.38E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193178	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Alpha	1.73E-15	4.20E-15	7.94E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193178	P6WH Loadout	09/29/16	Gross Alpha/Beta	Gross Beta	2.96E-14	1.95E-14	2.48E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193179	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Alpha	7.58E-15	6.75E-15	8.05E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193179	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Beta	4.70E-14	2.11E-14	2.51E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193180	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Alpha	3.90E-15	5.16E-15	7.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193180	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Beta	3.44E-14	1.94E-14	2.40E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193181	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Alpha	1.78E-15	4.34E-15	8.20E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193181	P6WH Loadout	10/03/16	Gross Alpha/Beta	Gross Beta	1.94E-14	1.92E-14	2.56E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193182	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Alpha	1.70E-15	4.13E-15	7.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193182	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Beta	5.19E-14	2.10E-14	2.43E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193183	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Alpha	8.22E-15	6.72E-15	7.57E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193183	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Beta	5.94E-14	2.11E-14	2.36E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193184	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Alpha	8.63E-15	7.05E-15	7.94E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193184	P6WH Loadout	10/04/16	Gross Alpha/Beta	Gross Beta	5.00E-14	2.12E-14	2.48E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193185	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Alpha	9.78E-15	7.43E-15	7.94E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193185	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Beta	3.62E-14	2.00E-14	2.48E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193186	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Alpha	4.89E-15	6.56E-15	1.02E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193186	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Alpha	3.78E-15	6.17E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193186	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Beta	2.62E-14	1.34E-14	1.71E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193186	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Beta	2.55E-14	1.33E-14	1.71E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193187	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Alpha	8.58E-15	7.96E-15	1.06E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193187	P6WH Loadout	10/05/16	Gross Alpha/Beta	Gross Beta	3.54E-14	1.49E-14	1.79E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193188	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Alpha	1.19E-14	8.81E-15	1.05E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193188	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Beta	4.43E-14	1.57E-14	1.76E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193189	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Alpha	6.89E-15	7.06E-15	9.86E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193189	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Beta	4.44E-14	1.51E-14	1.66E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193190	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Alpha	2.77E-15	5.97E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193190	P6WH Loadout	10/06/16	Gross Alpha/Beta	Gross Beta	5.24E-14	1.66E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193191	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Alpha	5.13E-15	6.89E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193191	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Beta	5.17E-14	1.67E-14	1.80E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193192	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Alpha	8.13E-15	7.54E-15	1.01E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193192	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Beta	4.88E-14	1.57E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193193	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Alpha	1.65E-15	5.61E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193193	P6WH Loadout	10/11/16	Gross Alpha/Beta	Gross Beta	4.24E-14	1.57E-14	1.80E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193194	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Alpha	5.55E-16	5.82E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193194	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Beta	4.08E-14	1.72E-14	2.06E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193195	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Alpha	5.72E-15	6.61E-15	9.70E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193195	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Beta	3.43E-14	1.38E-14	1.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193196	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Alpha	1.60E-14	1.03E-14	1.07E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193196	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.75E-15	1.07E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193196	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Beta	5.94E-14	2.16E-14	2.85E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193196	P6WH Loadout	10/12/16	Gross Alpha/Beta	Gross Beta	5.42E-14	2.12E-14	2.85E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193197	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Alpha	5.51E-15	6.29E-15	9.10E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193197	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Beta	1.42E-14	1.50E-14	2.44E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193198	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Alpha	-1.38E-15	2.55E-15	8.67E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193198	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Beta	2.40E-14	1.53E-14	2.32E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193199	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Alpha	3.24E-15	5.44E-15	9.23E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193199	P6WH Loadout	10/13/16	Gross Alpha/Beta	Gross Beta	3.96E-14	1.77E-14	2.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193200	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Alpha	2.01E-15	4.79E-15	9.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193200	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Beta	2.78E-14	1.62E-14	2.41E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193201	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Alpha	4.11E-15	5.52E-15	8.60E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193201	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Beta	3.20E-14	1.60E-14	2.30E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193202	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Alpha	3.18E-15	5.34E-15	9.06E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193202	P6WH Loadout	10/17/16	Gross Alpha/Beta	Gross Beta	1.56E-14	1.50E-14	2.43E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193203	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Alpha	5.46E-15	6.24E-15	9.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193203	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Beta	3.87E-14	1.73E-14	2.41E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193204	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Alpha	8.39E-15	6.98E-15	8.49E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193204	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Beta	3.37E-14	1.60E-14	2.27E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193205	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Alpha	3.15E-15	5.29E-15	8.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193205	P6WH Loadout	10/18/16	Gross Alpha/Beta	Gross Beta	4.36E-14	1.77E-14	2.40E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193206	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Alpha	9.89E-15	7.64E-15	8.86E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193206	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Beta	5.01E-14	1.81E-14	2.37E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193207	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Alpha	5.15E-15	6.91E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193207	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Beta	4.53E-14	2.05E-14	2.88E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193208	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Alpha	7.63E-15	6.92E-15	8.86E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193208	P6WH Loadout	10/19/16	Gross Alpha/Beta	Gross Beta	4.44E-14	1.76E-14	2.37E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193209	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Alpha	5.18E-15	6.90E-15	9.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193209	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Beta	2.32E-14	1.66E-14	2.57E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193210	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Alpha	-1.71E-15	3.93E-15	9.26E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193210	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Beta	2.66E-14	1.68E-14	2.55E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193211	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Alpha	3.87E-15	6.25E-15	8.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193211	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Beta	5.85E-14	1.92E-14	2.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193212	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Alpha	4.06E-15	6.56E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193212	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Beta	6.15E-14	2.02E-14	2.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193213	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Alpha	-5.78E-16	4.60E-15	9.38E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193213	P6WH Loadout	10/24/16	Gross Alpha/Beta	Gross Beta	4.08E-14	1.83E-14	2.58E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193214	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Alpha	4.18E-15	6.74E-15	9.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193214	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Beta	2.18E-14	1.70E-14	2.66E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193215	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Alpha	5.50E-15	7.32E-15	9.92E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193215	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Beta	2.69E-14	1.78E-14	2.73E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193216	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Alpha	-2.98E-15	3.35E-15	9.69E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193216	P6WH Loadout	10/25/16	Gross Alpha/Beta	Gross Beta	3.98E-14	1.87E-14	2.66E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193217	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Alpha	2.90E-15	6.13E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193217	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Beta	6.07E-14	2.01E-14	2.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193218	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Alpha	4.06E-15	6.56E-15	9.43E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193218	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Beta	4.17E-14	1.84E-14	2.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193219	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Alpha	6.50E-15	7.48E-15	9.60E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193219	P6WH Loadout	10/26/16	Gross Alpha/Beta	Gross Beta	4.47E-14	1.90E-14	2.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193220	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Alpha	1.03E-14	8.16E-15	8.83E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193220	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Beta	2.19E-14	1.57E-14	2.43E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193221	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Alpha	7.35E-15	7.50E-15	9.18E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193221	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Beta	5.06E-14	1.88E-14	2.52E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193222	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Alpha	1.72E-15	5.60E-15	9.30E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193222	P6WH Loadout	10/27/16	Gross Alpha/Beta	Gross Beta	3.03E-14	1.72E-14	2.56E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193223	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Alpha	1.39E-14	9.24E-15	9.06E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193223	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Beta	5.06E-14	1.87E-14	2.49E-14	μCi/mL	=	,	SLDS (General Area)-Perimeter Air
SLD193224	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Alpha	1.77E-15	5.75E-15	9.56E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193224	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Beta	5.19E-14	1.95E-14	2.63E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193225	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Alpha	1.10E-14	8.67E-15	9.38E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193225	P6WH Loadout	10/31/16	Gross Alpha/Beta	Gross Beta	3.49E-14	1.77E-14	2.58E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193226	Destrehan Street	10/20/16	Gross Alpha/Beta	Gross Alpha	1.14E-15	5.57E-15	1.09E-14	μCi/mL	-	, ,	SLDS (General Area)-Perimeter Air
SLD193226	Destrehan Street	10/20/16	Gross Alpha/Beta	Gross Alpha	-1.14E-15	4.54E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193226	Destrehan Street	10/20/16	Gross Alpha/Beta	Gross Beta	1.62E-14	1.25E-14	1.80E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193226	Destrehan Street	10/20/16	Gross Alpha/Beta	Gross Beta	4.21E-14	1.55E-14	1.80E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193227	Destrehan Street	10/24/16	Gross Alpha/Beta	Gross Alpha	3.41E-15	6.41E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193227	Destrehan Street	10/24/16	Gross Alpha/Beta	Gross Beta	5.56E-14	1.68E-14	1.79E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193228	Destrehan Street	10/25/16	Gross Alpha/Beta	Gross Alpha	6.72E-15	7.44E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193228	Destrehan Street	10/25/16	Gross Alpha/Beta	Gross Beta	1.95E-14	1.27E-14	1.77E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193229	Destrehan Street	10/26/16	Gross Alpha/Beta	Gross Alpha	1.66E-14	1.21E-14	1.44E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193229	Destrehan Street	10/26/16	Gross Alpha/Beta	Gross Beta	5.46E-14	2.03E-14	2.38E-14	μCi/mL	=	,	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193230	Destrehan Street	10/27/16	Gross Alpha/Beta	Gross Alpha	4.58E-15	6.87E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193230	Destrehan Street	10/27/16	Gross Alpha/Beta	Gross Beta	3.51E-14	1.47E-14	1.81E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193231	Destrehan Street	10/31/16	Gross Alpha/Beta	Gross Alpha	9.83E-15	8.87E-15	1.17E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193231	Destrehan Street	10/31/16	Gross Alpha/Beta	Gross Beta	3.61E-14	1.56E-14	1.94E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193232	Building 101	10/27/16	Gross Alpha/Beta	Gross Alpha	-2.62E-15	1.04E-14	2.51E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193232	Building 101	10/27/16	Gross Alpha/Beta	Gross Beta	2.07E-14	2.67E-14	4.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193236	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Alpha	-5.53E-16	4.40E-15	8.98E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193236	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Alpha	3.87E-15	6.25E-15	8.98E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193236	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Beta	2.92E-14	1.66E-14	2.47E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193236	P6WH Loadout	10/20/16	Gross Alpha/Beta	Gross Beta	4.32E-14	1.79E-14	2.47E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193237	Destrehan Street	11/01/16	Gross Alpha/Beta	Gross Alpha	1.13E-14	9.11E-15	1.17E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193237	Destrehan Street	11/01/16	Gross Alpha/Beta	Gross Alpha	6.58E-15	7.77E-15	1.17E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193237	Destrehan Street	11/01/16	Gross Alpha/Beta	Gross Beta	5.83E-14	1.78E-14	1.82E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193237	Destrehan Street	11/01/16	Gross Alpha/Beta	Gross Beta	5.09E-14	1.71E-14	1.82E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193238	Destrehan Street	11/02/16	Gross Alpha/Beta	Gross Alpha	6.37E-15	7.53E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193238	Destrehan Street	11/02/16	Gross Alpha/Beta	Gross Beta	4.71E-14	1.63E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193239	Destrehan Street	11/07/16	Gross Alpha/Beta	Gross Alpha	1.24E-14	1.17E-14	1.62E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193239	Destrehan Street	11/07/16	Gross Alpha/Beta	Gross Beta	7.66E-14	2.42E-14	2.52E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193240	Destrehan Street	11/08/16	Gross Alpha/Beta	Gross Alpha	8.54E-15	8.95E-15	1.29E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193240	Destrehan Street	11/08/16	Gross Alpha/Beta	Gross Beta	4.79E-14	1.79E-14	2.01E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193241	Destrehan Street	11/09/16	Gross Alpha/Beta	Gross Alpha	1.82E-15	6.02E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193241	Destrehan Street	11/09/16	Gross Alpha/Beta	Gross Beta	1.99E-14	1.35E-14	1.78E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193242	Destrehan Street	11/10/16	Gross Alpha/Beta	Gross Alpha	7.58E-15	7.94E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193242	Destrehan Street	11/10/16	Gross Alpha/Beta	Gross Beta	2.57E-14	1.41E-14	1.78E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193243	Destrehan Street	11/14/16	Gross Alpha/Beta	Gross Alpha	2.99E-15	6.48E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193243	Destrehan Street	11/14/16	Gross Alpha/Beta	Gross Beta	3.53E-14	1.52E-14	1.79E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193244	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Alpha	5.99E-15	9.27E-15	1.19E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193244	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Alpha	3.78E-15	8.73E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193244	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Beta	4.07E-14	1.47E-14	1.70E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193244	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Beta	7.07E-14	1.78E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193245	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Alpha	1.52E-14	1.15E-14	1.22E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193245	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Beta	4.23E-14	1.51E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193246	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Alpha	9.64E-15	1.04E-14	1.24E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193246	P6WH Loadout	11/01/16	Gross Alpha/Beta	Gross Beta	3.92E-14	1.50E-14	1.76E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193247	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Alpha	-1.73E-15	7.09E-15	1.18E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193247	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Beta	2.77E-14	1.32E-14	1.67E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193248	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Alpha	6.10E-15	9.44E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193248	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Beta	5.20E-14	1.61E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193249	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Alpha	1.42E-14	1.13E-14	1.23E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193249	P6WH Loadout	11/03/16	Gross Alpha/Beta	Gross Beta	5.49E-14	1.66E-14	1.75E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193250	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Alpha	5.81E-15	9.00E-15	1.16E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193250	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Beta	4.15E-14	1.45E-14	1.65E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193251	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Alpha	6.10E-15	9.44E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193251	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Beta	5.84E-14	1.68E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193252	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Alpha	4.71E-16	8.01E-15	1.22E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193252	P6WH Loadout	11/07/16	Gross Alpha/Beta	Gross Beta	4.09E-14	1.50E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193253	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Alpha	9.00E-15	9.71E-15	1.15E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193253	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Beta	4.94E-14	1.53E-14	1.64E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193254	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Alpha	3.76E-15	8.69E-15	1.19E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193254	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Beta	4.33E-14	1.50E-14	1.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193255	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Alpha	7.53E-16	4.71E-15	8.97E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193255	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Alpha	3.01E-15	5.69E-15	8.97E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193255	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Beta	3.52E-14	3.29E-14	2.96E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193255	P6WH Loadout	11/08/16	Gross Alpha/Beta	Gross Beta	1.88E-14	3.21E-14	2.96E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193256	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Alpha	1.88E-15	5.20E-15	8.93E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193256	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Beta	1.44E-14	3.17E-14	2.95E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193257	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Alpha	3.11E-15	5.87E-15	9.26E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193257	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Beta	2.38E-14	3.33E-14	3.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193258	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Alpha	3.14E-15	5.93E-15	9.34E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193258	P6WH Loadout	11/09/16	Gross Alpha/Beta	Gross Beta	3.81E-14	3.43E-14	3.08E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193259	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Alpha	1.18E-14	8.41E-15	8.78E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193259	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Beta	5.67E-14	3.33E-14	2.90E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193260	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Alpha	1.95E-15	5.41E-15	9.30E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193260	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Beta	3.57E-14	3.40E-14	3.07E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193261	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Alpha	1.94E-15	5.36E-15	9.21E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193261	P6WH Loadout	11/10/16	Gross Alpha/Beta	Gross Beta	3.54E-14	3.37E-14	3.04E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193262	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Alpha	6.16E-15	6.66E-15	8.63E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193262	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Beta	6.95E-14	3.34E-14	2.85E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193263	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Alpha	6.46E-15	6.98E-15	9.05E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193263	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Beta	6.14E-14	3.45E-14	2.99E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193264	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Alpha	4.13E-15	6.10E-15	8.93E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193264	P6WH Loadout	11/14/16	Gross Alpha/Beta	Gross Beta	5.49E-14	3.37E-14	2.95E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193265	Building 101	10/31/16	Gross Alpha/Beta	Gross Alpha	1.02E-14	8.30E-15	9.34E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193265	Building 101	10/31/16	Gross Alpha/Beta	Gross Alpha	1.37E-14	9.26E-15	9.34E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193265	Building 101	10/31/16	Gross Alpha/Beta	Gross Beta	3.22E-15	3.27E-14	3.08E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193265	Building 101	10/31/16	Gross Alpha/Beta	Gross Beta	1.96E-14	3.34E-14	3.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193266	Building 101	11/01/16	Gross Alpha/Beta	Gross Alpha	5.32E-15	6.59E-15	9.05E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193266	Building 101	11/01/16	Gross Alpha/Beta	Gross Beta	2.33E-14	3.26E-14	2.99E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193267	Building 101	11/02/16	Gross Alpha/Beta	Gross Alpha	5.78E-15	7.17E-15	9.84E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193267	Building 101	11/02/16	Gross Alpha/Beta	Gross Beta	3.70E-14	3.60E-14	3.25E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193268	Building 101	11/14/16	Gross Alpha/Beta	Gross Alpha	5.86E-15	1.62E-14	2.79E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193268	Building 101	11/14/16	Gross Alpha/Beta	Gross Beta	5.17E-15	9.73E-14	9.21E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193276	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Alpha	3.49E-15	6.89E-15	1.04E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193276	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Alpha	1.89E-14	1.08E-14	1.04E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193276	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Beta	8.05E-14	1.85E-14	1.70E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193276	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Beta	8.95E-14	1.94E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193277	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Alpha	6.65E-15	7.72E-15	1.01E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193277	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Beta	6.86E-14	1.71E-14	1.66E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193278	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Alpha	1.23E-14	9.32E-15	1.04E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193278	P6WH Loadout	11/15/16	Gross Alpha/Beta	Gross Beta	6.86E-14	1.74E-14	1.70E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193279	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Alpha	8.03E-15	8.34E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193279	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Beta	7.06E-14	1.77E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193280	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Alpha	6.97E-15	8.10E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193280	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Beta	7.19E-14	1.80E-14	1.74E-14	μCi/mL			SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD193281	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Alpha	8.21E-15	8.53E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193281	P6WH Loadout	11/16/16	Gross Alpha/Beta	Gross Beta	7.50E-14	1.84E-14	1.77E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193282	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Alpha	1.22E-14	9.24E-15	1.03E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193282	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Beta	7.70E-14	1.81E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193283	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Alpha	5.74E-15	7.63E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193283	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Beta	9.45E-14	1.99E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193284	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Alpha	9.11E-15	8.60E-15	1.05E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193284	P6WH Loadout	11/17/16	Gross Alpha/Beta	Gross Beta	1.06E-13	2.10E-14	1.72E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193285	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Alpha	3.44E-15	6.80E-15	1.02E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193285	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Beta	2.04E-14	1.20E-14	1.68E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193286	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Alpha	1.88E-16	5.86E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193286	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Beta	1.69E-14	1.19E-14	1.74E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193287	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Alpha	2.41E-15	6.58E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193287	P6WH Loadout	11/21/16	Gross Alpha/Beta	Gross Beta	2.72E-14	1.30E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193288	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Alpha	3.52E-15	6.95E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193288	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Beta	2.16E-14	1.23E-14	1.71E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193289	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Alpha	1.34E-15	6.42E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193289	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Beta	3.54E-14	1.43E-14	1.78E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193290	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Alpha	5.89E-15	7.84E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193290	P6WH Loadout	11/22/16	Gross Alpha/Beta	Gross Beta	2.00E-14	1.24E-14	1.76E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193291	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Alpha	1.92E-16	5.99E-15	1.08E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193291	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Beta	2.31E-14	1.29E-14	1.78E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193292	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Alpha	1.08E-14	9.34E-15	1.10E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193292	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Beta	2.20E-14	1.29E-14	1.81E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193293	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Alpha	7.23E-15	8.40E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193293	P6WH Loadout	11/23/16	Gross Alpha/Beta	Gross Beta	9.43E-15	1.13E-14	1.81E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193294	Destrehan Street	11/15/16	Gross Alpha/Beta	Gross Alpha	7.56E-15	7.44E-15	9.90E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD193294	Destrehan Street	11/15/16	Gross Alpha/Beta	Gross Alpha	1.23E-14	8.86E-15	9.90E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193294	Destrehan Street	11/15/16	Gross Alpha/Beta	Gross Beta	6.09E-14	4.76E-14	3.33E-14	μCi/mL		,	SLDS (General Area)-Perimeter Air
SLD193294	Destrehan Street	11/15/16	Gross Alpha/Beta	Gross Beta	5.94E-14	4.75E-14	3.33E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193295	Destrehan Street	11/16/16	Gross Alpha/Beta	Gross Alpha	1.22E-14	9.14E-15	1.13E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193295	Destrehan Street	11/16/16	Gross Alpha/Beta	Gross Beta	6.60E-14	2.93E-14	4.35E-14	μCi/mL	=	,	SLDS (General Area)-Perimeter Air
SLD193296	Destrehan Street	11/17/16	Gross Alpha/Beta	Gross Alpha	2.09E-14	1.18E-14	1.22E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD193296	Destrehan Street	11/17/16	Gross Alpha/Beta	Gross Beta	9.66E-14	3.32E-14	4.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193297	Building 101	11/15/16	Gross Alpha/Beta	Gross Alpha	9.78E-15	7.87E-15	1.01E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD193297	Building 101	11/15/16	Gross Alpha/Beta	Gross Beta	7.20E-14	2.70E-14	3.89E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193298	Building 101	11/16/16	Gross Alpha/Beta	Gross Alpha	1.15E-15	5.12E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193298	Building 101	11/16/16	Gross Alpha/Beta	Gross Beta	1.81E-14	2.49E-14	4.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193299	Building 101	11/17/16	Gross Alpha/Beta	Gross Alpha	5.55E-15	6.67E-15	1.03E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193299	Building 101	11/17/16	Gross Alpha/Beta	Gross Beta	8.20E-14	2.82E-14	3.98E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD193300	Building 101	11/21/16	Gross Alpha/Beta	Gross Alpha	2.69E-15	6.58E-15	1.25E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193300	Building 101	11/21/16	Gross Alpha/Beta	Gross Beta	1.95E-14	2.90E-14	4.81E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193301	Building 101	11/22/16	Gross Alpha/Beta	Gross Alpha	5.70E-15	1.01E-14	1.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193301	Building 101	11/22/16	Gross Alpha/Beta	Gross Beta	3.36E-14	4.15E-14	6.81E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193302	Building 101	11/23/16	Gross Alpha/Beta	Gross Alpha	2.23E-15	5.47E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193302	Building 101	11/23/16	Gross Alpha/Beta	Gross Beta	7.74E-15	2.36E-14	3.99E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD193308	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Alpha	6.15E-15	7.27E-15	1.04E-14	μCi/mL			SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

ADDITIONS PAWE Looked 11/23/16 Gross Aglan Spile S	Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SD19508 PNWII Loadou 11/2216 Gross Apha-Beat Gross Apha-	SLD193308	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Alpha	3.88E-15	6.51E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SPIFF Carbon 1172816 Gress Applian 4,975.18 5,3471.5 1,9871.4 1,7571.4 1,757.0	SLD193308	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Beta	2.65E-14	1.33E-14	1.73E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SP093398 PONNI Lundon	SLD193308	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Beta	2.93E-14	1.37E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
S.D.19310 POWIL Looker 1128-16 Gross Alpha Pers Gross Alpha 4,102-15 Gross Alpha Pers Gross Alpha 1,102-14 1,002	SLD193309	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Alpha	4.95E-16	5.43E-15	1.09E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
S.D.193310 PoWH Loadoux 1129-16 Gross Alpha/Bett Gross Deta 138E-14 1.30E-14 1.50E-14 1.50E-	SLD193309	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Beta	2.17E-14	1.32E-14	1.81E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
S.D.193310 PoWH Loadoux 1129-16 Gross Alpha/Bett Gross Deta 138E-14 1.30E-14 1.50E-14 1.50E-	SLD193310	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Alpha	4.10E-15	6.88E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
S.D.19331 PoWH Loadout 11/2916 Gross Alphis Ect Gross Alphis 1/2016 Gross Alphis 1/201	SLD193310	P6WH Loadout	11/28/16	Gross Alpha/Beta	Gross Beta	1.89E-14	1.30E-14	1.83E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD93312 PNWH Loadout 11/29/16 Gross Alpha/Beta Gross Alpha/	SLD193311	P6WH Loadout	11/29/16	Gross Alpha/Beta	Gross Alpha	1.04E-14	8.37E-15	1.02E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
S.D.193131 PSWH Loadout 11/2916 Gross Alpha-Beta Gross Alpha 2.7241.5 G.D.19131 J.D.19131 PSWH Loadout 11/2916 Gross Alpha-Beta Gross Lepta J.D.19131 J.D.19131 PSWH Loadout 11/2916 Gross Alpha-Beta Gross Lepta J.D.19131 DSWH Loadout 11/2916 Gross Alpha-Beta Gross Lepta J.D.19131 J.D.19131 J.D.19131 J.D.19131	SLD193311	P6WH Loadout	11/29/16	Gross Alpha/Beta	Gross Beta	2.09E-14	1.24E-14	1.68E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
S.D.193313 PoWH Loadout 11/29/16 Gross Apha Peter Gross Apha Peter 1795-14 1795-14 µC/Sml. U To S.D.S (General Area-)-Petrineter Air S.D.193314 PoWH Loadout 11/39/16 Gross Apha Peter Gross Apha Peter 1795-14 µC/Sml. U To S.D.S (General Area-)-Petrineter Air S.D.193314 PoWH Loadout 11/39/16 Gross Apha Peter Gross Apha Pet	SLD193312	P6WH Loadout	11/29/16	Gross Alpha/Beta	Gross Alpha	6.15E-15	7.27E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
S.D.193313 PoWH Loadout 11/29/16 Gross Apha Peter Gross Apha Peter 1795-14 1795-14 µC/Sml. U To S.D.S (General Area-)-Petrineter Air S.D.193314 PoWH Loadout 11/39/16 Gross Apha Peter Gross Apha Peter 1795-14 µC/Sml. U To S.D.S (General Area-)-Petrineter Air S.D.193314 PoWH Loadout 11/39/16 Gross Apha Peter Gross Apha Pet	SLD193312	P6WH Loadout	11/29/16	Gross Alpha/Beta	Gross Beta	3.15E-14	1.39E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
S.D.193313 PoWH Londout 11:2916 Gross Alpha Petts Gross Alpha 1:29F-14 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha 1:29F-14 p.C/mit. U T06 S.D.S (Gross Alpha Petts Gross Alpha Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Petts Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Petts Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Petts Gross Alpha Petts Gross Alpha S.D.F (S.D.S (Gross Alpha Petts Gross Alpha Petts		P6WH Loadout	11/29/16	•	Gross Alpha	2.74E-15	6.10E-15	1.04E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
S.D.193314 POWH Loadour 11/3916 Gross AphaPeter Gross Apha 27/8-15 5.088-15 1.948-14 1.97-14 1.07-16 1.04, 1720 S.D.S (General Area)-Perimeter Air S.D.193315 POWH Loadour 11/3916 Gross AphaPeter Gross Apha 4.894-16 1.924-14 1.721-14 p.C.im. U T06 S.D.S (General Area)-Perimeter Air S.D.193315 POWH Loadour 11/3916 Gross AphaPeter Gross Apha 4.894-16 1.204-14 1.721-14 p.C.im. U T06 S.D.S (General Area)-Perimeter Air S.D.193316 POWH Loadour 11/3916 Gross AphaPeter Gross Apha 3.964-15 1.964-14 p.C.im. U T06 S.D.S (General Area)-Perimeter Air S.D.193316 POWH Loadour 11/3916 Gross AphaPeter Gross Aph	SLD193313		11/29/16	•	Gross Beta	1.93E-14	1.25E-14	1.73E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD1931314 PoWH Londout 11/30/16 Gross AlphaBeta Gross Beta 192E.14 1.72E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD19315 PoWH Londout 11/30/16 Gross AlphaBeta Gross Beta 196E.14 1.26E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD19315 PoWH Londout 11/30/16 Gross AlphaBeta Gross Beta 196E.14 1.26E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD19316 PoWH Londout 11/30/16 Gross AlphaBeta Gross Beta 3.37E.14 1.44E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD19317 Building 101 11/28/16 Gross AlphaBeta Gross Beta 3.37E.14 1.44E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD193317 Building 101 11/28/16 Gross AlphaBeta Gross Beta 3.37E.14 4.50E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD193317 Building 101 11/28/16 Gross AlphaBeta Gross Beta 3.28E.14 4.50E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD193321 Destreban Street 11/29/16 Gross AlphaBeta Gross Alpha Beta 1.5EE.14 1.15E.14 µC/mL J T04, T20 SLD3 General Aces) Perimeter Air SLD193322 Destreban Street 11/29/16 Gross AlphaBeta Gross Beta 1.5EE.14 µC/mL J T05E.14 µC/mL J	h			*					•	UJ		· /
SLD93315 POWH Loadout 11/3016 Gross Alpha Beta Gross Alpha 4.80E-16 5.20E-15 1.06E-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD93316 POWH Loadout 11/3016 Gross Alpha Beta Gross Alpha 3.95E-15 6.63E-15 1.06E-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD93316 PoWH Loadout 11/3016 Gross Alpha Beta Gross Alpha 3.95E-15 6.63E-15 1.06E-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD93317 Bailding 101 11/2816 Gross Alpha Beta Gross Alpha 7.15E-15 1.59E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93317 Bailding 101 11/2816 Gross Alpha Beta Gross Alpha 7.15E-15 1.59E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93321 Desemba Street 11/2916 Gross Alpha Beta Gross Alpha 1.05E-15 5.71E-15 1.05E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93321 Desemba Street 11/2916 Gross Alpha Beta Gross Alpha 1.05E-15 5.71E-15 1.05E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93322 Desemba Street 11/3916 Gross Alpha Beta Gross Alpha 1.05E-15 5.71E-15 1.05E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93322 Desemba Street 11/3916 Gross Alpha Beta Gross Alpha 1.05E-15 5.71E-15 1.05E-14 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93322 Desemba Street 11/3916 Gross Alpha Beta Gross Alpha 2.07E-15 5.94E-15 QC/mL U T06 SLDS (General Area)-Perimeter Air SLD93323 PoWH Loadout 12/9116 Gross Alpha Beta Gross Alpha 2.07E-15 5.94E-15 QC/mL U T04 SLDS (General Area)-Perimeter Air SLD93323 PoWH Loadout 12/9116 Gross Alpha Beta Gross Beta 2.08E-14 1.3E-14 1.76E-14 QC/mL U T04 T05 SLDS (General Area)-Perimeter Air SLD93323 PoWH Loadout 12/9116 Gross Alpha Beta Gross Beta 2.08E-14 1.3E-14 1.76E-14 QC/mL U T04 T05 SLDS (General Area)-Perimeter Air SLD93323 PoWH Loadout 12/9116 Gross Alpha Beta Gross Beta	h		+	<u> </u>	•				•	J	T04, T20	· · ·
SLD193315 P6WH Loadout 173016 Gross Alpha Rem Gross Steph 1968-14 1.266-14 1.756-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193316 P6WH Loadout 117016 Gross Alpha Rem Gross Steph 3.956-14 1.484-14 1.766-14 µCVml. - SLD8 (General Area)-Perimeter Air SLD193317 Building 101 1128/16 Gross Alpha Rem Gross Alpha 7.156-15 1.596-14 2.2786-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193317 Building 101 1128/16 Gross Alpha Rem Gross Alpha 7.156-15 1.596-14 4.506-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193321 Desirchan Street 1128/16 Gross Alpha Rem Gross Alpha 1.156-15 1.166-14 1.746-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193322 Desirchan Street 1129/16 Gross Alpha Rem Gross Alpha 4.506-15 9.406-15 1.736-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193322 Desirchan Street 1129/16 Gross Alpha Rem Gross Alpha 4.506-15 9.406-15 1.736-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193322 Desirchan Street 1129/16 Gross Alpha Rem Gross Alpha 4.506-15 9.406-15 1.736-14 µCVml. U T06 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 1201/16 Gross Alpha Rem Gross Alpha 9.616-15 9.186-1		P6WH Loadout		•					•	UJ		
SLD193316 P6WH Loadout 11/30/16 Gross Alpha/Beta Gross Alpha 3.95E.15 6.63E.15 1.06E.14 µC/ml.					•	1.96E-14		1.75E-14	•	J	T04, T20	
SLD193316 P6WH Loudout 11/20/16 Gross Alpha/Beta Gross Beta 3.42E-14 1.4E-14 1.76E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193317 Building 101 11/28/16 Gross Alpha/Beta Gross Beta 4.8E-14 3.2E-14 4.5E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193321 Destreban Street 11/29/16 Gross Alpha/Beta Gross Beta 4.8E-14 3.2E-14 4.5E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193321 Destreban Street 11/29/16 Gross Alpha/Beta Gross Beta 1.5E-14 1.16E-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD193322 Destreban Street 11/20/16 Gross Alpha/Beta Gross Beta 1.5E-14 1.16E-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD193322 Destreban Street 11/20/16 Gross Alpha/Beta Gross Beta 3.0EE-14 2.0EE-14 µC/mL U T06 SLDS (General Area)-Perimeter Air SLD193322 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 3.0EE-16 4.56E-15 9.18E-15 µC/mL U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 3.0EE-16 4.56E-15 9.18E-15 µC/mL U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 2.0EE-14 1.76E-14 µC/mL U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 2.0EE-14 1.3EE-14 1.76E-14 µC/mL U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 2.0EE-14 1.3EE-14 1.76E-14 µC/mL U T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loudout 12/01/16 Gross Alpha/Beta Gross Beta 1.16E-14 1.2EE-14 1.				•					•	UJ		,
SLD193372 Building 101 11/28/16 Gross AlphaBeta Gross Alpha Beta T.15E-15 1.59E-14 2.72E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD19321 Destreban Street 11/29/16 Gross AlphaBeta Gross Alpha 1.62E-15 5.71E-15 1.05E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD19321 Destreban Street 11/29/16 Gross AlphaBeta Gross Alpha 1.62E-15 5.71E-15 1.05E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD19322 Destreban Street 11/20/16 Gross AlphaBeta Gross Alpha 1.62E-15 7.78E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destreban Street 11/20/16 Gross AlphaBeta Gross Alpha 5.68E-15 4.66E-15 7.38E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destreban Street 11/20/16 Gross AlphaBeta Gross Alpha 5.68E-16 4.56E-15 9.18E-15 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Alpha 9.61E-15 7.88E-15 9.18E-15 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 2.30E-14 1.32E-14 1.76E-14 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 2.30E-14 1.32E-14 1.76E-14 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 2.30E-14 1.32E-14 1.76E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 1.06E-14 1.32E-14 1.76E-14 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 1.06E-14 1.32E-15 0.56E-15 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross AlphaBeta Gross Beta 1.06E-14 1.32E-14 µC/ml. UJ T06 SLDS (General Area)-Perimete				•	•				1			· /
SLD193377 Building 101 11/28/16 Gross Alpha/Beta Gross Beta 1.15E-14 1.15E-14 1.15E-14 1.27E-14 µC/mil. UJ T06 SLDS (General Area)-Perimeter Air SLD193321 Destrehan Street 11/29/16 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Beta 2.67E-15 9.40E-15 1.73E-14 µC/mil. UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destrehan Street 11/20/16 Gross Alpha/Beta Gross Beta 3.08E-14 2.67E-15 1.73E-14 µC/mil. UJ T06 SLDS (General Area)-Perimeter Air SLD193323 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Alpha 5.65E-16 4.56E-15 9.18E-15 µC/mil. U T04 T05 SLDS (General Area)-Perimeter Air SLD193323 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Alpha 5.65E-16 4.56E-15 9.18E-15 µC/mil. U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 µC/mil. U T04, T20 SLDS (General Area)-Perimeter Air SLD193323 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 µC/mil. U T04, T20 SLDS (General Area)-Perimeter Air SLD193324 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 µC/mil. U T06 SLDS (General Area)-Perimeter Air SLD193324 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 µC/mil. U T06 SLDS (General Area)-Perimeter Air SLD193324 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 1.26E-14 µC/mil. U T06 SLDS (General Area)-Perimeter Air SLD193325 POWH Loadout 1.2011/16 Gross Alpha/Beta Gross Beta 3.18E-14 1.26E-14 1.26E-14 µC/mil. U T06 SLDS (General Area)-Perimeter Air SLD193326 POWH Loadout 1.2051/16 Gross Alpha/Beta Gross Beta 3.18E-		Building 101		•				2.72E-14	•	UJ	T06	· · · · · · · · · · · · · · · · · · ·
SLD19321 Destreham Street 11/29/16 Gross Alpha/Beta Gross Alpha/Beta Gross Beta 1.15E-14 1.16E-14 1.74E-14 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destreham Street 11/30/16 Gross Alpha/Beta Gross Alpha Gross Alpha Gross Alpha/Beta Gross Alpha SLD193322 Destreham Street 11/30/16 Gross Alpha/Beta Gross Alpha Gross Alpha SLD193323 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha SSE-14 2.05E-14 2.87E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 QE/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 QE/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 1.76E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 1.76E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 1.76E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.78E-15 5.36E-15 9.65E-15 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.78E-15 5.36E-15 9.56E-15 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.28E-15 6.27E-15 9.56E-15 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 PoWH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha		· · · · · · · · · · · · · · · · · · ·		•	•				•	J	_	· /
SLD193321 Destrehan Street 11/30/16 Gross Alpha/Beta Gross Reta 1.15E-1.4 1.16E-1.4 1.73E-1.4 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destrehan Street 11/30/16 Gross Alpha/Beta Gross Reta 3.08E-1.4 2.05E-1.4 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193322 Destrehan Street 11/30/16 Gross Alpha/Beta Gross Alpha 5.65E-1.6 4.56E-1.5 9.18E-1.5 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 5.65E-1.6 4.56E-1.5 9.18E-1.5 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 5.65E-1.4 1.32E-1.4 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-1.4 1.32E-1.4 µC/ml. UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.00E-1.4 1.32E-1.4 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-1.5 6.26E-1.5 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Reta 1.06E-1.4 1.26E-1.4 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-1.5 6.27E-1.5 9.56E-1.5 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-1.5 6.27E-1.5 9.56E-1.5 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-1.5 9.58E-1.5 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-1.5 5.68E-1.5 9.58E-1.5 µC/ml. UJ T06 SLDS (General Area)-Perimeter Air SLD19332				•					•	UJ		· /
SLD193322 Destrehan Street 11/30/16 Gross Alpha/Betta Gross Alpha 2.67E-15 9.40E-15 1.73E-14 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193322 Destrehan Street 11/30/16 Gross Alpha/Beta Gross Beta 3.08E-14 2.87E-14 µC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 9.18E-15 µC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 9.18E-15 µC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.35E-14 1.76E-14 µC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.35E-14 1.76E-14 µC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 9.56E-15 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 6.27E-15 9.56E-15 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 6.27E-15 9.56E-15 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.78E-14 µC/mL = SLD8 (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.44E-14 1.79E-14 µC/mL U T06 SLD8 (General Area)-Perimeter Air SLD193329 P6W	h			•	•				•			· /
SLD193322 Destreham Street 11/30/16 Gross Alpha/Beta Gross Beta 3.08E-14 2.05E-14 μC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 μC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 μC/mL μC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 1.76E-14 μC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.56E-15 μC/mL J T04, T20 SLD8 (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 μC/mL μC/mL UJ T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 μC/mL UJ T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μC/mL UJ T06 SLD8 (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μC/mL = SLD8 (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μC/mL = SLD8 (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.72E-14 μC/mL = SLD8 (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.88E-15 5.86E-15 μC/mL UJ T06 SLD8 (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.88E-15 7.29E-15 μC/mL UJ T06 SLD8 (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.88E-15 7			+	*					•		-	
SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 5.65E-16 4.56E-15 9.18E-15 μC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.32E-14 1.76E-14 μC/mL SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.32E-14 1.76E-14 μC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.35E-14 1.76E-14 μC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.56E-15 9.65E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-15 9.56E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μC/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.49E-14 1.72E-14 μC/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 μC/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.44E-14 1.72E-14 μC/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 5.68E-15 9.35E-15 μC/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 7.01E-15 8.94E-15				•	•				1	J		
SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 9.61E-15 7.88E-15 9.18E-15 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193232 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.32E-14 1.76E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.32E-14 1.76E-14 µC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 1.85E-14 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 µC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-15 7.29E-15 9.30E-15 µC/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.43E-14 1.78E-14 µC/mL = SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/05/16 Gross Alpha/				•					•		,	,
SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.08E-14 1.32E-14 1.76E-14 μC/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.26E-14 1.85E-14 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μC/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.35E-15 μC/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μC/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μC/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Bet			+		•				•	J	T04, T20	,
SLD193323 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 2.30E-14 1.35E-14 1.76E-14 µCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 1.06E-14 1.85E-14 1.85E-14 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 µCi/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 µCi/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 µCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 µCi/mL = SLD5 (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 µCi/mL = SLD5 (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.08E-15 7.01E-15 9.30E-15 µCi/mL UJ T04, T05 SLD5 (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.08E-15 6.58E-15 9.39E-15 µCi/mL UJ T04, T05 SLD5 (General Area)-Pe				•	•				•		- , -	
SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 1.78E-15 5.36E-15 9.65E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.48E-14 1.20E-14 1.71E-14 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air									•	J	T04, T20	·
SLD193324 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ									1	UJ	,	
SLD193325 P6WH Loadout 12/01/16 Gross Alpha/Beta Gross Alpha 4.12E-15 6.27E-15 9.56E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193325 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SL				*	†							· · · · · · · · · · · · · · · · · · ·
SLD193325 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.13E-14 1.49E-14 1.83E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 4.25E-14 4.26E-14 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6				*								` /
SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 4.98E-15 6.29E-15 8.98E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.88E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.88E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μC					_							,
SLD193326 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.94E-14 1.40E-14 1.72E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS				•					•	UJ	T06	,
SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 2.88E-15 5.68E-15 9.35E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ				•	•				•			· · · · · · · · · · · · · · · · · · ·
SLD193327 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 2.92E-14 1.44E-14 1.79E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.58E-15 9.39E-15 μCi/mL J				•					1		T06	,
SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Alpha 7.45E-15 7.29E-15 9.30E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15				•	•				•			·
SLD193328 P6WH Loadout 12/05/16 Gross Alpha/Beta Gross Beta 3.85E-14 1.53E-14 1.78E-14 μCi/mL = SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>.</td> <td></td> <td>•</td> <td></td> <td>T04, T05</td> <td>` '</td>				•			.		•		T04, T05	` '
SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 7.16E-15 7.01E-15 8.94E-15 μCi/mL UJ T04, T05 SLDS (General Area)-Perimeter Air SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 </td <td></td> <td></td> <td>+</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>10., 100</td> <td>,</td>			+	•	•				1		10., 100	,
SLD193329 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.03E-14 1.29E-14 1.71E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14			+	*							T04. T05	,
SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 5.20E-15 6.58E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air				•	•				1			,
SLD193330 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.64E-14 1.41E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air				•					1	UJ		
SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Alpha 4.05E-15 6.16E-15 9.39E-15 μCi/mL UJ T06 SLDS (General Area)-Perimeter Air SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air				•	•				•	ı		
SLD193331 P6WH Loadout 12/06/16 Gross Alpha/Beta Gross Beta 2.79E-14 1.43E-14 1.80E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air				<u> </u>					1	III		·
SLD194121 P6WH Loadout 12/08/16 Gross Alpha/Beta Gross Alpha 3.70E-14 2.51E-14 2.62E-14 μCi/mL J T04, T20 SLDS (General Area)-Perimeter Air				•	•				1	ı		,
									•	ı		· · · · · · · · · · · · · · · · · · ·
					•				1	=	101, 120	· · · · · · · · · · · · · · · · · · ·

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD194122	P6WH Loadout	12/08/16	Gross Alpha/Beta	Gross Alpha	2.15E-14	2.10E-14	2.68E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194122	P6WH Loadout	12/08/16	Gross Alpha/Beta	Gross Beta	1.13E-13	4.44E-14	5.13E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194123	P6WH Loadout	12/08/16	Gross Alpha/Beta	Gross Alpha	-1.65E-15	1.16E-14	2.68E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194123	P6WH Loadout	12/08/16	Gross Alpha/Beta	Gross Beta	1.05E-13	4.35E-14	5.13E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194124	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Alpha	1.30E-14	8.82E-15	9.18E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194124	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Beta	7.29E-14	1.86E-14	1.76E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194125	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Alpha	6.48E-15	7.11E-15	9.56E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194125	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Beta	6.33E-14	1.82E-14	1.83E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194126	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Alpha	1.74E-14	9.86E-15	9.10E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194126	P6WH Loadout	12/12/16	Gross Alpha/Beta	Gross Beta	7.01E-14	1.83E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194131	Destrehan Street	12/01/16	Gross Alpha/Beta	Gross Alpha	-5.02E-15	9.65E-15	2.72E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194131	Destrehan Street	12/01/16	Gross Alpha/Beta	Gross Beta	2.47E-15	3.19E-14	5.20E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194132	Destrehan Street	12/05/16	Gross Alpha/Beta	Gross Alpha	7.45E-15	7.29E-15	9.30E-15	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194132	Destrehan Street	12/05/16	Gross Alpha/Beta	Gross Beta	3.99E-14	1.55E-14	1.78E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194133	Destrehan Street	12/06/16	Gross Alpha/Beta	Gross Alpha	1.68E-15	5.05E-15	9.10E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194133	Destrehan Street	12/06/16	Gross Alpha/Beta	Gross Beta	2.42E-14	1.35E-14	1.74E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194134	Destrehan Street	12/07/16	Gross Alpha/Beta	Gross Alpha	5.00E-15	6.32E-15	9.02E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194134	Destrehan Street	12/07/16	Gross Alpha/Beta	Gross Beta	2.47E-14	1.35E-14	1.72E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194135	Destrehan Street	12/08/16	Gross Alpha/Beta	Gross Alpha	1.65E-15	1.33E-14	2.68E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194135	Destrehan Street	12/08/16	Gross Alpha/Beta	Gross Beta	3.37E-14	3.54E-14	5.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194136	Destrehan Street	12/12/16	Gross Alpha/Beta	Gross Alpha	1.26E-14	8.52E-15	8.87E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194136	Destrehan Street	12/12/16	Gross Alpha/Beta	Gross Beta	5.94E-14	1.69E-14	1.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194137	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Alpha	1.06E-14	9.02E-15	1.12E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194137	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Alpha	1.17E-14	9.33E-15	1.12E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194137	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Beta	9.47E-14	2.15E-14	1.78E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194137	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Beta	1.06E-13	2.25E-14	1.78E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194138	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Alpha	1.02E-14	8.74E-15	1.09E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD194138	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Beta	7.52E-14	1.93E-14	1.73E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194139	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Alpha	5.86E-15	7.68E-15	1.12E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194139	P6WH Loadout	12/13/16	Gross Alpha/Beta	Gross Beta	9.54E-14	2.16E-14	1.78E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194140	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Alpha	5.73E-15	7.51E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194140	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Beta	2.53E-14	1.45E-14	1.74E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194141	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Alpha	1.11E-14	8.80E-15	1.06E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194141	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Beta	3.97E-14	1.56E-14	1.68E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194142	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Alpha	5.73E-15	7.51E-15	1.10E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194142	P6WH Loadout	12/14/16	Gross Alpha/Beta	Gross Beta	3.61E-14	1.56E-14	1.74E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194143	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Alpha	0	5.68E-15	1.14E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194143	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Beta	3.07E-14	1.55E-14	1.81E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194144	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Alpha	9.08E-15	8.43E-15	1.09E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD194144	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Beta	2.93E-14	1.48E-14	1.73E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194145	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Alpha	7.10E-15	8.11E-15	1.13E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194145	P6WH Loadout	12/15/16	Gross Alpha/Beta	Gross Beta	3.43E-14	1.58E-14	1.80E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194146	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Alpha	-3.63E-15	7.00E-15	1.74E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194146	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Beta	1.37E-14	1.99E-14	2.77E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194147	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Alpha	0	8.44E-15	1.69E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194147	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Beta	1.44E-14	1.95E-14	2.69E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194148	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Alpha	3.83E-15	1.06E-14	1.83E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD194148	P6WH Loadout	12/19/16	Gross Alpha/Beta	Gross Beta	2.77E-14	2.25E-14	2.91E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD194149	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Alpha	2.09E-15	5.79E-15	9.96E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194149	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Beta	3.75E-14	1.47E-14	1.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194150	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Alpha	8.62E-15	8.00E-15	1.03E-14	μCi/mL	U	T04, T05	SLDS (General Area)-Perimeter Air
SLD194150	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Beta	2.58E-14	1.38E-14	1.64E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194151	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Alpha	4.17E-15	6.50E-15	9.96E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194151	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Alpha	1.25E-14	8.82E-15	9.96E-15	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194151	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Beta	4.60E-14	1.55E-14	1.59E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194151	P6WH Loadout	12/20/16	Gross Alpha/Beta	Gross Beta	4.47E-14	1.54E-14	1.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194152	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Alpha	8.51E-15	7.90E-15	1.02E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194152	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Beta	5.44E-14	1.66E-14	1.62E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194153	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Alpha	5.21E-15	6.83E-15	9.96E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194153	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Beta	5.19E-14	1.61E-14	1.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194154	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Alpha	6.26E-15	7.15E-15	9.96E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194154	P6WH Loadout	12/21/16	Gross Alpha/Beta	Gross Beta	5.13E-14	1.61E-14	1.59E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194155	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Alpha	3.36E-15	6.62E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194155	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Beta	3.11E-14	1.48E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194156	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Alpha	6.72E-15	7.68E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194156	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Beta	2.26E-14	1.39E-14	1.71E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194157	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Alpha	1.01E-14	8.62E-15	1.07E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194157	P6WH Loadout	12/22/16	Gross Alpha/Beta	Gross Beta	4.10E-14	1.58E-14	1.71E-14	μCi/mL	=	, , , ,	SLDS (General Area)-Perimeter Air
SLD194158	P6WH Loadout	12/27/16	Gross Alpha/Beta	Gross Alpha	1.12E-15	5.80E-15	1.07E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194158	P6WH Loadout	12/27/16	Gross Alpha/Beta	Gross Beta	5.51E-14	1.73E-14	1.71E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194159	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Alpha	3.33E-15	6.56E-15	1.06E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194159	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Beta	8.76E-14	2.02E-14	1.69E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194160	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Alpha	4.39E-15	6.84E-15	1.05E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194160	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Beta	5.81E-14	1.73E-14	1.67E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194161	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Alpha	8.93E-15	8.28E-15	1.07E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194161	P6WH Loadout	12/28/16	Gross Alpha/Beta	Gross Beta	1.06E-13	2.19E-14	1.70E-14	μCi/mL	=	10., 100	SLDS (General Area)-Perimeter Air
SLD194162	DESTREHAN ST.	12/13/16	Gross Alpha/Beta	Gross Alpha	2.03E-14	1.10E-14	9.51E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194162	DESTREHAN ST.	12/13/16	Gross Alpha/Beta	Gross Alpha	2.03E-14	1.10E-14	9.51E-15	μCi/mL	Ī	T04, T20	SLDS (General Area)-Perimeter Air
SLD194162	DESTREHAN ST.	12/13/16	Gross Alpha/Beta	Gross Beta	8.34E-14	2.45E-14	2.86E-14	μCi/mL		101,120	SLDS (General Area)-Perimeter Air
SLD194162	DESTREHAN ST.	12/13/16	Gross Alpha/Beta	Gross Beta	1.02E-13	2.60E-14	2.86E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194163	DESTREHAN ST.	12/14/16	Gross Alpha/Beta	Gross Alpha	4.57E-15	6.48E-15	9.55E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194163	DESTREHAN ST.	12/14/16	Gross Alpha/Beta	Gross Beta	3.06E-14	2.03E-14	2.88E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194164	DESTREHAN ST.	12/15/16	Gross Alpha/Beta	Gross Alpha	1.29E-14	9.57E-15	1.03E-14	μCi/mL	I	T04, T20	SLDS (General Area)-Perimeter Air
SLD194164	DESTREHAN ST.	12/15/16	Gross Alpha/Beta	Gross Beta	2.12E-14	2.09E-14	3.11E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194165	DESTREHAN ST.	12/19/16	Gross Alpha/Beta	Gross Alpha	9.50E-16	5.11E-15	9.93E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194165	DESTREHAN ST.	12/19/16	Gross Alpha/Beta	Gross Beta	2.20E-14	2.03E-14	2.99E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194166	DESTREHAN ST.	12/20/16	Gross Alpha/Beta	Gross Alpha	1.96E-15	5.03E-15	8.76E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194166	DESTREHAN ST.	12/20/16	Gross Alpha/Beta	Gross Beta	3.74E-14	1.94E-14	2.64E-14	μCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD194167	DESTREHAN ST.	12/21/16	Gross Alpha/Beta	Gross Alpha	-2.79E-16	3.91E-15	8.76E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194167	DESTREHAN ST.	12/21/16	Gross Alpha/Beta	Gross Beta	4.95E-14	2.04E-14	2.64E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
SLD194168	DESTREHAN ST.	12/22/16	Gross Alpha/Beta	Gross Alpha	2.01E-15	5.16E-15	9.00E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194168	DESTREHAN ST.	12/22/16	Gross Alpha/Beta	Gross Beta	2.22E-14	1.85E-14	2.71E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194169	DESTREHAN ST.	12/27/16	Gross Alpha/Beta	Gross Alpha	-2.73E-16	3.83E-15	8.57E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194169	DESTREHAN ST.	12/27/16	Gross Alpha/Beta	Gross Beta	4.50E-14	1.97E-14	2.58E-14	μCi/mL	=	100	SLDS (General Area)-Perimeter Air
3LD134103	DESTREMAN ST.	12/2//10	Oross Aipha/Deta	Oross Deta	4.50E-14	1.7/L-14	2.30L-14	μCI/IIIL	_		SEDS (Ochiciai Alea)-Fellilletei All

Table B-3. SLDS Perimeter Air Data Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD194170	DESTREHAN ST.	12/28/16	Gross Alpha/Beta	Gross Alpha	4.92E-15	5.89E-15	8.12E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194170	DESTREHAN ST.	12/28/16	Gross Alpha/Beta	Gross Beta	5.46E-14	1.96E-14	2.44E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD194173	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Alpha	8.30E-16	4.47E-15	8.68E-15	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194173	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Alpha	4.15E-15	5.89E-15	8.68E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194173	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Beta	4.33E-15	1.64E-14	2.61E-14	μCi/mL			SLDS (General Area)-Perimeter Air
SLD194173	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Beta	1.43E-14	1.73E-14	2.61E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194174	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Alpha	2.01E-15	5.16E-15	9.00E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194174	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Beta	2.51E-14	1.88E-14	2.71E-14	μCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD194175	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Alpha	1.96E-15	5.05E-15	8.80E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194175	P6WH Loadout	12/29/16	Gross Alpha/Beta	Gross Beta	1.09E-14	1.72E-14	2.65E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194176	DESTREHAN ST.	12/29/16	Gross Alpha/Beta	Gross Alpha	8.68E-16	4.67E-15	9.08E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD194176	DESTREHAN ST.	12/29/16	Gross Alpha/Beta	Gross Beta	1.42E-14	1.80E-14	2.73E-14	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air

VQs:

- = Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.
- J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.
- U Indicates that the data met all QA/QC requirements, and that the parameter was analyzed for but was not detected above the reported sample quantitation limit.
- UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

Validation Reason Codes:

- F01 Blanks: Sample data were qualified as a result of the method blank.
- J01 Laboratory Duplicate: Duplicate RPD/normalized absolute difference (NAD) was outside the control limit.
- T02 Radionuclide Quantitation: Analytical uncertainties were not met and/or not reported.
- T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.
- T05 Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.
- T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.
- T07 Radionuclide Quantitation: Negative analytical result where the absolute value exceeds 2 times the associated MDA.
- T20 Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Table B-4. SLDS Radon-222 Results for CY 2016

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS184872	BA-1	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	HISS Air (Alpha Tracks)-Environmental Monitoring
HIS194325	BA-1	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	HISS/Futura (Alpha Tracks)-Environmental Monitoring
SLD184917	DA-1	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194355	DA-1	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD184917-1	DA-1dup	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194355-1	DA-1dup	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD184918	DA-2	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194356	DA-2	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD184919	DA-3	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194357	DA-3	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD184920	DA-6	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194358	DA-6	01/04/17	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD184921	DI-1	07/07/16	Radiological	Rn-222	0.2	0	0.2	pCi/L	UJ	Y01	
SLD194359	DI-1	01/04/17	Radiological	Rn-222	1.5	0	0.2	pCi/L	J	Y01	
SLD184922	DI-2	07/07/16	Radiological	Rn-222	0.7	0	0.2	pCi/L	J	Y01	
SLD194360	DI-2	01/04/17	Radiological	Rn-222	1.1	0	0.2	pCi/L	J	Y01	

Futura - Futura Coatings Company HISS - Hazelwood Interim Storage Site

VQs:

Validation Reason Code:

Y01 FUSRAP Only: Not enough supporting documentation to perform validation.

J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
APPENDIX C	
STORM-WATER, WASTE-WATER, AND EXCAVATION-WATER I	DATA
(On the CD-ROM on the Back Cover of this Report)	
(

st. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS DACE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	

Table C-1. First Quarter Self-Monitoring Report for Excavation-Water Discharge at the SLDS During CY 2016

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge ^b (Ci)	MSD Discharge Limit		SOR
Gross Alpha (raw water)			144	pCi/L		7.2E-04	3,000	pCi/L	
Gross Beta			62	pCi/L		3.1E-04	N.	/A	
Th-228			< 0.7	pCi/L		1.7E-06	2,000	pCi/L	
Th-230		01/04/16 -	< 0.6	pCi/L		1.5E-06	1,000	pCi/L	
Th-232	SLDS-BK544 ^f	01/28/16	< 0.5	pCi/L	1,327,317	1.2E-06	300	pCi/L	0.06
Uranium (KPA)		(Plant 6WH)	168	pCi/L		8.5E-04	3,000	pCi/L	
Ra-226 ^c			< 2.6	pCi/L		6.5E-06	10	pCi/L	
Ra-228 ^{d,e}			< 0.7	pCi/L		1.7E-06	30	pCi/L	
TSS			10	mg/L				-	
Gross Alpha (raw water)			292	pCi/L		8.9E-05	3,000	pCi/L	
Gross Beta			155	pCi/L		4.7E-05	N.	/A	
Th-228			< 0.5	pCi/L		8.0E-08	2,000	pCi/L	
Th-230		02/04/16 -	1	pCi/L		1.6E-07	1,000	pCi/L	
Th-232	SLDS-BK545	02/22/16	< 0.3	pCi/L	80,220	5.0E-08	300	pCi/L	0.11
Uranium (KPA)		(Plant 6WH)	316	pCi/L		9.6E-05	3,000	pCi/L	
Ra-226 ^c			<1.5	pCi/L		2.2E-07	10	pCi/L	
Ra-228 ^{d,e}			< 0.5	pCi/L		8.0E-08	30	pCi/L	
TSS			62	mg/L				-	
Gross Alpha (raw water)			135	pCi/L		3.4E-05	3,000	pCi/L	
Gross Beta			64	pCi/L		1.6E-05	N.	/A	
Th-228			< 0.5	pCi/L		6.3E-08	2,000	pCi/L	
Th-230		03/07/16 -	< 0.6	pCi/L		7.5E-08	1,000	pCi/L	
Th-232	SLDS-BK546	03/30/16	< 0.5	pCi/L	67,610	6.2E-08	300	pCi/L	0.05
Uranium (KPA)		(Plant 6WH)	146	pCi/L		3.7E-05	3,000	pCi/L	
Ra-226 ^c			<1.3	pCi/L		1.6E-07	10	pCi/L	
Ra-228 ^{d,e}			< 0.5	pCi/L		6.3E-08	30	pCi/L	
TSS			23	mg/L					

Total Activity Discharged in	n First Quarter of CY 2016 (Ci)	Total Activity Discharged through	03/31/16 (Ci)
Th-228	1.8E-06	Th-228	1.8E-06
Th-230	1.7E-06	Th-230	1.7E-06
Th-232	1.3E-06	Th-232	1.3E-06
Uranium (KPA)	9.8E-04	Uranium (KPA)	9.8E-04
Ra-226	6.9E-06	Ra-226	6.9E-06
Ra-228 ^d	1.8E-06	Ra-228 ^d	1.8E-06

Total Volume Discharged through 03/31/16 (gallons)

1,475,147

Gallons

^a Non-detect sample results are converted to half the DL.

Total Volume Discharged in First Quarter of CY 2016 (gallons)

1,475,147

Notes:

- No data/No limit

Gallons

N/A - Not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s) \\$

APPENDIX C REVISION 0

^b The weighted average was used to calculate the total activity.

c 10 CFR 20 limit is 600 pCi/L for Ra-226.

 $^{^{\}rm d}$ Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm c}\,10$ $CFR\,$ 20 limit is 600 pCi/L for Ra-228.

^f On January 4, 2016, the USACE received MSD approval to temporarily increase the daily discharge to 250,000 gallons per day using a 150-micron filter during the large rain event.

Table C-1. Second Quarter Self-Monitoring Report for Excavation-Water Discharge at the SLDS During CY 2016

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge ^b (Ci)	MSD Discharge Limit		SOR
Gross Alpha (raw water)			102	pCi/L		6.4E-05	3,000	pCi/L	
Gross Beta			52	pCi/L		3.3E-05	N.	/A	
Th-228			0.9	pCi/L		5.3E-07	2,000	pCi/L	
Th-230		04/05/16 -	2	pCi/L		9.5E-07	1,000	pCi/L	
Th-232	SLDS-BK547	04/27/16	0.8	pCi/L	165,360	5.0E-07	300	pCi/L	0.05
Uranium (KPA)		(Plant 6WH)	131	pCi/L		8.2E-05	3,000	pCi/L	
Ra-226 ^c			2	pCi/L		1.3E-06	10	pCi/L	
Ra-228 ^{d,e}			0.9	pCi/L		5.3E-07	30	pCi/L	
TSS			526	mg/L				-	
Gross Alpha (raw water)			72	pCi/L		9.8E-05	3,000	pCi/L	
Gross Beta			32	pCi/L		4.4E-05	N.	/A	
Th-228			< 0.6	pCi/L		4.1E-07	2,000	pCi/L	
Th-230		05/02/16 -	1	pCi/L		1.1E-06	1,000	pCi/L	
Th-232	SLDS-BK548	05/31/16	< 0.5	pCi/L	358,210	3.7E-07	300	pCi/L	0.03
Uranium (KPA)		(Plant 6WH)	88	pCi/L		1.2E-04	3,000	pCi/L	
Ra-226 ^c			<1.7	pCi/L		1.1E-06	10	pCi/L	
Ra-228 ^{d,e}			< 0.6	pCi/L		4.1E-07	30	pCi/L	
TSS			142	mg/L				-	
Gross Alpha (raw water)			37	pCi/L		3.5E-05	3,000	pCi/L	
Gross Beta			<20.8	pCi/L		9.8E-06	N.	/A	
Th-228			< 0.7	pCi/L		3.4E-07	2,000	pCi/L	
Th-230		06/06/16 -	1	pCi/L		7.4E-07	1,000	pCi/L	
Th-232	SLDS-BK549	06/30/16	< 0.4	pCi/L	248,475	2.0E-07	300	pCi/L	0.02
Uranium (KPA)		(Plant 6WH)	37	pCi/L		3.5E-05	3,000	pCi/L	
Ra-226 ^c			<1.4	pCi/L		6.8E-07	10	pCi/L	
Ra-228 ^{d,e}			< 0.7	pCi/L		3.4E-07	30	pCi/L	
TSS			120	mg/L				-	

Total Activity Discharged in Second	l Quarter of CY	2016 (Ci)
--	-----------------	-----------

Th-228	1.3E-06
Th-230	2.8E-06
Th-232	1.1E-06
Uranium (KPA)	2.4E-04
Ra-226	3.1E-06
Ra-228 ^d	1.3E-06

Total Volume Discharged in S	econd Quarter of CY 2016 (gallons)
Gallons	772 045

 $[\]ensuremath{^{a}}\xspace$ Non-detect sample results are converted to half the DL.

Notes:

- No data/No limit

N/A - Not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s) \\$

Total Activity Discharged through 06/30/16 (Ci)

total Activity Discharged through oo/.	30/10 (C1)
Th-228	3.1E-06
Th-230	4.5E-06
Th-232	2.3E-06
Uranium (KPA)	1.2E-03
Ra-226	1.0E-05
Ra-228 ^d	3.1E-06

Total Volume Discharged through 06/30/16 (gallons)
Gallons 2,247,192

^b The weighted average was used to calculate the total activity.

 $^{^{\}rm c}$ 10 CFR 20 limit is 600 pCi/L for Ra-226.

 $^{^{\}rm d}$ Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm c}$ 10 $CFR\,$ 20 limit is 600 pCi/L for Ra-228.

Table C-1. Third Quarter Self-Monitoring Report for Excavation-Water Discharge at the SLDS During CY 2016

Parameter	Batch Number	Date of Discharge		Batch Results ^a Amount Discharge (Gallons		Total Activity per Discharge ^b (Ci)	MSD Discharge Limit		SOR
Gross Alpha (raw water)			24	pCi/L		2.9E-05	3,000	pCi/L	
Gross Beta			19	pCi/L		2.3E-05	N	/A	
Th-228			< 0.8	pCi/L		4.7E-07	2,000	pCi/L	
Th-230		07/03/16 -	1	pCi/L		7.8E-07	1,000	pCi/L	
Th-232	SLDS-BK550	07/28/16	< 0.5	pCi/L	320,505	3.0E-07	300	pCi/L	0.01
Uranium (KPA)		(Plant 6WH)	33	pCi/L		4.0E-05	3,000	pCi/L	
Ra-226 ^c			<1.7	pCi/L		1.0E-06	10	pCi/L	
Ra-228 ^{d,e}			< 0.8	pCi/L		4.7E-07	30	pCi/L	†
TSS			102	mg/L			-		
Gross Alpha (raw water)			<25.8	pCi/L		3.9E-05	3,000	pCi/L	
Gross Beta			<30.9	pCi/L		4.6E-05	N	/A	
Th-228			< 0.6	pCi/L		9.1E-07	2,000	pCi/L	
Th-230		08/01/16 -	1	pCi/L		3.6E-06	1,000	pCi/L	
Th-232	SLDS-BK551 ^f	08/31/16	< 0.4	pCi/L	789,555	6.3E-07	300	pCi/L	0.01
Uranium (KPA)		(Plant 6WH)	23	pCi/L		6.8E-05	3,000	pCi/L	
Ra-226 ^c			<1.4	pCi/L		2.1E-06	10	pCi/L	1
Ra-228 ^{d,e}			< 0.6	pCi/L		9.1E-07	30	pCi/L	
TSS			160	mg/L				-	
Gross Alpha (raw water)			24	pCi/L		7.6E-05	3,000	pCi/L	
Gross Beta			<20	pCi/L		3.2E-05	N	/A	
Th-228			< 0.8	pCi/L		1.2E-06	2,000	pCi/L	
Th-230		09/07/16 -	< 0.7	pCi/L		1.0E-06	1,000	pCi/L	
Th-232	SLDS-BK552 ^g	09/26/16	< 0.6	pCi/L	842,180	8.9E-07	300	pCi/L	0.01
Uranium (KPA)		(Plant 6WH)	26	pCi/L		8.3E-05	3,000	pCi/L	
Ra-226 ^c			<1.7	pCi/L		2.7E-06	10	pCi/L	
Ra-228 ^{d,e}			< 0.8	pCi/L		1.2E-06	30	pCi/L	
TSS			125	mg/L				-	

Total Activity Discharged i	n Third Quarter of CY 2016 (Ci)	Total Activity Discharged through 09	7/30/16 (Ci)
Th-228	2.6E-06	Th-228	5.7E-06
Th-230	5.4E-06	Th-230	9.9E-06
Th-232	1.8E-06	Th-232	4.2E-06
Uranium (KPA)	1.9E-04	Uranium (KPA)	1.4E-03
Ra-226	5.9E-06	Ra-226	1.6E-05
Ra-228 ^d	2.6E-06	Ra-228 ^d	5.7E-06

Total Volume Discharged in Third Quarter of CY 2016 (gallons)

Gallons 1,952,240

Total Volume Discharged through 09/30/16 (gallons)
Gallons 4,199,432

N/A - Not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s) \\$

APPENDIX C REVISION 0

 $^{^{\}rm a}$ Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

c 10 CFR 20 limit is 600 pCi/L for Ra-226.

 $^{^{\}rm d}$ Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm c}$ 10 $\it CFR\,$ 20 limit is 600 pCi/L for Ra-228.

f On August 12, 2016, the USACE received MSD approval to temporarily increase the daily discharge to 250,000 gallons per day during the large rain event.

⁸ On September 12, 2016, the USACE received MSD approval to temporarily increase the daily discharge to 250,000 gallons per day due to the large rainfall over the weekend. Notes:

⁻ No data/No limit

Table C-1. Fourth Quarter Self-Monitoring Report for Excavation-Water Discharge at the SLDS **During CY 2016**

Parameter	Batch Number	Date of Discharge		Baten Posulte ^a Di		Discharged		Total Activity per Discharge ^b (Ci)	MSD Discharge Limit		SOR
Gross Alpha (raw water)			34	pCi/L		2.3E-05	3,000	pCi/L			
Gross Beta			<20.6	pCi/L		6.9E-06	N.	/A	Ī		
Th-228			< 0.6	pCi/L	I	2.0E-07	2,000	pCi/L			
Th-230	SLDS-BK553	10/06/16 -	2	pCi/L		1.2E-06	1,000	pCi/L			
Th-232	SLDS-BK333	10/31/16	< 0.4	pCi/L	177,120	1.3E-07	300	pCi/L	0.02		
Uranium (KPA)		(Plant 6WH)	38	pCi/L		2.6E-05	3,000	pCi/L			
Ra-226 ^c			<2.1	pCi/L		7.0E-07	10	pCi/L			
Ra-228 ^{d,e}			< 0.6	pCi/L		2.0E-07	30	pCi/L			
TSS			160	mg/L				-			
Gross Alpha (raw water)			25	pCi/L		2.9E-05	3,000	pCi/L			
Gross Beta		11/03/16 - 11/28/16 (Plant 6WH)	24	pCi/L	313,930	2.9E-05	N.	/A			
Th-228			0.7	pCi/L		8.3E-07	2,000	pCi/L	0.01		
Th-230			2	pCi/L		2.0E-06	1,000	pCi/L			
Th-232	SLDS-BK554 ^f		< 0.5	pCi/L		3.0E-07	300	pCi/L			
Uranium (KPA)			26	pCi/L		3.1E-05	3,000	pCi/L			
Ra-226 ^c			<1.5	pCi/L		9.2E-07	10	pCi/L			
Ra-228 ^{d,e}			0.7	pCi/L		8.3E-07	30	pCi/L			
TSS			329	mg/L				-			
Gross Alpha (raw water)			38	pCi/L		7.3E-06	3,000	pCi/L			
Gross Beta			41	pCi/L		8.1E-06	N.	/A			
Th-228			< 0.6	pCi/L		6.4E-08	2,000	pCi/L			
Th-230		12/12/16 -	1	pCi/L		1.2E-07	1,000	pCi/L	Ī		
Th-232	SLDS-BK555	12/29/16	< 0.4	pCi/L	51,618	3.8E-08	300	pCi/L	0.02		
Uranium (KPA)		(Plant 6WH)	50	pCi/L		9.8E-06	3,000	pCi/L			
Ra-226 ^c			<1.6	pCi/L		1.6E-07	10	pCi/L	[
Ra-228 ^{d,e}			< 0.6	pCi/L		6.4E-08	30	pCi/L	[
TSS			410	mg/L				-			

Total Activity Discharged	in Fourth Quarter of CY 2016 (Ci)	Total Activity Discharged through 12/31/16 (Ci)				
Th-228	1.1E-06	Th-228	6.8E-06			
Th-230	3.3E-06	Th-230	1.3E-05			
Th-232	4.6E-07	Th-232	4.6E-06			
Uranium (KPA)	6.6E-05	Uranium (KPA)	1.5E-03			
Ra-226	1.8E-06	Ra-226	1.8E-05			
Ra-228 ^d	1.1E-06	Ra-228 ^d	6.8E-06			

Total Volume Discharged in Fourth Quarter of CY 2016 (gallons) Gallons 542,668

Total Volume Discharged through 12/31/16 (gallons) Gallons 4,742,100

Notes:

- No data/No limit

N/A - Not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s)$

APPENDIX C **REVISION 0**

 $^{^{\}rm a}$ Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

c 10 CFR 20 limit is 600 pCi/L for Ra-226.

 $^{^{\}rm d}$ Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm c}$ 10 $\it CFR\,$ 20 limit is 600 pCi/L for Ra-228.

 $^{^{\}rm f}$ On November 3, 2016, the USACE received MSD approval to temporarily increase the daily discharge to 150,000 gallons per day.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016
A DDENIDAY D
APPENDIX D
GROUND-WATER FIELD PARAMETER DATA FOR CALENDAR YEAR 2016 AND ANALYTICAL DATA RESULTS FOR CALENDAR YEAR 2016
(On the CD-ROM on the Back Cover of this Report)

st. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS DACE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	

Table D-1. Ground-Water Monitoring First Quarter 2016 - Field Parameters for the SLDS

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 02/25/16
B16W06D											27.60
B16W06S											29.30
B16W07D											30.14
B16W08D											30.13
B16W08S											27.64
B16W09D											28.30
B16W12S											15.69
DW14											21.69
DW15	02/26/16	250	6,000	6.39	0.297	234	6.30	15.90	64	31.11	32.00
DW16											27.38
DW17											25.72
DW18											31.46
DW19											*
DW21	02/26/16	50	600	6.53	0.228	0	2.16	14.10	-163	10.04	9.26
DW22R											**

Table D-1. Ground-Water Monitoring Second Quarter 2016 - Field Parameters for the SLDS

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 06/07/16
B16W06D											21.37
B16W06S											23.00
B16W07D											23.57
B16W08D											23.83
B16W08S											20.02
B16W09D											19.39
B16W12S											14.75
DW14											14.41
DW15											24.98
DW16											20.45
DW17											19.16
DW18											25.17
DW19											**
DW21											9.26
DW22R											**

D-2
APPENDIX D

REVISION 0

Table D-1. Ground-Water Monitoring Third Quarter 2016 - Field Parameters for the SLDS

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 08/16/16
B16W06D											25.48
B16W06S											26.74
B16W07D											27.85
B16W08D											28.05
B16W08S											24.31
B16W09D											23.66
B16W12S											9.53
DW14											18.97
DW15											29.41
DW16	08/16/16	300	4,500	6.38	0.149	0	1.23	20	-100	24.87	24.87
DW17											23.51
DW18											28.23
DW19											*
DW21	08/16/16	300	4,500	6.54	0.233	0	1.2	21.2	-185	8.8	8.51
DW22R											**

Table D-1. Ground-Water Monitoring Fourth Quarter 2016 - Field Parameters for the SLDS

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (µS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 11/09/16
B16W06D											28.05
B16W06S	11/10/16	100	1,500	6.62	0.151	0	1.26	17.6	-170	29.61	28.65
B16W07D											30.24
B16W08D	11/09/16	280	4,200	6.29	0.193	817	1.4	17.1	-156	30.53	30.53
B16W08S											25.6
B16W09D	11/10/16	300	3,600	6.51	0.327	815	1.2	19.9	-183	26.32	25.9
B16W12S											15.05
DW14											20.63
DW15	11/09/16	245	2,000	6.48	0.269	796	6.56	19.6	148	31.52	31.52
DW16	11/10/16	300	3,600	6.51	0.151	0	1.34	18.5	-102	27.6	27.13
DW17											25.88
DW18	11/10/16	300	3,600	6.53	0.173	963	1.6	17.7	-158	32.34	31.76
DW19											*
DW21											8.89
DW22R											**

No ground-water samples were collected at the SLDS during the second quarter of 2016.

BTOC - below top of casing

DO - dissolved oxygen

NTU - nephelometric turbidity unit

ORP - oxidation reduction potential

APPENDIX D REVISION 0

^{*} Measurement could not be taken at DW19. It was damaged during remediation activies at Plant 6 and was decommissioned on August 3, 2016.

^{**} Measurements were not taken at DW22. It was damaged in CY2014 and was decommissioned on May 4, 2016.

⁻⁻⁻ Monitoring well was not sampled during this event.

Table D-2. CY 2016 Ground-Water Sampling Data for the SLDS

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	vQ	Validation Reason Code	Filtered
SLD191277	B16W06S	06/08/16	SW846 6020	Arsenic	230		1.2	μg/L	=		No
SLD191277	B16W06S	06/08/16	SW846 6020	Cadmium	0.24		0.1	μg/L	=		No
SLD193771-2	B16W06S	11/10/16	SW846 6010B	Arsenic	170		5	μg/L	=		No
SLD193771	B16W06S	11/10/16	SW846 6020	Arsenic	220		4	μg/L	=		No
SLD193771-1	B16W06S	11/10/16	SW846 6020	Arsenic	200		4	μg/L	=		No
SLD193771-2	B16W06S	11/10/16	SW846 6010B	Cadmium	5		5	μg/L	U		No
SLD193771	B16W06S	11/10/16	SW846 6020	Cadmium	0.21		0.2	μg/L	=		No
SLD193771-1	B16W06S	11/10/16	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD193772	B16W08D	11/09/16	SW846 6020	Arsenic	30		4	μg/L	=		No
SLD193772	B16W08D	11/09/16	SW846 6020	Cadmium	0.64		0.2	μg/L	=		No
SLD193772	B16W08D	11/09/16	ML-006	Ra-226	0.301	0.563	1.11	pCi/L	UJ	T06	No
SLD193772	B16W08D	11/09/16	ML-005	Th-228	0.269	0.313	0.502	pCi/L	UJ	T06	No
SLD193772	B16W08D	11/09/16	ML-005	Th-230	0.12	0.224	0.44	pCi/L	UJ	T06	No
SLD193772	B16W08D	11/09/16	ML-005	Th-232	0	0.133	0.358	pCi/L	UJ	T06	No
SLD193772	B16W08D	11/09/16	ML-015	U-234	1	0.498	0.545	pCi/L	J	F01, T04, T20	No
SLD193772	B16W08D	11/09/16	ML-015	U-235	0.04	0.179	0.48	pCi/L	UJ	T06	No
SLD193772	B16W08D	11/09/16	ML-015	U-238	0.678	0.449	0.387	pCi/L	J	F01, T04, T20	No
SLD193773	B16W09D	11/10/16	SW846 6020	Arsenic	37		4	μg/L	=		No
SLD193773	B16W09D	11/10/16	SW846 6020	Cadmium	0.2		0.2	μg/L	=		No
SLD193773	B16W09D	11/10/16	ML-006	R-226	1.37	1.05	1.45	pCi/L	UJ	T04, T05	No
SLD193773	B16W09D	11/10/16	ML-005	Th-228	0.139	0.26	0.51	pCi/L	UJ	T06	No
SLD193773	B16W09D	11/10/16	ML-005	Th-230	0.555	0.402	0.188	pCi/L	J	F01, T04, T20	No
SLD193773	B16W09D	11/10/16	ML-005	Th-232	-0.0346	0.0695	0.415	pCi/L	UJ	T06	No
SLD193773	B16W09D	11/10/16	ML-015	U-234	0.0681	0.137	0.185	pCi/L	UJ	T06	No
SLD193773	B16W09D	11/10/16	ML-015	U-235	0	0	0.228	pCi/L	U		No
SLD193773	B16W09D	11/10/16	ML-015	U-238	-0.0339	0.0681	0.407	pCi/L	UJ	T06	No
SLD191279	DW14	06/08/16	SW846 6020	Arsenic	130		1.2	μg/L	=		No
SLD191279	DW14	06/08/16	SW846 6020	Cadmium	6.7		0.1	μg/L	=		No
SLD191279	DW14	06/08/16	ML-006	Ra-226	1.54	0.985	1.06	pCi/L	J	T04	No
SLD191279	DW14	06/08/16	ML-005	Th-228	0.725	0.503	0.458	pCi/L	J	T04	No

Table D-2. CY 2016 Ground-Water Sampling Data for the SLDS

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD191279	DW14	06/08/16	ML-005	Th-230	0.459	0.382	0.207	pCi/L	J	T04	No
SLD191279	DW14	06/08/16	ML-005	Th-232	0.153	0.217	0.207	pCi/L	UJ	T06	No
SLD191279	DW14	06/08/16	ML-015	U-234	1.06	0.51	0.338	pCi/L	=		No
SLD191279	DW14	06/08/16	ML-015	U-235	0	0	0.174	pCi/L	U		No
SLD191279	DW14	06/08/16	ML-015	U-238	0.724	0.404	0.14	pCi/L	J	T04	No
SLD186142	DW15	02/26/16	SW846 6020	Arsenic	21.00		5.9	μg/L	=		No
SLD186142	DW15	02/26/16	SW846 6020	Cadmium	17		0.5	μg/L	=		No
SLD191276	DW15	06/08/16	SW846 6020	Arsenic	4.5		1.2	μg/L	=		No
SLD191276	DW15	06/08/16	SW846 6020	Cadmium	8		0.1	μg/L	=		No
SLD193774	DW15	11/09/16	SW846 6020	Arsenic	14		4	μg/L	=		No
SLD193774	DW15	11/09/16	SW846 6020	Cadmium	7.6		0.2	μg/L	=		No
SLD191278	DW16	06/07/16	SW846 6020	Arsenic	190		1.2	μg/L	=		No
SLD191278	DW16	06/07/16	SW846 6020	Cadmium	1.6		0.1	μg/L	Ш		No
SLD192614	DW16	08/16/16	SW846 6020	Arsenic	81		1.2	μg/L	=		No
SLD192614	DW16	08/16/16	SW846 6020	Cadmium	0.83		0.1	μg/L	=		No
SLD192614	DW16	08/16/16	ML-006	Ra-226	2.33	1.27	1.26	pCi/L	J	T04	No
SLD192614	DW16	08/16/16	ML-005	Th-228	0.168	0.223	0.369	pCi/L	UJ	T06	No
SLD192614	DW16	08/16/16	ML-005	Th-230	0.183	0.185	0.124	pCi/L	UJ	T02	No
SLD192614	DW16	08/16/16	ML-005	Th-232	-0.0305	0.0611	0.297	pCi/L	UJ	T06	No
SLD192614	DW16	08/16/16	ML-015	U-234	1.19	0.635	0.432	pCi/L	J	T04	No
SLD192614	DW16	08/16/16	ML-015	U-235	0	0	0.241	pCi/L	U		No
SLD192614	DW16	08/16/16	ML-015	U-238	0.897	0.574	0.603	pCi/L	J	T04	No
SLD193775	DW16	11/10/16	SW846 6020	Arsenic	87		4	μg/L	=		No
SLD193775	DW16	11/10/16	SW846 6020	Cadmium	0.49		0.2	μg/L	=		No
SLD193776	DW18	11/10/16	SW846 6020	Arsenic	100		4	μg/L	=		No
SLD193776	DW18	11/10/16	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD193776	DW18	11/10/16	ML-006	Ra-226	0.228	0.588	1.28	pCi/L	UJ	T06	No
SLD193776	DW18	11/10/16	ML-005	Th-228	0.355	0.327	0.387	pCi/L	UJ	T04, T05	No
SLD193776	DW18	11/10/16	ML-005	Th-230	0.355	0.327	0.387	pCi/L	UJ	T04, T05	No
SLD193776	DW18	11/10/16	ML-005	Th-232	0	0	0.175	pCi/L	U		No

APPENDIX D

Table D-2. CY 2016 Ground-Water Sampling Data for the SLDS

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	vQ	Validation Reason Code	Filtered
SLD193776	DW18	11/10/16	ML-015	U-234	0.483	0.41	0.446	pCi/L	J	F01, T04, T20	No
SLD193776	DW18	11/10/16	ML-015	U-235	-0.0458	0.0921	0.55	pCi/L	UJ	T06	No
SLD193776	DW18	11/10/16	ML-015	U-238	0.407	0.377	0.444	pCi/L	UJ	T04, T05	No
SLD186143	DW21	02/26/16	SW846 6020	Arsenic	130		5.9	μg/L	Ш		No
SLD186143	DW21	02/26/16	SW846 6020	Cadmium	22		0.5	μg/L	Ш		No
SLD191275	DW21	06/07/16	SW846 6020	Arsenic	81		1.2	μg/L	II		No
SLD191275	DW21	06/07/16	SW846 6020	Cadmium	0.74		0.1	μg/L	II		No
SLD191275	DW21	06/07/16	ML-006	Ra-226	0.544	0.518	0.663	pCi/L	U	T04, T05	No
SLD191275	DW21	06/07/16	ML-005	Th-228	-1.177E-05	0.178	0.535	pCi/L	UJ	T06	No
SLD191275	DW21	06/07/16	ML-005	Th-230	0.327	0.337	0.436	pCi/L	UJ	T06	No
SLD191275	DW21	06/07/16	ML-005	Th-232	0.145	0.207	0.197	pCi/L	UJ	T06	No
SLD191275	DW21	06/07/16	ML-015	U-234	0.326	0.263	0.289	pCi/L	J	T04	No
SLD191275	DW21	06/07/16	ML-015	U-235	0	0	0.149	pCi/L	U		No
SLD191275	DW21	06/07/16	ML-015	U-238	0.133	0.155	0.12	pCi/L	UJ	T02	No
SLD192615	DW21	08/16/16	SW846 6020	Arsenic	97		1.2	μg/L	=		No
SLD192615	DW21	08/16/16	SW846 6020	Cadmium	1.4		0.1	μg/L	=		No

VQs:

Validation Reason Codes:

- F01 Blanks: Sample data were qualified as a result of the method blank.
- $T02\ Radionuclide\ Quantitation:\ Analytical\ uncertainties\ were\ not\ met\ and/or\ not\ reported.$
- T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.
- T05 Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.
- T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.
- T20 Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainly 50 to 100 percent of the result.

APPENDIX D

REVISION 0

⁼ Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

U Indicates that the data met all QA/QC requirements, and that the parameter was analyzed for but was not detected above the reported sample quantitation limit.

UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

St. Louis Downtown Site Annual Environmental M	Monitoring Data and Analysis Report for CY 2016	
THIS PAGE I	NTENTIONALLY LEFT BLANK	
THIS PAGE I	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	
THIS PAGE II	NTENTIONALLY LEFT BLANK	

St. Louis Downtown Site Annual En	vironmental Monitoring Da	ata and Analysis Report fo	or CY 2016

APPENDIX E

WELL MAINTENANCE CHECKLISTS AND
WELL ABANDONMENT REGISTRATION FORMS FOR THE
ANNUAL GROUND-WATER MONITORING WELL INSPECTIONS
CONDUCTED AT THE ST. LOUIS DOWNTOWN SITE IN CALENDAR YEAR 2016

(On the CD-ROM on the Back Cover of this Report)

St. Louis Downtown Site Annual Environm	nental Monitoring Data and Analysis Report for CY 2016	
WYYG D.		
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	
THIS PA	GE INTENTIONALLY LEFT BLANK	

St. Louis Downtown 9	Site Annual Environments	al Monitoring Data and A	analysis Report for CV 201	6
St. Louis Downtown S	one Annual Environmenta	n wonnoring Data and A	analysis Report for CY 201	υ
			NCE CHECKLIST	S
	FOR THE	E ST. LOUIS DOV	WNTOWN SITE	

st. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
THIS DACE INTENTIONALLY LEFT BLANK	
THIS PAGE INTENTIONALLY LEFT BLANK	

Nam	e of Observer(s):	L. Hoover, N. O	Gross	Date:	03/09/16	_ Time	: 09	940	
Mon	itoring Well Station	n Identification:	B16W06D			APS*	⊠SI	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Is well identification Is well accessible and Is well covered/sure Is there standing was the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete pad Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working Do the flush mount floodplain have a	on visible on top? rrounded by vege vater or debris inspen? If not, clear asing dented, dangs)? dented or damaged intact (free of cre or is it unstable ween pad and we erosion around the tree of the Mississippi Riv pressure cap? In wells in the Miproperly working (shut properly?	side well casing? If r blockage. haged, rusted, or cored? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and	lush mou so, remo vered in o reek floo Coldwate	nt well? ve water. other matter dplain have a		Yes Market Marke		
19. 20. 21.	Is TOC elevation	mark clearly visil	n well casing (i.e., note) ble? that impacts the w	-	-				
22.			ntion before the nex omment section.	t groundv	water surface				
	ments / Observatio 2 – 29.00, TD – 81.0	0							
Sof	t bottom								
Pair	nt lid								

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	ame of Observer(s): L. Hoover, N. Gross				03/09/16	Time:	0950)	
Mon	itoring Well Station	n Identification:	B16W06S			APS* ∑	SLD	S []HISS
1. 2. 3.	Is well identificati Is well accessible	on visible on top?	e on outer casing for f		-	Y (es N	No	N/A
4. 5. 6.	Is the weep hole of	vater or debris ins pen? If not, clear	side well casing? If r blockage.						
7.8.0	(i.e., bird dropping Is the riser casing Is the concrete page	gs)? dented or damage		vered in (other matter				
9. 10. 11. 12.	Does the pad mov Are there gaps bet Are there signs of	e or is it unstable ween pad and we erosion around the	? ell casing?						
13.14.15.	properly working	e Mississippi Riv pressure cap?	er and Coldwater C						
16. 17.	floodplain have a	properly working (shut properly or			or ereen				
18. 19. 20.	Is TOC elevation	r flow away fron mark clearly visit		-	-				
21.22.	comment section. Will the well need	l any type of atter	e that impacts the wattion before the nex	·					
	measurement? If y ments / Observation $2 - 29.5$, TD $- 45.2$	ns regarding this		lush mou	nt well, stick	up well r	etrofit	t adde	ed)
Sol	id bottom								
Lul	oricate lock								

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time	e: <u>10</u>	020	
Mon	itoring Well Station	n Identification:	B16W07D			APS*	⊠SI	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Is well identificating well accessible as well accessible as well covered/sure as there standing was the weep hole of the protective of th	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, dantes? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around the tree of the Mississippi Riv pressure cap? It wells in the Miproperly working	side well casing? If a blockage. In aged, rusted, or coved? racks, chips, etc.)? It casing? It well or pad? It	lush mou so, removered in o	nt well? ve water. other matter dplain have a		Yes		N/A
16. 17. 18. 19. 20. 21.	Do the locks work Are the locks ruste Does surface wate Is TOC elevation: Has there been a comment section.	a properly? ed? or flow away from mark clearly visib change in land use I any type of atter	e that impacts the we	o pondin	s, describe in				
	ments / Observatio - 31.0, TD – 80.85		well. – 78.5; formerly a f	ush mou	nt well, stick	up retr	ofit a	dded)	
Sol	id bottom								
Pro	tective casing need	s to be scraped ar	nd painted.						

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	Time	: 09	930	
Mon	itoring Well Station	n Identification:	B16W08D			APS*	⊠si	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Is well identificating well accessible? Is well covered/sure Is there standing with Is the weep hole of Is the protective of the protectiv	on visible on top? rrounded by vege vater or debris inspen? If not, clear asing dented, dangs)? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around the tree Mississippi Riv pressure cap?	side well casing? If a blockage, naged, rusted, or coved? racks, chips, etc.)? Pell casing? The well or pad? The well or pad?	lush mou so, removered in o	nt well? ve water. other matter dplain have a		Yes Market Marke		N/A
15. 16. 17. 18. 19. 20. 21.	Is the well secure Do the locks work Are the locks ruste Does surface wate Is TOC elevation	properly working (shut properly or a properly? ed? or flow away fron mark clearly visil	locked, if applicable	e)? o pondin	g)?				
	measurement? If y ments / Observatio	ves, describe in co				un retro		⊠ ded)	
	ni-soft bottom	e (Estimated 12	, oro, rounding with		me wen, stren	up roure			

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time	e: 09	935	
Mon	itoring Well Station	n Identification:	B16W08S			APS*	⊠SI	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Is well identificating well accessible. Is well accessible. Is well covered/sure Is there standing with Is the weep hole of the protective	on visible on top? rrounded by vege vater or debris inspen? If not, clear asing dented, dangs)? dented or damaged intact (free of cre or is it unstable tween pad and we erosion around the t? e Mississippi Riv pressure cap? nt wells in the Mississippi the contract of the mississippi ressure cap?	side well casing? If a blockage, naged, rusted, or coved? racks, chips, etc.)?? ell casing? he well or pad? er and Coldwater Cassissippi River and constructions.	lush mou so, removered in o	nt well? we water. other matter dplain have a		Yes		N/A
16. 17. 18. 19. 20. 21.	Do the locks work Are the locks ruste Does surface water Is TOC elevation: Has there been a comment section.	(shut properly or a properly? ed? et flow away from mark clearly visible thange in land use	locked, if applicable	o pondin	s, describe in				
Com	measurement? If y ments / Observation	ves, describe in co	omment section.			k up rei	 trofit	⊠ added)	
	t bottom					1		,	

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Name of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time	: 11	135	
Monitoring Well Statio	n Identification:	B16W09D		[]SI	LAPS*	⊠si	LDS [HISS
 Is well identificated. Is well accessible. Is well covered/st. Is there standing to the st	ion visible on top? arrounded by veget water or debris insopen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? e Mississippi Riv pressure cap? In wells in the Mi properly working (shut properly or a properly? et flow away from mark clearly visible change in land used any type of attertyes, describe in contractions.	side well casing? If a blockage. haged, rusted, or covered? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater Consistsispi River and consists pressure cap? locked, if applicable a well casing (i.e., not be? e that impacts the well comment section.	reek flood Coldwater)?	nt well? ve water. other matter dplain have a er Creek g)? s, describe in	a a	Yes		
WL – 26.7, TD – 55.8	5 (Estimated TD -	- 55.5)						
Semi-soft bottom								
Paint lid and remark w	ell ID or add labe	el						

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	Time: <u>1</u>	115	
Mon	itoring Well Statio	n Identification:	B16W12S			APS* ⊠S	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well accessible Is well accessible Is well covered/su Is there standing was Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps between Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rust Does surface water Is TOC elevation.	ion visible on top? arrounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we reosion around that? The Mississippi Riv pressure cap? In wells in the Mit properly working (shut properly or a properly? The flow away from mark clearly visible change in land used any type of attertives, describe in contractions.	side well casing? If r blockage. haged, rusted, or cored? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater C ssissippi River and gpressure cap? locked, if applicable h well casing (i.e., note? e that impacts the well on before the next owner section.	so, removered in of coldwate. Coldwate. o pondinell? If ye	ve water. other matter odplain have a er Creek g)? s, describe in		\mathbf{x}_0	
	∠ – 15.8, TD – 19.9	0 (Estimated TD -	- 20.1)					
	id bottom nt lid and remark w	vall ID or add labo	اد					
rai	nt nu anu tematk w		5 1					

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time:	11	.25	
Mon	itoring Well Station	n Identification:	DW14			LAPS*	⊠SL	DS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rusted Does surface water Is TOC elevation. Has there been a comment section.	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, damages? dented or damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? In wells in the Misproperly working (shut properly or a properly? ed? er flow away from mark clearly visible thange in land used any type of attentives, describe in contents.	side well casing? If a blockage. haged, rusted, or coved? cacks, chips, etc.)? cacks, chips,	reek floo Coldwate e)? o pondin ell? If ye	ont well? ve water. other matter dplain have a er Creek g)? s, describe in		Yes		
Sof	t bottom								
Pair	nt lid and add label	or remark well II)						

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time:	11	.05	
Mon	itoring Well Station	n Identification:	DW15			LAPS* [⊠sl	DS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of Is the protective of it.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working Do the flush mount floodplain have a Is the well secure Do the locks work Are the locks rusted Is TOC elevation in Has there been a comment section.	on visible on top? rrounded by vege vater or debris ins pen? If not, clear asing dented, dam gs)? dented or damaged intact (free of cre or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? In wells in the Misproperly working (shut properly or a properly? ed? er flow away from mark clearly visible hange in land used any type of attentives, describe in converse, describe in converse.	side well casing? If a blockage. haged, rusted, or coved? cacks, chips, etc.)? ll casing? he well or pad? er and Coldwater Cassissippi River and pressure cap? locked, if applicable well casing (i.e., note? e that impacts the well casing the meaning the meani	reek floo Coldwate e)? o pondin ell? If ye	ve water. other matter dplain have a er Creek g)? s, describe in				N/A
	id bottom	(Estimated TD –	64.5)						
Pai	nt lid								

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time	e: <u>10</u>)40	
Mon	itoring Well Station	n Identification:	DW16			APS*	⊠SI	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	Is well identificating well accessible? Is well covered/sured is there standing with the standing with the weep hole of the protective carrier, bird dropping is the protective carrier, bird dropping is the riser casing. Is the concrete pade is the concrete pade is the pade moved in the property working. The property working is the wells in the property working. The property working is the well secure is the well secure. Do the locks work are the locks rusted is TOC elevation in the property working.	on visible on top? crounded by veget vater or debris instepen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we derosion around that? The Mississippi River pressure cap? In wells in the Misproperly working (shut properly or a properly? The flow away from mark clearly visible.	side well casing? If so blockage. haged, rusted, or covered? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater Consistsippi River and Coldwater Consistsippi River and	reek floo Coldwate	ont well? ve water. other matter dplain have a er Creek g)?		Yes		N/A
21.	comment section.		that impacts the we	•					
22.	Will the well need measurement? If y		ntion before the next comment section.	ground	water surface				
	ments / Observatio $2 - 28.0$, TD $- 49.5$	0 0							
Mu	d/Sediment on pun	np but solid botton	n						
Pad	loose and unstable	e, replace							

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time	e: <u>1</u> 0)10	
Mon	itoring Well Station	n Identification:	DW17			LAPS*	⊠SI	LDS [HISS
	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of Is the protective of (i.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working Do the flush moun floodplain have a Is the well secure Do the locks work Are the locks rusted Does surface water Is TOC elevation. Has there been a comment section.	on visible on top? rrounded by vege vater or debris inspen? If not, clear asing dented, dam gs)? dented or damaged intact (free of cre or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? It wells in the Misproperly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of attentives, describe in comes regarding this	side well casing? If so blockage. haged, rusted, or covered? cacks, chips, etc.)? ell casing? he well or pad? er and Coldwater Crossissippi River and Coldwater Crossissippi River and Colocked, if applicable a well casing (i.e., no ble? e that impacts the weation before the next tomment section. well.	lush mounts, removered in of coldward c	ont well? ve water. other matter dplain have a er Creek g)? s, describe in		Yes		
Sof	t bottom								
Ret	rofit to stick up we	ll and redevelop v	well before taking sa	amples					
Sed	iment appears to be	e infiltrating the v	vell						

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	_ Date:	03/09/16	Time:	103	30	
Mon	itoring Well Station	Identification:	DW18			APS* [⊠s∟	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	Is well identification Is well accessible? Is well covered/sur Is there standing well Is the weep hole of Is the protective car (i.e., bird dropping) Is the riser casing of Is the concrete padd Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working prop	crounded by vege vater or debris inspen? If not, clear using dented, dames? If not dented or damage intact (free of cre or is it unstable ween pad and we erosion around the? Mississippi River or wells in the Mispoperly working (shut properly or properly? ed?	side well casing? If blockage. haged, rusted, or coved? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater Cossissippi River and	lush mou so, removered in of vered in of coldwates e)?	ont well? ve water. other matter dplain have a er Creek				N/A
20. 21.	Is TOC elevation re Has there been a comment section.	-	ole? That impacts the w	ell? If ye	s, describe in				
22.			ntion before the next comment section.	t groundv	water surface				
	ments / Observation 2 – 32.5, TD – 57.95			sh mount	t well, stick up	retrofit	adde	ed)	

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	N. Gross		Date:	03/11/15	Tim	e: 09	925	
Mon	itoring Well Station	n Identification:	DW19			SLAPS*	⊠SI	LDS [HISS
1. 2. 3. 4. 5. 6. 7.	Is well identificati Is well accessible? Is well covered/su Is there standing v Is the weep hole o Is the protective ca (i.e., bird dropping Is the riser casing	on visible on top rrounded by vege vater or debris ins pen? If not, clean asing dented, dant gs)? dented or damage	side well casing? If so r blockage. naged, rusted, or cove ed?	ish mou	ve water.		Yes	No	N/A
10. 11. 12. 13. 14.	properly working	e or is it unstable ween pad and we erosion around the? e Mississippi Riv pressure cap?	? ell casing? ne well or pad? er and Coldwater Cre		-	a			
15. 16. 17. 18. 19. 20. 21.	Is the well secure Do the locks work Are the locks ruste Does surface wate Is TOC elevation	properly working (shut properly or properly? ed? r flow away fron mark clearly visil	locked, if applicable a well casing (i.e., no)? pondin	g)?	n			
	Will the well need measurement? If y ments / Observatio	ves, describe in co ns regarding this					⊠ ne wel	□ l has b	een
			ound level. A pressur						
and	or tubing is unkno	wn. This well nee	eds to be decommissi	ioned ar	nd then repla	aced pos	t reme	edial ac	ction
for	the GRAAA. See a	ssociated photos	for additional inform	ation ar	nd context.				

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s):	L. Hoover, N. C	Gross	Date:	03/09/16	_ Time:	10	50	
Mon	itoring Well Station	n Identification:	DW21			LAPS* [⊠SL	DS [HISS
	Is well identification Is well accessible in the standing with Is there standing with Is the weep hole of Is the protective of it.e., bird dropping Is the riser casing Is the concrete part Does the pad move Are there gaps bet Are there signs of Is riser cap present Do the wells in the properly working Do the flush mount floodplain have a Is the well secure Do the locks work Are the locks rusted Is TOC elevation in Has there been a comment section.	on visible on top? rrounded by veget vater or debris instead pen? If not, clear asing dented, damaged intact (free of cree or is it unstable tween pad and we erosion around that? e Mississippi River pressure cap? It wells in the Misproperly working (shut properly or a properly? ed? er flow away from mark clearly visible change in land used any type of attentives, describe in comes regarding this	side well casing? If so blockage. haged, rusted, or coved? racks, chips, etc.)? Pll casing? he well or pad? he well or pad? he well or pad? he well casing (i.e., no ble? he that impacts the weatton before the next tomment section.	reek floo Coldwate e)?	nt well? ve water. other matter dplain have a er Creek g)? s, describe in			\mathbf{N}_{0}	N/A
	id bottom	o (Estimated 12	22.1)						
Pad	cracked but functi	onal, no action							

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

Nam	e of Observer(s): N. Gross	Date:	03/11/16	Time: 0	910	
Mon	itoring Well Station Identification: <u>DW</u>	22R		APS* ⊠S	LDS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Is well identification number visible on or Is well identification visible on top of we Is well accessible? Is well covered/surrounded by vegetation Is there standing water or debris inside we Is the weep hole open? If not, clear block Is the protective casing dented, damaged, (i.e., bird droppings)? Is the riser casing dented or damaged? Is the concrete pad intact (free of cracks, Does the pad move or is it unstable? Are there gaps between pad and well casing Are there signs of erosion around the well Is riser cap present?	Il casing for flush mount? ell casing? If so, removerage. rusted, or covered in or chips, etc.)?	nt well?	Yes	No N	N/A
14.	Do the wells in the Mississippi River and	Coldwater Creek flood	dplain have a		\boxtimes	
15. 16. 17. 18. 19. 20. 21.	properly working pressure cap? Do the flush mount wells in the Mississip floodplain have a properly working press Is the well secure (shut properly or locked Do the locks work properly? Are the locks rusted? Does surface water flow away from well Is TOC elevation mark clearly visible? Has there been a change in land use that is comment section.	ure cap? d, if applicable)? casing (i.e., no ponding	g)?			
22.	Will the well need any type of attention be measurement? If yes, describe in comment		vater surface			
	ments / Observations regarding this well. s well has been damaged due to scrap meta		neduled to be o	decommiss	ioned th	nis
year	r. The lock and part of the protective casin	g are gone. There is on	ne bollard left.	The bladd	er pum <u>ı</u>	and
asso	ociated cap appear to be intact. Rob Ruther	rford (PSC Metals; 314	1-231-6077) st	tated that th	ey are	in the
pro	cess of cleaning up the area around the we	11.				
Nur	mbers 9. – 11. – Unknown. The pad is und	er an unknown amount	t of soil at the	base of wh	at is lef	t of
the	protective casing. See associated photos for	or additional informatio	on and contex	t.		

^{* -} SLAPS and SLAPS Vicinity Properties (VPs)

St. Louis Downtown Site Ani	nual Environmental Monitoring Data and Analysis Report for CY 2016	
	THIS PAGE INTENTIONALLY LEFT BLANK	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016	
CV 2016 WELL ADANDONMENT DECISTDATION FORMS	
CY 2016 WELL ABANDONMENT REGISTRATION FORMS FOR THE ST. LOUIS DOWNTOWN SITE	

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2016
	THIS PAGE INTENTIONALLY LEFT BLANK

Exceeding Expectations

SL1002-0032

December 6, 2016

Ms. Susan Adams
Alternate Contracting Officer's Representative
U.S. Army Corps of Engineers, St. Louis District
FUSRAP Construction Offices
#2 Angelrodt Street
St. Louis, Missouri 63147

RE: Contract No. W912P9-16-D-0009/Task Order No. 0002

Subject: Monitoring Well Abandonment Registration Record for Monitoring Well DW-19 at Mallinckrodt Plant 6, FUSRAP St. Louis Downtown Site, St. Louis, Missouri

Dear Ms. Adams:

As directed by the U.S. Army Corps of Engineers, St. Louis District, HydroGeoLogic, Inc. has abandoned the Monitoring Well Number DW-19 at Mallinckrodt Plant 6, in accordance with the Missouri Department of Natural Resources (MDNR) requirements.

For your records, the associated MDNR Confirmation Letter with the Well Variance Number Approval form for the abandoned monitoring well listed below are provided in the Attachment to this letter.

Well				MDNR Information	
Identification Number	Well Location/Property	Date of Abandonment	Confirmation Letter Date	Well Certification/Reference Number	Well Variance Number
DW-19	Mallinckrodt (Plant 6)	8/3/2016	10/4/2016	B045314	6086

Should you have any comments or questions regarding this correspondence, please contact Mark Cummings, Missouri Well Drillers Permit Number 004502-M. at 636-248-2102.

Sincerely,

A. Neil DeYong

Project Manager

HydroGeoLogic, Inc.

Please Reply To: A. Neil DeYong

Phone: 314-220-4272

Email Address: ndeyong@hgl.com

Attachment: MDNR Well Abandonment Confirmation Letter and Well Variance Number Approval Form (2 pages)

CC:

Vick L. James - USACE (Email) Darrell Thompson - HGL (Email) Mark Cummings - HGL (Email) Lou Patton - USACE (Email) HGL Project Records STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

www.dnr.mo.gov

P.O. Box 250, Rolla, MO 65402-0250 (573) 368-2165 FAX(573) 368-2317

file(PCD3) October 04, 2016

US CORP OF ENGINEERS 2 ANGELRODT STREET ST LOUIS, MO 63147

Re: 00495616

OFFICIAL DOCUMENT

Congratulations! This confirms that your well abandonment information has been reviewed and registered by the Missouri Department of Natural Resources, Missouri Geological Survey.

This letter may be needed in the future as proof of Registration, verifying that your well was plugged in accordance with the Missouri Well Construction rules.

If you have questions regarding this letter please contact the Wellhead Protection Section at 573-368-2165.

Your Well Registration Number: B045314

Well Number: DW-19

Reference Number: 00495616

Site Name: FUSRAP

Site Address: DESTREHAN STREET

Site City: ST LOUIS

Jeremiah W. (Jay) Nixon, Governor • Sara Parker Pauley, Director

STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES

www.dnr.mo.gov

P.O. Box 250 111 Fairgrounds Rd. Rolla, MO 65402-0250 (573) 368-2165 FAX(573) 368-2317

VARIANCI	E: Approved	d						VARIANC	E NU	MBER:	6086	
			WELL	OWNE	R INFO	RMATI	ON					
NAME:	US CORF	PS OF ENGINEERS	>									
ADDRESS 1	: 2 ANGEL	RODT STREET								FAX	:	
ADDRESS 2	1.											
CITY:	ST LOUIS	3	ST	ATE: I	МО	ZIP: 6	3147	7	relei	PHONE:	:	
				WELL I	LOCATI	ON					2	
COUNTY:	ST	LOUIS CITY	ſ	LAT.	38	39	43.2	LONG.	90	11	22.6	
1/4		1/4	1/4			SEC.	0	TWN.	0	N	RNG.	0
			CONT	RACTO	R INFO	RMATIC	ON					
COMPANY N	IAME:	CB&I FEDERAL S	SERVICES	3			PERMI	T NUMBER	₹:		004502	
CONTRACTO	OR NAME:	MARK CUMMING	S							***************************************		
ADDRESS:		110 J S MCDONN	IELL BLV	E			***************************************			FAX:		
CITY:		HAZELWOOD		STATE	: МО	ZIP	: 63042	1	ELEF	PHONE:	314-895	5-2267
			VAR	IANCE	INFORM	MATION	1					
			VAR	RIANCE	EXPLAN	NOITAN	1					
CONSTRUCT	ANAGER H. FION PARA JRFACE WI	TO PLUG MONITOI AS BEEN ASSIGNE METERS MUST AL ITH SLURRY GROU FACE.	ED TO TH .SO BE G	IIS PRO AINED.	JECT, F GROUT	IIS OR FROM	HER CO	NCURREN DEPTH TO	ICE W	VITH WE	ELL EET OF	
RULE NUMB	ER MODIFI	IED: 10 CSR 2	23-4.080									
			REA	ASON FO	OR VAR	IANCE						
CONTRACTO RISER AND S	OR WILL SE	PARATE BOTTOM RISER PARTS IN	OF SCRE	EEN FR	OM SCF	REEN, I AY PLU	FILL WIT JG IN PL	H GROUT ACE.	AND	ATTEM	РТ ТО Р	ULL
DATE:			0	08/03/20	16		BY:	AIRII	N HAS	3ELWA1	NDER /6	24
Cc:					Cc:						-	

CB&I Federal Services LLC

110 James S. McDonnell Boulevard Hazelwood, Missouri 63042 Tel: +1 314 895 2100

Fax: +1 314 895 2200 www.CBl.com

500394-CFS-LT-USCE-000091

May 25, 2016

Ms. Susan Adams
Alternate Contracting Officer's Representative
U.S. Army Corps of Engineers, St. Louis District
FUSRAP Construction Office
#1 Angelrodt Street
St. Louis, Missouri 63147

Re: Contract No. W9128F-12-D-0003/Task Order No. DJ01

Subject: Well Abandonment Registration Record for Monitor Well DW-22R at PSC Metals Vicinity Property (DT-8), FUSRAP St. Louis Downtown Site, St. Louis, Missouri

Dear Ms. Adams:

As directed by the U.S. Army Corps of Engineers, St. Louis District, CB&I Federal Services LLC has abandoned the following monitor Well in accordance with the Missouri Department of Natural Resources (MDNR) requirements:

Well	Well Location/	Date of	Missouri I	Department of Natural F	Resources Information
Identification Number	Property	Abandonment	Confirmation Letter Date	Well Certification/ Reference Numbers	Well Variance Number(s) (as applicable)
DW-22R	PSC Metals (DT-8)	5/4/2016	5/18/2016	B043790/00517175	NA

For your records, the associated MDNR confirmation letter for the abandoned monitor well listed above is contained in the Attachment to this letter. Should you have any comments or questions regarding this correspondence, please contact Mark Cummings, Missouri Well Drillers Permit Number 004502-M, of my staff at 314.565.9362.

Sincerely,

A. Neil DeYong, #MP Proiect Manager

CB&I Federal Services LLC

Please Reply to: A. Neil DeYong

Phone: 314.220.4272

E-Mail Address: neil.deyong@CBIFederalServices.com

Attachment: 1- DW-22R Well Abandonment Letter

CC:

Vick L. James - USACE (Email) Lou Patton - USACE (Email) Robin Parks - USACE (Email) Mark Cummings - CB&I (Email)
Darrell Thompson - CB&I (Email)
CB&I Rapid Contract Project Records

www.dnr.mo.gov

P.O. Box 250, Rolla, MO 65402-0250 (573) 368-2165 FAX(573) 368-2317

file(PCD3) May 18, 2016

US ARMY CORP OF ENGINEERS 2 ANGELRODT STREET ST LOUIS, MO 63147

Re: 00517175

OFFICIAL DOCUMENT

Congratulations! This confirms that your well abandonment information has been reviewed and registered by the Missouri Department of Natural Resources, Missouri Geological Survey.

This letter may be needed in the future as proof of Registration, verifying that your well was plugged in accordance with the Missouri Well Construction rules.

If you have questions regarding this letter please contact the Wellhead Protection Section at 573-368-2165.

Your Well Registration Number: B043790

Well Number: DW-22R

Reference Number: 00517175 Site Name: FUSRAP/SLDS

Site Address: 3620 HALL STREET

Site City: ST LOUIS

St. Louis Downtown Site Annual Environmental Monitoring Data and Anal	ysis Report for CY 2016
THIS PAGE INTENTIONALL	V LEFT RLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK
THIS PAGE INTENTIONALLY	Y LEFT BLANK

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016
A POPULATIVE TO
APPENDIX F
DOSE ASSESSMENT ASSUMPTIONS

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016			
	THIS PAGE INTENTIONALLY LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS FAGE INTENTIONALLT LEFT BLANK		
	THIS I AGE INTENTIONALL'I LEFT BLANK		
	THIS I AGE INTENTIONALL'I LEFT BLANK		
	THIS I AGE INTENTIONALL'I LEFT BLANK		
	THIS PAGE INTENTIONALLT LEFT BLANK		
	THIS I AGE INTENTIONALLI LEFT BLANK		
	THIS I AGE INTENTIONALLI LEFT BLANK		
	THIS I AGE INTENTIONALL'I LEFT BLANK		
	THIS PAGE INTENTIONALLY LEFT BLANK		
	THIS PAGE INTENTIONALLY LEFT BLANK		
	THIS FAGE INTENTIONALL'I LEFT BLANK		
	THIS FAGE INTENTIONALL'I LEFT BLANK		

DOSE ASSESSMENT ASSUMPTIONS

DOSE FROM THE ST. LOUIS DOWNTOWN SITE TO A MAXIMALLY EXPOSED INDIVIDUAL

An off-site, worker-based receptor is the most realistic choice to represent the hypothetical maximally exposed individual, because of the proximity of the receptor, approximately 50 m southeast of the Mallinckrodt fenceline (DT-10), and because of the time the individual will spend at this location. Thus, a realistic assessment of dose can be performed using conservative assumptions of occupancy rate and distance from the source.

The following dose assessment is for a maximally exposed individual who works full-time (2,000 hours per year) at a location approximately 50 m southeast of the external gamma and radon monitoring location and 160 m from the SLDS excavation areas.

Airborne Radioactive Particulates

An EDE of less than 0.1 mrem per year to the receptor was calculated by using activity fractions to determine a source term, and then combining the dose results for Plant 6 and Plant 6 Loadout. The USEPA CAP88-PC modeling code was used to calculate dose to the receptor at 160 m from the SLDS excavation areas and loadout (Leidos 2017). Figure A-1 of Appendix A presents the distances and directions of the maximally exposed receptor from the excavated areas. Details related to calculation of EDE for the maximally exposed receptor are contained in Appendix A.

External Gamma Pathway

Because station DA-2 was the closest TLD to the receptor, the TLD results from this location were used for the dose calculations. The station DA-2 TLD measured an annual exposure, above background, of 0.5 mrem per year, based on 8,760 hours of continuous detector exposure. The EDE due to gamma exposure for the maximally exposed individual is estimated by assuming that the site approximates a line source with a source strength (H₁) that is the average of the TLD measurements between the source and the receptor (Cember 1996).

$$H_1 = \frac{(0.5) \text{ mrem/year}}{1} = 0.5 \text{ mrem/year}$$

Based on 100 percent occupancy rate, the exposure rate (H₂) to the receptor was calculated as follows:

$$H_2 = H_1 \times \frac{h_1}{h_2} \times \frac{\tan^{-1}(L/h_2)}{\tan^{-1}(L/h_1)}$$

$$H_2 = 0.01 \text{ mrem/year}$$

where:

 H_2 = exposure rate to the receptor

 H_1 = exposure rate to the TLDs

 h_2 = distance from the source to the receptor = 50 m h_1 = distance from the source to the TLDs = 1.6 m

L = average distance from centerline of the line source (H_1) to the end of the line

source = 150 m

The actual dose to the maximally exposed individual, who is only present during a normal work year, is calculated as follows:

$$H_{\text{MEI}} = H_2 \times \frac{2,000 \text{ hours/work year}}{8,760 \text{ hours/total year}}$$

$$H_{MEI} = 3.0E-03 \text{ mrem/year}$$

Airborne Radon Pathway

Like external gamma calculations, only the radon data from station DA-2 were used to determine dose due to radon and progeny. Appendix B presents the radon results at all stations. Station DA-2 ATDs measured annual exposures above background of 0 pCi/L based on 8,760 hours of continuous exposure. Exposure to the receptor from radon (and progeny) was estimated using a dispersion factor (C_2) and the average ATD monitoring data at the site perimeter between the source and the receptor.

In order to calculate the dispersion factor, the radon concentrations were determined to a receptor located at 1 m and 50 m, southeast of the SLDS by inputting a radon release rate of 1 Ci per year, the St. Louis – Lambert International Airport wind file, and a surface area of 3,180 m² into the CAP88-PC model. Effective surface area was determined by summing the time-weighted average annual open surface areas for all SLDS excavation areas and loadout. The CAP88-PC input data and the result of the CAP88-PC run are highlighted and presented in Appendix A. The radon dispersion factor (C₂) for the site was calculated as follows:

$$C_2 = \left[\frac{0.00902 \ pCi/L}{0.0383 \ pCi/L} \right] = 0.24$$

The average of ATD monitoring data (S_1) at the site perimeter (Plant 7/DT-10 fenceline) was calculated as follows:

$$S_1 = \left[\begin{array}{c} (0) & pCi/L \\ \hline 1 \end{array} \right] = 0 pCi/L$$

The actual radon exposure dose to the hypothetical maximally exposed individual was calculated as follows:

$$\mathbf{S}_{\text{MEI}} = \mathbf{S}_{\text{1}} \times \mathbf{F} \times \mathbf{DCF} \times \mathbf{T} \times \mathbf{C}_{\text{1}} \times \mathbf{C}_{\text{2}}$$

$$S_{MEI} = 0 \text{ pCi/L} \times 0.0005 \frac{\text{WL}}{\text{pCi/L}} \times 1,250 \frac{\text{mrem}}{\text{WLM}} \times \frac{2,000 hours}{year} \times \frac{1 \text{ month}}{170 \text{ hours}} \times 0.24 = 0 \text{ mrem/year}$$

where:

 S_1 = fenceline average of ATD measurements between source and receptor

 S_{MEI} = radon exposure to the hypothetical maximally exposed individual

F = equilibrium fraction of 0.05 WL per 100 pCi/L (DOE 1998)

DCF = dose conversion factor (USEPA 1989) = 1,250 mrem per WLM

T = exposure time for the hypothetical maximally exposed receptor = 2,000 hours per year

 C_1 = occupancy factor constant = 1 month per 170 hours

 C_2 = dispersion factor

WL = working level (concentration unit)WLM = working level month (exposure unit)

Total Effective Dose Equivalent

 $TEDE = CEDE \ (airborne \ particulates) + H_{MEI} \ (external \ gamma) + S_{MEI} \ (airborne \ radon)$ $TEDE = <0.1 \ mrem/year + <0.1 \ mrem/year + 0 \ mrem/year = <0.1 \ mrem/year$ where:

CEDE = committed effective dose equivalent

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2016		
	THIS PAGE INTENTIONALLY LEFT BLA	ANK