ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2021

ST. LOUIS, MISSOURI

JULY 8, 2022

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2021

ST. LOUIS, MISSOURI

JULY 8, 2022

prepared by

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

with assistance from Leidos, Inc. under Contract No. W912P9-17-D-0014, Delivery Order 0007

TABLE OF CONTENTS

SEC	TIO	<u>N</u>	PAGE
LIST	г оғ	TABLES	ii
LIST	г оғ	FIGURES	iii
LIS	Г О Г	APPENDICES	iii
		YMS AND ABBREVIATIONS	
		BBREVIATIONS	
		TIVE SUMMARY	
1.0	HIS	TORICAL SITE BACKGROUND AND CURRENT SITE STATUS	
	1.1	INTRODUCTION	
	1.2	PURPOSE	
	1.3	ST. LOUIS SITE PROGRAM AND SITE BACKGROUND	
	-	1.3.1 Calendar Year 2021 Remedial Actions	
2.0	EVA	ALUATION OF RADIOLOGICAL AIR MONITORING DATA	
	2.1	RADIOLOGICAL AIR MEASUREMENTS	
		2.1.1 Gamma Radiation	
		2.1.2 Airborne Radioactive Particulates	
		2.1.3 Airborne Radon	
	2.2	EVALUATION OF RADIOLOGICAL AIR MONITORING DATA	
		2.2.1 Evaluation of Gamma Radiation Data2.2.2 Evaluation of Airborne Radioactive Particulate Data	
		2.2.2 Evaluation of Airborne Radioactive Particulate Data2.2.3 Evaluation of Outdoor Airborne Radon Data	
		2.2.4 Evaluation of Indoor Airborne Radon Data	
3.0	EXC	CAVATION WATER MONITORING DATA	
		EVALUATION OF EXCAVATION WATER DISCHARGE MONITORIN	
		RESULTS	
4.0	GRO	OUNDWATER MONITORING DATA	
	4.1	GROUNDWATER MONITORING	
	4.2	EVALUATION OF GROUNDWATER MONITORING DATA	
		4.2.1 Evaluation of HU-A Groundwater Monitoring Data	
		4.2.2 Evaluation of HU-B Groundwater Monitoring Data	
		4.2.3 Comparison of Historical Groundwater Data	
		4.2.4 Evaluation of Potentiometric Surface	
5.0	ENV	VIRONMENTAL QUALITY ASSURANCE PROGRAM	
	5.1	PROGRAM OVERVIEW	
	5.2	QUALITY ASSURANCE PROGRAM PLAN	
	5.3	SAMPLING AND ANALYSIS GUIDE	
	5.4	FIELD SAMPLE COLLECTION AND MEASUREMENT	

TABLE OF CONTENTS (Continued)

<u>SEC</u>	TION	<u>N</u>	AGE
	5.5	PERFORMANCE AND SYSTEM AUDITS.5.5.1 Field Assessments.5.5.2 Laboratory Audits.	5-2
	5.6	SUBCONTRACTED LABORATORY PROGRAMS	5-3
	5.7	QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES5.7.1Duplicate Samples5.7.2Split Samples	5-3
		5.7.3 Equipment Rinsate Blanks	
	5.8	DATA REVIEW, EVALUATION, AND VALIDATION	5-5
	5.9	PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY	5-5
	5.10	DATA QUALITY ASSESSMENT SUMMARY	5-7
	5.11	RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES	5-8
6.0	RAI	DIOLOGICAL DOSE ASSESSMENT	6-1
	6.1	SUMMARY OF ASSESSMENT RESULTS	6-1
	6.2	PATHWAY ANALYSIS	6-1
	6.3	EXPOSURE SCENARIOS	6-2
	6.4	DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS	6-3
7.0	REF	FERENCES	7-1

LIST OF TABLES

NUMBER

PAGE

Table 2-1.	Gamma Radiation Data Summary for CY 2021	2-3
Table 2-2.	Airborne Radioactive Particulate Data Summary for CY 2021	2-4
Table 2-3.	Outdoor Airborne Radon (Rn-222) Data Summary for CY 2021	2-5
Table 2-4.	Indoor Airborne Radon (Rn-222) Data Summary for CY 2021	. 2-5
Table 3-1.	Excavation Water Discharged in CY 2021	3-2
Table 4-1.	Screened HUs for Groundwater Monitoring Wells in CY 2021	4-3
Table 4-2.	Analytes Detected in HU-A Groundwater in CY 2021	4-4
Table 4-3.	Analytes Detected in HU-B Groundwater in CY 2021	4-4
Table 4-4.	Results of Mann-Kendall Trend Test for Groundwater in CY 2021	4-8
Table 5-1.	Non-Radiological Duplicate Sample Analysis for CY 2021 - Groundwater	5-4
Table 5-2.	Radiological Duplicate Sample Analysis for CY 2021 - Groundwater	5-4
Table 5-3.	Non-Radiological Split Sample Analysis for CY 2021 - Groundwater	5-4
Table 5-4.	Radiological Split Sample Analysis for CY 2021 – Groundwater	5-5
Table 5-5.	Non-Radiological Parent Samples and Associated Duplicate and Split	
	Samples for CY 2021 – Groundwater	5-8
Table 5-6.	Radiological Parent Samples and Associated Duplicate and Split Samples	
	for CY 2021 – Groundwater	5-8
Table 6-1.	Complete Radiological Exposure Pathways	6-2

LIST OF FIGURES

NUMBER

- Figure 1-1. Location Map of the St. Louis Sites
- Figure 1-2. Plan View
- Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at the St. Louis Background Location – USACE Service Base
- Figure 2-2. Gamma Radiation and Radon Monitoring Locations
- Figure 3-1. MSD Excavation Water Discharge Points
- Figure 4-1. Generalized Stratigraphic Column
- Figure 4-2. Geologic Cross-Section A-A'
- Figure 4-3. Groundwater Monitoring Well Locations
- Figure 4-4. Arsenic Time-Versus-Concentration Plots in Unfiltered Groundwater
- Figure 4-5. Total U Time-Versus-Concentration Plots in Unfiltered Groundwater
- Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic and Total U in Groundwater Monitoring Wells
- Figure 4-7. HU-A Potentiometric Surface (May 14, 2021)
- Figure 4-8. HU-B Potentiometric Surface (May 14, 2021)
- Figure 4-9. HU-A Potentiometric Surface (November 10, 2021)
- Figure 4-10. HU-B Potentiometric Surface (November 10, 2021)
- Figure 6-1. Dose Trends
- Figure 6-2. Maximum Dose vs. Background Dose

LIST OF APPENDICES

- Appendix A Documents Finalized in Calendar Year 2021
- Appendix B St. Louis Downtown Site 2021 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 *CFR* 61, Subpart I
- Appendix C* Environmental Thermoluminescent Dosimeter, Alpha Track Detector, and Perimeter Air Data
- Appendix D* Stormwater, Wastewater, and Excavation Water Data
- Appendix E* Groundwater Field Parameter Data for Calendar Year 2021 and Analytical Data Results for Calendar Year 2021
- Appendix F* Well Maintenance Checklists for the Annual Groundwater Monitoring Well Inspections Conducted in Calendar Year 2021
- Appendix G Dose Assessment Assumptions

BACK COVER

*CD-ROM Appendices C, D, E, and F

ACRONYMS AND ABBREVIATIONS

AEC	U.S. Atomic Energy Commission
amsl	above mean sea level
ARAR	applicable or relevant and appropriate requirement
ATD	alpha track detector
BTOC	below top of casing
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	
COC	Code of Federal Regulations contaminant of concern
CY	calendar year
DL	detection limit
DO	dissolved oxygen
DOD	U.S. Department of Defense
DOE	U.S. Department of Energy
DQO	data quality objective
EDE	effective dose equivalent
ELAP	Environmental Laboratory Accreditation Program
EM	Engineer Manual
EMDAR	Environmental Monitoring Data and Analysis Report
EMG	Environmental Monitoring Guide for the St. Louis Sites
EMICY21	Environmental Monitoring Implementation Plan for the St. Louis
	Downtown Site for Calendar Year 2021
EMP	Environmental Monitoring Program
ER	Engineer Regulation
FUSRAP	Formerly Utilized Sites Remedial Action Program
Futura	Futura Coatings Company
GRAAA	groundwater remedial action alternative assessment
HISS	Hazelwood Interim Storage Site
HU	hydrostratigraphic unit
ICP	inductively coupled plasma
IL	investigative limit
Κ	potassium
KPA	kinetic phosphorescence analysis
LCS	laboratory control sample
Mallinckrodt	Mallinckrodt LLC
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
MDA	minimum detectable activity
MDNR	Missouri Department of Natural Resources
MDC	minimum detectable concentration
MDL	method detection limit
MED	Manhattan Engineer District
MSD	Metropolitan St. Louis Sewer District
NAD	normalized absolute difference
NCRP	National Council of Radiation Protection and Measurements
NESHAP	National Emissions Standards for Hazardous Air Pollutants
NRC	U.S. Nuclear Regulatory Commission
ORP	oxidation reduction potential
~10	Shidudon roudon potentia

ACRONYMS AND ABBREVIATIONS (Continued)

PDI	pre-design investigation
QA	quality assurance
QAPP	quality assurance program plan
QC	quality control
QSM	Department of Defense (DoD)/Department of Energy (DOE) Consolidated
2	Quality Systems Manual (QSM) for Environmental Laboratories
Ra	radium
RA	remedial action
RL	reporting limit
RME	reasonably maximally exposed
Rn	radon
ROD	Record of Decision for the St. Louis Downtown Site
RPD	relative percent difference
SAG	Sampling and Analysis Guide for the St. Louis Sites
SLAPS	St. Louis Airport Site
SLDS	St. Louis Downtown Site
SLS	St. Louis Sites
SOP	standard operating procedure
SOR	sum of ratios
SU	survey unit
TEDE	total effective dose equivalent
Th	thorium
TLD	thermoluminescent dosimeter
TSS	total suspended solid(s)
U	uranium
USACE	U.S. Army Corps of Engineers
USCS	unified soil classification system
USEPA	U.S. Environmental Protection Agency
VP	vicinity property
VQ	validation qualifier
WRS	Wilcoxon Rank Sum

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

°C	degree(s) Celsius (centigrade)
µCi/mL	microcurie(s) per milliliter
μg/L	microgram(s) per liter
Ci	curie(s)
ft	foot/feet
m	meter(s)
mg/L	milligram(s) per liter
mL	milliliter(s)
mrem	millirem
mS/cm	milliSiemen(s) per centimeter
mV	millivolt(s)
NTU	nephelometric turbidity unit
pCi/L	picocurie(s) per liter
WL	working level
yd ³	cubic yard(s)

EXECUTIVE SUMMARY

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2021 applies to the St. Louis Downtown Site (SLDS), which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

The purpose of this EMDAR is:

- 1. to document the environmental monitoring activities, and
- 2. to assess whether remedial actions (RAs) had a measurable environmental impact by:
 - a. reporting the current condition of the SLDS,
 - b. summarizing the data collection effort for CY 2021, and
 - c. providing an analysis of the environmental monitoring data to date.

The U.S. Army Corps of Engineers (USACE) St. Louis District collects comprehensive environmental data for decision-making and planning purposes. Environmental monitoring, performed as a Best Management Practice or as a component of RA, serves as a critical component in the evaluation of the current status and potential future migration of residual contaminants.

The environmental monitoring described in the *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2021* (EMICY21) (USACE 2020) was conducted as planned, and the results are documented in this EMDAR. Evaluation of the environmental monitoring data for all SLDS properties demonstrates compliance with applicable or relevant and appropriate requirements (ARARs).

RADIOLOGICAL AIR MONITORING

Radiological air data were collected and evaluated at the SLDS through airborne radioactive particulate, radon (indoor and outdoor), and gamma radiation monitoring, as required in the EMICY21 (USACE 2020). In addition, for environmental monitoring purposes, radiological air data were also used as inputs to calculate total effective dose equivalent (TEDE) to the hypothetical maximally exposed individual at the SLDS.

The TEDE calculated for the hypothetical maximally exposed individual at the SLDS was 6.4 mrem per year. The results of the radiological air monitoring conducted at the SLDS demonstrate compliance with ARARs for the SLDS.

EXCAVATION WATER DISCHARGE MONITORING

CY 2021 was the 23rd year that excavation water was discharged from the SLDS, monitored, and reported. Excavation water from the SLDS was discharged to the St. Louis sanitary sewer system in compliance with the requirements stated in the July 23, 2001, Metropolitan St. Louis Sewer District (MSD) authorization letter (MSD 2001) and amended in the October 13, 2004, MSD letter (MSD 2004). Two (2)-year authorization letters were issued beginning in 2004 and extended every 2 years through the current cycle expiring on July 23, 2022 (MSD 2020). Copies of these authorization letters can be found in the project records or in Appendix A of the

EMICY21 (USACE 2020). During CY 2021, no exceedances of the MSD limits occurred at the SLDS.

GROUNDWATER MONITORING

Groundwater was sampled during CY 2021 at the SLDS following a protocol for individual wells and analytes. Samples were analyzed for various radiological constituents and inorganic parameters. Static groundwater elevations for all SLDS wells were measured quarterly.

The environmental sampling requirements and groundwater criteria for each analyte are consistent with the EMICY21. The groundwater criteria are used for comparison and discussion purposes. The criteria for assessing groundwater sampling data at the SLDS include the investigative limits (ILs) identified in the ROD (USACE 1998a) and the combined radium (Ra)-226/Ra-228 concentration limit from 40 *Code of Federal Regulations (CFR)* 192.02 (Table 1 of Subpart A). The groundwater criteria are presented in Table 2-6 of the EMICY21 and in Section 4.0 of this EMDAR. For those stations where an analyte exceeded the groundwater criteria at least once during CY 2021 and sufficient data were available to evaluate trends, Mann-Kendall statistical trend analyses were completed to assess whether analyte concentrations were increasing or decreasing through time.

During CY 2021, three hydrostratigraphic unit (HU)-A monitoring wells (B16W06S, DW19RS, and DW21) were sampled (Figure 4-3). B16W06S was sampled in the fourth quarter for arsenic and cadmium. DW19RS was sampled in the second quarter for arsenic, cadmium and radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, uranium [U]-234, U-235, and U-238). DW21 was sampled for arsenic, cadmium, and radionuclides in the first quarter. Mann-Kendall Trend analysis was conducted for arsenic in B16W06S, DW19RS and DW21, cadmium in DW21, and total U in DW19RS. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant downward trend in DW21 and no statistically significant trend for the remaining contaminants of concern (COCs) in the HU-A groundwater for the wells sampled in CY 2021.

During CY 2021, seven HU-B (Mississippi Alluvial Aquifer) monitoring wells (B16W07D, B16W08D, B16W09D, DW14, DW16, DW18, and DW19RD) were sampled. Mann-Kendall Trend Tests were conducted for COCs that exceeded the ILs in HU-B wells during CY 2021: arsenic in DW14 and DW18; and total U in DW19RD. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant downward trend in DW14 and a statistically significant upward trend in DW18. The results of the Mann-Kendall Trend Tests indicate no statistically significant trend for total U concentrations in DW19RD. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of $20 \mu g/L$.

Potentiometric surface maps were created from groundwater elevations measured in May and November to illustrate groundwater flow conditions in wet and dry seasons. The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant typically slopes northeast toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (November) indicates groundwater flow patterns in HU-A were consistent for the wet and dry season conditions during CY 2021.

In HU-B, groundwater flow and direction are strongly influenced by river stage, which indicates a hydraulic connection to the Mississippi River (Figures 4-8 and 4-10). The flow direction at the site is generally north-northeast toward the Mississippi River. Localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area.

1.0 HISTORICAL SITE BACKGROUND AND CURRENT SITE STATUS

1.1 INTRODUCTION

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2021 applies to the St. Louis Downtown Site (SLDS) which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

1.2 PURPOSE

The purpose of this EMDAR is to document the environmental monitoring activities and to assess whether remedial actions (RAs) at the SLDS had a measurable environmental impact. In addition, this EMDAR serves to enhance the reader's awareness of the current condition of the SLDS, summarize the data collection efforts for CY 2021, and provide analysis of the CY 2021 environmental monitoring data results. This EMDAR presents the following information:

- Sample collection data for various media at the SLDS and interpretation of CY 2021 EMP results;
- The compliance status of the SLDS with federal and state applicable or relevant and appropriate requirements (ARARs) or other benchmarks (e.g., *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for CY 2021* [EMICY21] [USACE 2020]);
- Dose assessments for radiological contaminants as appropriate at the SLDS;
- A summary of trends based on changes in contaminant concentrations to support RAs, ensure public safety, and maintain surveillance monitoring requirements at the SLDS; and
- The identification of data gaps and future EMP needs.

1.3 ST. LOUIS SITE PROGRAM AND SITE BACKGROUND

The FUSRAP was executed by the U.S. Atomic Energy Commission (AEC) in 1974 to identify, remediate, or otherwise control sites where residual radioactivity remains from operations conducted for the Manhattan Engineer District (MED) and AEC during the early years of the nation's atomic energy program. The FUSRAP was continued by the follow-on agencies to the AEC until 1997, when the U.S. Congress transferred responsibility for FUSRAP to the U.S. Army Corps of Engineers (USACE).

The SLDS properties were involved with refinement of uranium ores, production of uranium metal and compounds, uranium recovery from residues and scrap, and the storage and disposal of associated process byproducts. The processing activities were conducted in portions of the SLDS under contract to the MED/AEC between the early 1940s and the 1950s.

A detailed description and history of the SLDS can be found in the *Remedial Investigation Report for the St. Louis Site* (U.S. Department of Energy [DOE] 1994); the *Remedial* Investigation Addendum for the St. Louis Site (DOE 1995); the ROD (USACE 1998a); and the Environmental Monitoring Guide for the St. Louis Sites (EMG) (USACE 1999a).

USACE SLDS documents finalized in CY 2021 are listed in Appendix A.

1.3.1 Calendar Year 2021 Remedial Actions

During CY 2021, RAs were performed at the following SLDS properties (Figure 1-2): Gunther Salt North VP (DT-4) and Bruce Oakley Rail Spur (DT-9). RAs at Gunther Salt North VP (DT-4) continued throughout the year. Limited RAs at Bruce Oakley Rail Spur (DT-9) were started and continued through the fourth quarter. A total of 4,569 yd³ of contaminated material were shipped from the SLDS via railcar to US Ecology in Michigan for proper disposal. Additionally, loadout activities were performed at Plant 6.

Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (U.S. Department of Defense [DOD] 2000) Class 1 verifications were performed at Norfolk Southern Railroad VP (DT-3) (survey unit [SU]-2) and Gunther Salt North VP (DT-4) (SU-2, SU-4, and SU-6) during CY 2021. A MARSSIM Class 2 final status survey was performed at City Property East of Levee (DT-2). No MARSSIM Class 3 final status surveys were performed during CY 2021. Verifications at the SLDS were performed to confirm that the remediation goals of the ROD were achieved. The SLDS is shown on Figure 1-2.

Characterizations/pre-design investigations (PDIs) were performed at the Bruce Oakley Property (DT-9) and Metropolitan St. Louis Sewer District (MSD) North Property during CY 2021. Based on final status survey evaluations performed in CY2021, Class 2 sample results did not exceed RGs for one property.

No monitoring wells were decommissioned in CY 2021.

In accordance with the MSD authorization letter for the SLDS, 1,418,201 gallons of excavation water were discharged in CY 2021. Since the beginning of the project, 35,071,318 gallons have been treated and released to MSD at the SLDS.

2.0 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

This section documents environmental monitoring activities related to radiological air data. The radiological air monitoring conducted at the SLDS is conducted as part of the EMP. Radiological air data are collected to evaluate the compliance status of each site with respect to ARARs, to evaluate trends, and to perform dose assessments for radiological contaminants, as appropriate, at each site. Section 2.1 includes a description of the types of radiological air monitoring conducted at the SLDS, potential sources of the contaminants to be measured (including natural background), and measurement techniques employed during CY 2021.

All radiological air monitoring required through implementation of the EMICY21 (USACE 2020) was conducted as planned during CY 2021. The evaluations of radiological air monitoring data for all SLDS properties demonstrate compliance with ARARs.

A total effective dose equivalent (TEDE) for the reasonably maximally exposed (RME) member of the public was calculated for the SLDS by summing the dose due to gamma radiation, radiological air particulates, and radon. The TEDE calculated for the RME individual at the SLDS was 6.4 mrem per year. The TEDE for the SLDS was below the 10 *Code of Federal Regulations* (*CFR*) 20.1301 limit for members of the public, which is 100 mrem per year. Details of the radiological dose assessment (TEDE calculation) are presented in Section 6.0.

2.1 RADIOLOGICAL AIR MEASUREMENTS

The three types of radiological air monitoring conducted at the SLS during CY 2021 are gamma radiation, airborne radioactive particulates, and airborne radon. Section 2.2 provides details of the air monitoring conducted at the SLDS.

2.1.1 Gamma Radiation

Gamma radiation is emitted from natural, cosmic, and manmade sources. The earth naturally contains gamma radiation-emitting substances, such as the uranium decay series, the thorium decay series, and potassium (K)-40. Cosmic radiation originates in outer space and filters through the atmosphere to the earth. Together, these two sources comprise the majority of natural gamma background radiation. The National Council of Radiation Protection and Measurements (NCRP) estimates that the total naturally occurring background radiation dose equivalent due to gamma exposure is 51 mrem per year, 20 mrem per year of which originates from sources on earth and 31 mrem per year of which originates from cosmic sources (NCRP 2009). The background monitoring locations for the SLS (Figure 2-1) are reasonably representative of background gamma radiation for the St. Louis metropolitan area (Appendix C, Table C-2).

Gamma radiation was measured at the SLDS during CY 2021 using thermoluminescent dosimeters (TLDs). TLDs were placed at locations representative of areas accessible to the public (Figure 2-2) in order to provide input for calculation of the TEDE.

The TLDs were placed at the monitoring location approximately 5 ft above the ground surface inside a housing shelter. The TLDs were collected quarterly and sent to a properly certified, off-site laboratory for analysis (Appendix C, Table C-2).

2.1.2 Airborne Radioactive Particulates

2.1.2.1 Air Sampling

Airborne radioactive particulates result from radionuclides in soils that become suspended in the air. The radionuclides in soil normally become airborne as a result of wind erosion of the surface soil or as a result of soil disturbance (e.g., excavation). This airborne radioactive material includes naturally occurring background concentrations (Appendix C, Table C-1) as well as above-background concentrations of radioactive materials present at the SLDS (Appendix C, Table C-3).

Airborne radioactive particulates were measured at the SLDS by drawing air through a filter membrane with an air sampling pump placed approximately 3 ft above the ground, and then analyzing the material contained on the filter. The results of the analysis, when compared to the amount of air drawn through the filter, were reported as radioactive contaminant concentrations (i.e., μ Ci/mL). Particulate air monitors were located in predominant wind directions at excavation and loadout area perimeter locations (Figure 2-2), as appropriate, to provide input for the National Emissions Standard for Hazardous Air Pollutants (NESHAP) Report and calculation of TEDE to the critical receptor. Air particulate samples were typically collected daily on working days.

2.1.2.2 Estimation of Emissions in Accordance with the National Emissions Standard for Hazardous Air Pollutants

The SLDS CY 2021 NESHAP report (Appendix B) presents calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors in accordance with the NESHAP. The report is prepared in accordance with the requirements and procedures contained in 40 *CFR* 61, Subpart I.

Emission rates calculated using air sampling data, activity fractions, and other site-specific information were used for the SLDS as inputs to the U.S. Environmental Protection Agency (USEPA) CAP88-PC Version 4.1 computer code (USEPA 2020) to demonstrate compliance with the 10 mrem per year ARAR in 40 *CFR* 61, Subpart I.

CY 2021 monitoring results for the SLDS demonstrate compliance with the 10 mrem per year ARAR prescribed in 40 *CFR* 61, Subpart I. See Section 2.2.2 for further details.

2.1.3 Airborne Radon

Uranium (U)-238 is a naturally occurring radionuclide commonly found in soil and rock. Radon (Rn)-222 is a naturally occurring radioactive gas found in the uranium decay series. A fraction of the radon produced from the radioactive decay of naturally occurring U-238 diffuses from soil and rock into the atmosphere, accounting for natural background airborne radon concentrations. In addition to this natural source, radon is produced from the above-background concentrations of radioactive materials present at the SLDS.

Outdoor airborne radon concentration is governed by the emission rate and dilution factors, both of which are strongly affected by meteorological conditions. Surface soil is the largest source of radon. Secondary contributors include oceans, natural gas, geothermal fluids, volcanic gases, ventilation from caves and mines, and coal combustion. Radon levels in the atmosphere have been observed to vary with elevation, season, time of day, or location. The chief meteorological parameter governing airborne radon concentration is atmospheric stability; however, the largest variations in atmospheric radon occur spatially (USEPA 1987).

Radon alpha track detectors (ATDs) were used at the SLDS to measure alpha particles emitted from radon and its associated decay products. The background monitoring locations for the SLS (Figure 2-1) are reasonably representative of background radon concentrations for the St. Louis metropolitan area. Radon ATDs were co-located with environmental TLDs approximately 3 to 5 ft above the ground surface in housing shelters at locations representative of areas accessible to the public (Figure 2-2). Outdoor ATDs were collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4). Recorded radon concentrations are listed in pCi/L and are compared to the value of 0.5 pCi/L average annual above-background concentration as listed in 40 *CFR* 192.02(b)(2).

CY 2021 outdoor radon monitoring results for the SLDS demonstrate compliance with the 0.5 pCi/L ARAR prescribed in 40 *CFR* 192.02(b)(2). See Section 2.2.3 for further details.

At the SLDS, ATDs were also placed in locations within applicable structures (Building 26 at Plant 1) to monitor for indoor radon exposure (Figure 2-2). The ATDs were placed in areas that represent the highest likely exposure from indoor radon. ATD locations were selected with consideration given to known radium (Ra)-226 concentrations under applicable buildings and occupancy times at any one location within each building. Annual average indoor radon data in each applicable building were compared to the 40 *CFR* 192.12(b)(1) ARAR value of 0.02 WL. In accordance with 40 *CFR* 192.12(b)(1), reasonable effort shall be made to achieve, in each habitable or occupied building, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL. In any case, the radon decay product concentration shall not exceed 0.03 WL. Background indoor radon monitors were not necessary because the regulatory standard of 0.02 WL includes background. Indoor ATDs were also collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4).

CY 2021 indoor radon monitoring results for the SLDS demonstrate compliance with the 0.02 WL ARAR prescribed by 40 *CFR* 192.12(b)(1). See Section 2.2.4 for further details.

2.2 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

2.2.1 Evaluation of Gamma Radiation Data

Gamma radiation monitoring was performed at the SLDS during CY 2021 at seven locations representative of areas accessible to the public (Figure 2-2) and at the background location (Figure 2-1) to compare on-site/off-site exposure and to provide input for calculation of TEDE to the critical receptor. The EMP uses two TLDs at Monitoring Station DA-8 (for each monitoring period) to provide additional quality control (QC) of monitoring data. A summary of TLD monitoring results for CY 2021 at the SLDS is shown in Table 2-1. TLD data are contained in Appendix C, Table C-2, of this EMDAR.

Monitoring Location	Monitoring Station		First QuarterSecond QuarterThird QuarterFourth QuarterTLD DataTLD DataTLD DataTLD Data(mrem/quarter)				CY 2021 Net TLD Data			
2000000	~~~~~	Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	(mrem/year)
	DA-3	18.5	0.0	19.2	0.0	20.8	0.4	20.7	1.0	1.4
	DA-7	21.2	2.1	21.1	1.4	23.1	2.9	20.3	0.5	6.9
SLDS	DA-8	21.2	2.1	22.1	2.5	23.4	3.2	21.6	1.9	9.6
Perimeter	DA-8 °	20.3	1.1	20.7	1.0	21	0.6	21.3	1.6	
	DA-9	20.8	1.6	23.6	4.0	22.4	2.1	20.7	1.0	8.8
	DA-10	20.9	1.7	21.8	2.1	23.7	3.5	22	2.3	9.8

 Table 2-1. Gamma Radiation Data Summary for CY 2021

Monitoring	Monitoring)uarter Data		Quarter Data		Quarter Data		Quarter Data	CY 2021 Net TLD
Location	Station				(mrem/o	quarter)				Data
		Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	Rpt.	Cor. ^{a,b}	(mrem/year)
SLDS	DA-11	20.3	1.1	19.4	0.0	21.4	1.0	19.6	0.0	2.1
Perimeter	DA-12	19.3	0.0	19	0.0	21.2	0.8	19.5	0.0	0.8
Background	BA-1	19.3		19.4		19.8		19.6		

 Table 2-1. Gamma Radiation Data Summary for CY 2021 (Continued)

^a All quarterly data reported from the vendor have been normalized to exactly one quarter's exposure above background.
 ^b CY 2021 net TLD data are corrected for background, shelter absorption (s/a = 1.075), and fade.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis. Duplicate sample results were not included in calculations.

--- Result calculation is not required.

Cor. - corrected

Rpt. - reported

2.2.2 Evaluation of Airborne Radioactive Particulate Data

Air sampling for radiological particulates during CY 2021 was conducted by the RA contractor at the perimeter of each active excavation and loadout area within the SLDS. Air particulate data were used as inputs to the NESHAP report (Appendix B) and calculation of TEDE to the critical receptor (Section 6.0). Air sampling for radiological particulates was not conducted at the SLDS perimeter locations during CY 2021 due to the insignificant potential for material to become airborne at the site. The ground surface at the SLDS is generally covered with asphalt or concrete, which limits the potential for material to become airborne. A summary of air particulate monitoring data from excavation perimeters is shown in Table 2-2. Airborne radioactive particulate data are contained in Appendix C, Table C-3, of this EMDAR.

Monitoring Logotion	Average Concentration (µCi/mL) ^a			
Monitoring Location	Gross Alpha	Gross Beta		
Gunther Salt (DT-4)	4.39E-15	3.17E-14		
Plant 6 Loadout	5.36E-15	3.24E-14		
Background Concentration (BA-1) ^b	4.31E-15	2.17E-14		

 Table 2-2. Airborne Radioactive Particulate Data Summary for CY 2021

Average concentration values for the sampling period by location.

These concentrations are only provided for informational purposes.

2.2.3 Evaluation of Outdoor Airborne Radon Data

Outdoor airborne radon monitoring was performed at the SLDS using ATDs to measure radon emissions. Seven detectors were co-located with the TLDs at locations shown on Figure 2-2. One additional detector was located at Monitoring Station DA-8 as a QC duplicate. A background ATD, co-located with the background TLD (Section 2.2.1), was used to compare on-site exposure and off-site background exposure. In accordance with 40 *CFR* 192.02(b)(2), control of residual radioactive materials from a uranium mill tailings pile must be designed to provide reasonable assurance that releases of radon to the atmosphere will not increase the annual average concentration of radon outside the disposal site by more than 0.5 pCi/L. Although a uranium mill tailings pile is not associated with any of the SLS, these standards are used for comparative purposes. Outdoor airborne radon data were used as an input for calculation of the TEDE to the critical receptor (Section 6.0) and compared to the 0.5 pCi/L average annual concentration above background value listed in 40 *CFR* 192.02(b)(2). The average annual radon concentration above background at the SLDS monitoring stations was 0.01 pCi/L, meeting the 40 *CFR* 192.02(b)(2) limit of 0.5 pCi/L. A summary of outdoor airborne radon data is shown in Table 2-3. Outdoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Monitoring	Monitoring	Averag	(pCi/L)	
Monitoring Location	Monitoring Station	01/06/21 to 07/07/21 (Uncorrected) ^a	07/07/21 to 01/05/22 (Uncorrected) ^a	Average Annual Concentration ^b
	DA-3	0.08	0.22	0.0
	DA-7	0.08	0.22	0.0
	DA-8	0.08	0.22	0.0
SLDS	DA-8 °	0.08 0.22		
SLDS	DA-9	0.08	0.3	0.04
	DA-10	0.08	0.24	0.01
	DA-11	0.08	0.24	0.01
	DA-12	0.08	0.22	0.0
Background	BA-1	0.08	0.22	

 Table 2-3. Outdoor Airborne Radon (Rn-222) Data Summary for CY 2021

^a Detectors were installed and removed on the dates listed. Data are as reported from the vendor (gross data including background).

^b Results reported from vendor for two periods are time-weighted and averaged to estimate an annual average radon concentration (pCi/L) above background.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis.
 Result calculation is not required.

2.2.4 Evaluation of Indoor Airborne Radon Data

Indoor radon monitoring was performed at one building at SLDS (Building 26 at Plant 1) using one ATD placed in the building at a height of 5 ft (to approximate breathing zone conditions) to measure radon concentrations (Figure 2-2). The ATD was installed in January of CY 2021 at the monitoring location, collected for analysis after approximately 6 months of exposure, and replaced with another ATD that would represent radon exposure for the remainder of the year. Recorded radon concentrations (listed in pCi/L) were converted to radon WL, and an indoor radon equilibrium factor of 0.4 (NCRP 1988) was applied.

The results (including background) were evaluated based on the criteria contained in 40 *CFR* 192.12(b)(1). The average annual radon concentration was determined to be less than the 40 *CFR* 192.12(b)(1) criterion of 0.02 WL in Building 26 at Plant 1 (Leidos 2022a). In addition, the concentration at the indoor monitoring location was less than 0.03 WL. Additional details of the data and calculation methodology used to determine indoor radon WL in Building 26 at Plant 1 are contained in Table 2-4. Indoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Monitoring	Monitoring	Average A	nnual Concentrat	ion (pCi/L)	
Monitoring Location	Monitoring Station	01/06/21 to 07/07/21ª	07/07/21 to 01/05/22 ^a	Annual Average ^b	WL ^c
Plant 1, Building 26	DI-1	1.4	0.41	0.91	0.004

Table 2-4. Indoor Airborne Radon (Rn-222) Data Summary for CY 2021

^a Detectors were installed and removed on the dates listed. Data are as reported from the vendor.

^b Results reported from vendor for two periods are averaged to estimate an annual average radon concentration (pCi/L).

^c The average annual WL is calculated by dividing the average pCi/L by 100 pCi/L per WL and multiplying by 0.4. The average annual WL must be less than 0.02 (40 *CFR* 192.12(b)).

THIS PAGE INTENTIONALLY LEFT BLANK

3.0 EXCAVATION WATER MONITORING DATA

This section provides a description of the excavation water discharge monitoring activities conducted at the SLDS during CY 2021. Excavation water is stormwater and groundwater that accumulates in excavations present at the SLDS as a result of RAs. Excavation water effluent from the SLDS is discharged to combined (sanitary and storm) MSD sewer inlets located at the SLDS. It then flows to the Bissell Point Sewage Treatment Plant under a special discharge authorization. This excavation water was collected, treated, and tested before being discharged to MSD manholes 17D4-353C and 18D1-192C. These MSD manholes are depicted on Figure 3-1.

The purpose of excavation water discharge monitoring at the SLDS is to maintain compliance with specific discharge limits to ensure protection of human health and the environment. The MSD is the regulatory authority for water discharges and has issued authorization letters for the SLDS allowing discharges of excavation water that meets discharge-limit-based criteria (MSD 1998, 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020). On October 30, 1998, the USACE received an MSD conditional authorization letter to discharge the excavation water collected at the SLDS resulting from USACE RAs (MSD 1998). On July 23, 2001, the MSD issued a separate conditional discharge authorization letter for discharges of excavation water resulting from USACE RAs (MSD 2001). The MSD issued a change to the self-monitoring and special discharge authorization for the SLDS on October 13, 2004, and issued a 2-year extension to that authorization dated June 19, 2006 (MSD 2004, 2006). On May 22, 2008; May 10, 2010; May 24, 2012; June 23, 2014; July 18, 2016; and June 11, 2018, the MSD issued extensions to the special discharge authorization for the SLDS that remained in effect until July 23, 2010; July 23, 2012; July 23, 2014; July 23, 2016; July 23, 2018; and July 23, 2020, respectively (MSD 2008, 2010, 2012, 2014, 2016, 2018). On July 16, 2020, the MSD issued an extension to the special discharge authorization for the SLDS that remains in effect until July 23, 2022 (MSD 2020). The results obtained from these monitoring activities are presented and evaluated with respect to the discharge limits described in the EMICY21 (USACE 2020).

Section 2.2.2 of the EMICY21 outlines the parameters and annual average discharge limits for the excavation water discharges at the SLDS (USACE 2020). For cases in which the local regulatory authorities have not provided discharge limits for the SLDS radiological contaminants of concern (COCs), parameters from 10 *CFR* 20, Appendix B, water effluent values are used to calculate the sum of ratios (SOR) value for each discharge. Additionally, the SOR aids in the establishment of water management protocols.

3.1 EVALUATION OF EXCAVATION WATER DISCHARGE MONITORING RESULTS

During CY 2021, 1,418,201 gallons of excavation water from 12 batches were discharged to MSD manholes 17D4-353C and 18D1-192C. The analytical results for all measured parameters by batch, along with the total activity discharged for each parameter, are included in Appendix D, Table D-1. A summary of the number of discharges, gallons of water discharged, and total radiological activity for the CY 2021 excavation water discharges is provided in Table 3-1. All excavation water discharge monitoring required through implementation of the EMICY21 was conducted as planned during CY 2021. The evaluation of monitoring data demonstrates compliance with all MSD criteria.

	Number of	Number of Gallons	Tota	al Activity (Ci)	
Quarter	Discharges	Discharged ^a	Thorium ^b	Uranium (KPA) ^c	Radium ^d
1	3	266,297	4.1E-06	1.4E-04	1.7E-06
2	3	307,251	4.1E-06	5.5E-05	1.8E-06
3	3	443,621	4.3E-06	9.0E-05	1.9E-06
4	3	401,032	7.0E-06	1.9E-04	3.4E-06
Annual Totals	12	1,418,201	2.0E-05	4.8E-04	8.7E-06

Table 3-1. Excavation Water Discharged in CY 2021

а Quantities based on actual quarterly discharges from the SLDS.

b Calculated value based on the addition of isotopic analyses: thorium (Th)-228, Th-230, and Th-232.

с

Activity based on total U results (kinetic phosphorescence analysis [KPA]). Calculated value based on the addition of isotopic analyses: Ra-226 and Ra-228. d

4.0 GROUNDWATER MONITORING DATA

During CY 2021, ten groundwater monitoring wells were sampled at the SLDS. Groundwater was sampled following a protocol for individual wells and analytes, and was analyzed for various radiological constituents and inorganic analytes. Static water levels were measured quarterly at the SLDS. In addition, field parameters were measured during purging of the wells prior to sampling. The groundwater field parameter results for CY 2021 sampling at the SLDS are presented in Appendix E, Table E-1. The SLDS groundwater analytical sampling results for CY 2021 are contained in Appendix E, Table E-2.

<u>Stratigraphy</u>

Groundwater at the SLDS is found within three hydrostratigraphic units (HUs). These units are, in order of increasing depth, the Upper HU (HU-A), which consists of fill overlying clay and silt; the Lower HU (HU-B), also referred to as the Mississippi Alluvial Aquifer, consisting of sandy silts and silty sands; and the Limestone Bedrock Unit, referred to as HU-C (Figures 4-1 and 4-2). The upper unit, HU-A, is not an aquifer and is not considered a potential source of drinking water, because it has insufficient yield and poor natural water quality. HU-B is one of the principal aquifers in the St. Louis area, but expected future use as drinking water at the SLDS is minimal, because the Mississippi and Missouri Rivers provide a readily available source and the water from the aquifer is of poor quality due to elevated concentrations of iron and manganese. HU-C would be an unlikely water supply source, as it is a deeper and less productive HU. There are no known drinking-water wells in the vicinity of the SLDS. St. Louis City Ordinance 66777 explicitly forbids the installation of wells into the subsurface for the purposes of using groundwater as a potable water supply (City of St. Louis 2005). The expected future use of SLDS groundwater is not anticipated to change from its current use.

As shown in the geologic cross-section of the SLDS (Figure 4-2), the erosional surface of the bedrock dips eastward toward the Mississippi River. HU-A overlies HU-B on the eastern side of the SLDS and bedrock on the western side of the SLDS. HU-B thins westerly along the bedrock surface until it becomes absent beneath the SLDS. HU-C underlies the unconsolidated sediments at depths ranging from 19 ft on the western side of the SLDS to 80 ft near the Mississippi River.

<u>Groundwater Criteria</u>

The CY 2021 monitoring data for HU-B groundwater at the SLDS are compared to the following groundwater criteria established in the ROD: 50 μ g/L arsenic, 5 μ g/L cadmium, 20 μ g/L total U, and 5 pCi/L combined Ra-226 and Ra-228 (USACE 1998a). The ROD did not establish groundwater criteria for HU-A groundwater. An evaluation of concentration trends is conducted for COCs detected in HU-A.

Summary of Calendar Year 2021 Groundwater Monitoring Results

Trend analysis was performed for the COCs detected in HU-A groundwater including arsenic (B16W06S, DW19RS, and DW21), cadmium (DW21), and total U (DW19RS). A Mann-Kendall Trend Test was not to be performed for cadmium concentrations at B16W06S and DW19RS because the historical datasets do not have a detection frequency greater than 50 percent. The trend analysis indicates a statistically significant downward trend for the arsenic concentrations at DW21. No other statistically significant trends were identified in the COCs detected in shallow groundwater during CY 2021.

During CY 2021, two COCs (arsenic and total U) were detected at concentrations above the ROD groundwater criteria in HU-B groundwater. The concentration of arsenic exceeded the

investigative limit (IL) (50 μ g/L) in the sample collected in the second quarter of CY 2021 from HU-B well DW14 (140 μ g/L) and in samples collected in the fourth quarter of CY 2021 from HU-B wells DW14 (200 μ g/L) and DW18 (76 μ g/L). The concentration of total U exceeded the IL (20 μ g/L) in the two samples collected in CY 2021 from DW19RD, the HU-B replacement well for DW19. The total U concentrations detected in the CY 2021 samples from DW19RD varied from 146.5 μ g/L (November 2021) to 166.2 μ g/L (May 2021). The average total U concentration detected at DW19RD since well installation (108.1 μ g/L) is similar to the average concentration detected in the samples collected in DW19 prior to its decommissioning (87.0 μ g/L). The maximum total U concentration detected in DW19RD (174.4 μ g/L) is less than the maximum concentration detected in the historical dataset for DW19 (200.7 μ g/L).

These CY 2021 sampling results, combined with previous sampling results since 1999, were used to identify any significant trends. The Mann-Kendall Trend Test results for HU-B groundwater indicate a statistically significant upward trend in arsenic concentrations in DW18; and a statistically significant downward trend in arsenic concentrations in DW14. No statistically significant trends in total U concentrations were identified in the HU-B groundwater. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of 20 μ g/L. No other significant changes in the concentrations of the COCs occurred in HU-B groundwater during CY 2021.

4.1 **GROUNDWATER MONITORING**

The selected remedy presented in the ROD involves excavation and disposal of radiologically contaminated accessible soil and groundwater monitoring. The goal of the groundwater portion of the SLDS remedy is to maintain protection of HU-B and to establish the effectiveness of the source removal action. This goal is achieved by monitoring perimeter wells on a routine basis to ensure there are no significant impacts to HU-B from COCs. The HU-B groundwater results for the SLDS COCs are compared to the following ROD groundwater criteria (USACE 1998a):

- 1. The ILs: 50 μ g/L arsenic, 5 μ g/L cadmium, and 20 μ g/L total U; and
- 2. The concentration limits from the Uranium Mill Tailings Radiation Control Act regulations listed in 40 *CFR* 192.02, Table 1 to Subpart A: 5 pCi/L combined Ra-226 and Ra-228.

The concentration limits for other SLDS COCs listed in 40 *CFR* 192.02, Table 1 to Subpart A (50 μ g/L arsenic, 10 μ g/L cadmium, and 30 pCi/L combined U-234 and U-238), are not relevant or appropriate because these limits are equal to or less stringent than the ILs.

If monitoring of HU-B indicates that the concentrations of SLDS COCs significantly exceed the above criteria, the ROD requires that a groundwater remedial action alternative assessment (GRAAA) be initiated to further assess the fate and transport of the COCs in HU-B and to determine if additional RAs are necessary. Based on the results of 8 consecutive rounds of quarterly sampling conducted between 1999 and 2001, total U concentrations were above the IL in HU-B well DW19 over an extended period, leading to the initiation of Phase 1 of the GRAAA. The first phase of the GRAAA was completed in CY 2003 (USACE 2003). Phase 1 summarized the sampling data available for each of the monitoring wells completed in HU-B and provided recommendations for further investigation of HU-B. This EMDAR carefully reviews the HU-B data to provide additional information for future phases of the GRAAA. The ROD also specifies that a groundwater monitoring plan will be developed to assess the fate and transport of MED/AEC residual contaminants through and following the RA.

Because HU-A is not considered a potential source of drinking water, the ROD did not establish criteria for HU-A groundwater. An evaluation of concentration trends is conducted for select COCs detected in HU-A groundwater to support assessment of the effectiveness of the RA in the CERCLA 5-year reviews. The results of the trend analysis are presented in Section 4.2.3.

4.2 EVALUATION OF GROUNDWATER MONITORING DATA

Monitoring Well Network

The EMP monitoring well network for the SLDS is shown on Figure 4-3. The screened HUs for the SLDS groundwater monitoring wells are identified in Table 4-1. Prior to initiating monitoring of HU-B, as specified by the ROD (USACE 1998a), there was no EMP sampling performed at the SLDS. In CY 2021, 10 monitoring wells (3 HU-A and 7 HU-B) were sampled for radionuclides and/or inorganic COCs at the SLDS. Groundwater sampling at the SLDS was conducted on February 11 (first quarter); May 17 and 19 (second quarter); August 5 (third quarter); and November 10, 11, 12, and 15 (fourth quarter) of CY 2021. The CY 2021 analytical results for the SLDS are presented in Appendix E, Table E-2. For discussion purposes, the groundwater analytical data acquired from the CY 2021 sampling events at the SLDS are presented separately for HU-A (Section 4.2.1) and HU-B (Section 4.2.2). Appendix F provides the well maintenance checklists for the annual inspection of the SLDS groundwater monitoring wells conducted on March 17, 2021.

Well ID	Screened HU				
B16W06D	HU-B				
B16W06S ^a	HU-A				
B16W07D ^a	HU-B				
B16W08D ^a	HU-B				
B16W08S	HU-A				
B16W09D ^a	HU-B				
B16W12S	HU-A				
DW14 ^a	HU-B				
DW15	HU-B				
DW16 ^a	HU-B				
DW17	HU-B				
DW18 ^a	HU-B				
DW19RD ^{a,b}	HU-B				
DW19RS ^{a,b}	HU-A				
DW21 ^a	HU-A				

 Table 4-1. Screened HUs for Groundwater Monitoring Wells in CY 2021

Wells sampled in CY 2021.

^b Replacement wells for DW19 were installed and developed in March 2019.

4.2.1 Evaluation of HU-A Groundwater Monitoring Data

The results of the CY 2021 groundwater sampling of HU-A groundwater at the SLDS are summarized in Table 4-2. During CY 2021, three HU-A monitoring wells (B16W06S, DW19RS, and DW21) were sampled. B16W06S was sampled in the fourth quarter for arsenic and cadmium. DW19RS was sampled in the second quarter for arsenic, cadmium, and radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, U-234, U-235, and U-238). DW21 was sampled for arsenic, cadmium, and radionuclides in the first quarter.

Analyte	Units	Station ^a	Minimum Detected	Maximum Detected	Mean Detected	Frequency of Detection
		B16W06S	230	230	230	1/1
Arsenic	μg/L	DW19RS	10	10	10	1/1
		DW21	78	78	78	1/1
		B16W06S	0.41 J	0.41 J	0.41 J	1/1
Cadmium	μg/L	DW19RS	1.1	1.1	1.1	1/1
		DW21	0.43 J	0.43 J	0.43 J	1/1
Th-230	pCi/L	DW19RS	1.1 J	1.1 J	1.1 J	1/1
U-234	pCi/L	DW19RS	5.58	5.58	5.58	1/1
U-235	pCi/L	DW19RS	0.76 J	0.76 J	0.76 J	1/1
U-238	pCi/L	DW19RS	7.39	7.39	7.39	1/1
Total U ^b	μg/L	DW19RS	22.41	22.41	22.41	1/1

Table 4-2. Analytes Detected in HU-A	Groundwater in CY 2021
--------------------------------------	------------------------

^a Table lists only those stations at which the analyte was detected in HU-A groundwater.

^b Total U values were calculated from isotopic concentrations in pCi/L and converted to µg/L using radionuclide-specific activities and assuming secular equilibrium.

Validation qualifier (VQ) symbol indicates: "J" analyte was identified as estimated quantity.

The analytes detected in HU-A groundwater in CY 2021 are listed in Table 4-2. The remaining SLDS COCs (Ra-226, Th-228, and Th-232) were not detected in the three HU-A groundwater wells monitored during CY 2021. Trend analysis was conducted for arsenic in B16W06S, DW19RS, and DW21; cadmium in DW21; and total U in DW19RS. Because total U values are calculated using the U-234, U-235, and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes for DW19RS. Because the majority of their historical results were near or below their detection limits (DLs), a trend analysis was not performed for cadmium in B16W06S and DW19RS; and Th-230 in DW19RS.

Based on the graphs and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), there was a statistically significant downward trend in the arsenic concentrations in DW21. No other statistically significant trends were identified in the COCs detected in the HU-A groundwater for the wells sampled in CY 2021. Time-versus-concentration plots for arsenic and total U are provided on Figure 4-4 and Figure 4-5, respectively.

4.2.2 Evaluation of HU-B Groundwater Monitoring Data

During CY 2021, seven SLDS wells completed in the HU-B were monitored for various parameters, including the COCs arsenic, cadmium, Ra-226, Ra-228, Th-228, Th-230, Th-232, U-234, U-235, and U-238. Detected concentrations were compared to the respective ROD groundwater criteria. Table 4-3 lists the analytes detected in HU-B groundwater during CY 2021 and compares the results with the ROD groundwater criteria.

Analyte	RO IL ^a	D Groundwater Criteria 40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	Minimum Detected	Maximum Detected	Mean Detected	ROD	Frequency of Detection	
			B16W08D	25	25	25	0	1/1		
					B16W09D	4.9	4.9	4.9	0	1/1
Amania	50	NA		DW14	140	200	170	2	2/2	
Arsenic	30	INA	µg/L	DW16	22	22	22	0	1/1	
				DW18	76	76	76	1	1/1	
				DW19RD	22	24	23	0	2/2	

 Table 4-3. Analytes Detected in HU-B Groundwater in CY 2021

ROD Groundwater Criteria								Number of Detects >	Frequency
Analyte	ILª	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	Minimum Detected	Maximum Detected	Mean Detected	ROD Groundwater Criteria	of
				DW14	0.4 J	1.3	0.85 J	0	2/2
Calminu	5	NA	/ T	DW16	0.37 J	0.37 J	0.37 J	0	1/1
Cadmium	3	INA	μg/L	DW18	0.63 J	0.63 J	0.63 J	0	1/1
				DW19RD	0.35 J	2.7	1.53 J	0	2/2
				B16W08D	0.64 J	0.64 J	0.64 J	0	1/2
D - 226	NIAC	5 ^d	pCi/L	B16W09D	2.43	2.43	2.43	0	1/1
Ra-226	NA°	5.	pCI/L	DW14	2.28 J	2.28 J	2.28 J	0	1/1
				DW16	0.69 J	0.69 J	0.69 J	0	1/1
				B16W07D	0.92 J	0.92 J	0.92 J	NA	1/1
				B16W08D	0.70 J	0.70 J	0.70 J	NA	1/2
Th-228	NA	NA	pCi/L	B16W09D	1.44	1.44	1.44	NA	1/1
			1	DW14	1.47	1.47	1.47	NA	1/1
				DW19RD	0.87 J	0.87 J	0.87 J	NA	1/2
				B16W07D	1.56 J	1.56 J	1.56 J	NA	1/1
				B16W08D	0.73 J	0.92 J	0.83 J	NA	2/2
TI 000	N T 4		C'/I	B16W09D	1.53 J	1.53 J	1.53 J	NA	1/1
Th-230	NA	NA	pCi/L	DW14	2.01 J	2.01 J	2.01 J	NA	1/1
				DW16	0.52 J	0.52 J	0.52 J	NA	1/1
				DW19RD	0.60 J	0.60 J	0.60 J	NA	1/2
Th-232	NA	NA	pCi/L	DW14	0.40 J	0.40 J	0.40 J	NA	1/1
			•	B16W07D	1.65	1.65	1.65	NA	1/1
11.004	N T 4		C'/I	DW16	1.74	1.74	1.74	NA	1/1
U-234	NA	A NA	pCi/L	DW18	0.65 J	0.65 J	0.65 J	NA	1/1
				DW19RD	49.1	56.5	52.8	NA	2/2
U-235	NA	NA	pCi/L	DW19RD	1.75	3.0	2.38	NA	2/2
				B16W07D	1.48	1.48	1.48	NA	1/1
11.000	N T 4	NT A	C'/I	DW16	0.77 J	0.77 J	0.77 J	NA	1/1
U-238	NA	NA	pCi/L	DW18	0.87 J	0.87 J	0.87 J	NA	1/1
				DW19RD	48.8	55.2	52.0	NA	2/2
				B16W07D	4.50	4.50	4.50	0	1/1
T-4-1 TP	20	NT 4	/т	DW16	2.32	2.32	2.32	0	1/1
Total U ^e	20	NA	μg/L	DW18	2.60	2.60	2.60	0	1/1
				DW19RD	146.49	166.17	156.33	2	2/2

 Table 4-3. Analytes Detected in HU-B Groundwater in CY 2021 (Continued)

^a USACE 1998a.

^b Table lists only those stations at which the analyte was detected in HU-B groundwater.

^c Although the ROD does not reference an IL for Ra-226, it does reference the maximum constituent concentration listed in Table 1 of 40 *CFR* 192.02, Subpart A.

^d Concentration limit for combined Ra-226 and Ra-228.

^e Total U values were calculated from isotopic concentrations in pCi/L and converted to μg/L using radionuclide-specific activities and assuming secular equilibrium.

NA – not appropriate. (No IL is specified or the concentration limits specified in Table 1 of 40 *CFR* 192.02, Subpart A, are the same or less stringent than the IL and thus not relevant or appropriate.)

VQ symbol indicates: "J" analyte was identified as estimated quantity.

During CY 2021, one inorganic SLDS COC, arsenic, was detected at concentrations above its ROD groundwater criterion in HU-B groundwater. The concentration of arsenic exceeded the IL (50 μ g/L) in the sample collected in the second quarter of CY 2021 from DW14 (140 μ g/L) and the samples collected from the fourth quarter of CY 2021 from DW14 (200 μ g/L) and DW18 (76 μ g/L). The time-versus-concentration plots for arsenic in DW14 and DW18 are provided on Figure 4-4.

One radiological COC, total U, exceeded its ROD groundwater criteria in HU-B groundwater at the SLDS during CY 2021. The concentration of total U exceeded the IL ($20 \mu g/L$) in the two samples collected in CY 2021 from DW19RD, the HU-B replacement well for DW19. The

concentration of total U had exceeded the IL in the annual groundwater samples collected from DW19 since installation of the well in CY 1999. On August 3, 2016, DW19 was plugged and abandoned so that remediation activities could be conducted in that area. In March 2019, after the remediation activities were completed, DW19RD was installed to allow continued assessment of contaminant concentration trends in HU-B in this area. The total U concentrations detected in the CY 2021 samples from DW19RD varied from 166.2 μ g/L (May 2021) to 146.5 μ g/L (November 2021). The overall average total U concentration detected at DW19RD (108.1 μ g/L) is similar to the average concentration detected in the samples collected at DW19 prior to its decommissioning (87.0 μ g/L). The total U time-versus-concentration plots in unfiltered groundwater at the SLDS are shown on Figure 4-5.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), two statistically significant trends were identified in HU-B groundwater. There is a statistically significant downward trend in arsenic concentrations in DW14 and a statistically significant upward trend in arsenic concentrations in DW18. Expanded versions of the time-versus-concentration plots and trends are provided on Figure 4-6 for arsenic in DW14 and DW18.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), a statistically significant trend was not identified in the total U concentrations in DW19RD. Because total U values are calculated using the U-234, U-235, and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes. The total U concentrations detected in DW19RD during CY 2021 exceed the corresponding IL ($20 \mu g/L$), as did the three samples collected from this well in CY 2020. An expanded version of the time-versus-concentration plot and trends for total U in DW19 and its replacement well DW19RD is provided on Figure 4-6.

4.2.3 Comparison of Historical Groundwater Data

A quantitative evaluation of COC concentration trends in SLDS groundwater was conducted based on available sampling data for the period from January 1999 through December 2021. The Mann-Kendall Trend Test was used to evaluate possible trends for those COCs detected in HU-A and for those COCs that exceeded ROD groundwater criteria in HU-B during CY 2021. The Mann-Kendall Trend Test was not conducted for those COCs with a detection frequency less than 50 percent or historical results generally within the range of measurement error of their DLs. For HU-A, a trend analysis was conducted for arsenic in B16W06S, DW19RS, and DW21; cadmium in DW21; and total U in DW19RS. A trend analysis was not performed for cadmium in B16W06S and DW19RS, or Th-230 in DW19RS because the historical results were generally below or only slightly above the DLs. The Mann-Kendall Trend Test was conducted for two COCs that exceeded the ILs in HU-B wells during CY 2021: arsenic in DW14 and DW18; and total U in DW19RD.

Statistical Method and Trend Analysis

Several statistical methods are available to evaluate contaminant trends in groundwater. These include the Mann-Kendall Trend Test, the Wilcoxon Rank Sum (WRS) Test, and the Seasonal Kendall Test (USEPA 2000). The latter two tests are applicable to data that may or may not exhibit seasonal behavior, but generally require larger sample sizes than the Mann-Kendall Trend Test. The Mann-Kendall Trend Test was selected for this project because this test can be used with small sample sizes (as few as four data points with detect values) and because a seasonal variation in concentrations was not indicated by the time-versus-concentration plots at the SLDS. The

Mann-Kendall Trend Test is a non-parametric test and, as such, is not dependent upon assumptions of distribution, missing data, or irregularly-spaced monitoring periods. In addition, data reported as being less than the DL can be used (Gibbons 1994). The test can assess whether a time-ordered dataset exhibits an increasing or decreasing trend, within a predetermined level of significance. While the Mann-Kendall Trend Test can use as few as four data points, often this is not enough data to detect a trend. Therefore, the test was performed only at those monitoring stations where data have been collected for at least six sampling events.

A customized Microsoft Excel® spreadsheet was used to perform the Mann-Kendall Trend Test. The test involves listing the sampling results in chronological order and computing all differences that may be formed between current measurements and earlier measurements. The value of the test statistic (S) is the difference between the number of strictly positive differences and the number of strictly negative differences. If S is a large positive value, then there is evidence of an increasing trend in the data. If S is a large negative value, then there is evidence of a decreasing trend in the data. If there is no trend and all observations are independent, then all rank orderings of the annual statistics are equally likely (USEPA 2000). The results of the Mann-Kendall Trend Test are reported in terms of a p value or Z-score, depending on sample size, N. If the sample size is less than or equal to 10, then the p value is computed. If the p value is less than or equal to 0.05, the test concludes that the trend is statistically significant. If the p value is greater than 0.05, the test concludes there is no evidence of a significant trend. For dataset sizes larger than 10, the Z-score is compared to ± 1.64 , which is the comparison level at a 95 percent confidence level. If the Z-score is greater than +1.64, the test concludes that a significant upward trend exists. If the Z-score is less than -1.64, the test concludes that a significant downward trend exists. For Z-scores between -1.64 and +1.64, there is no statistical evidence of a significant trend.

The results of the Mann-Kendall Trend Test are less reliable for datasets containing high numbers of non-detects, particularly if the DL changes over time. Thus, for datasets for which more than 50 percent of the time-series data are non-detect, the Mann-Kendall Trend Test was not conducted. There is no general consensus regarding the percentage of non-detects that can be handled by the Mann-Kendall Trend Test. However, because the Mann-Kendall Trend Test is a nonparametric test that uses relative magnitudes and not actual values, it is generally valid even in cases in which there are large numbers of non-detects.

Only unfiltered data were used, and split sample and QC sample results were not included in the dataset for the Mann-Kendall Trend Test. The Mann-Kendall Trend Test is used to evaluate the data and determine trends without regard to isotopic analysis. In addition, for monitoring wells for which the Mann-Kendall Trend Test has indicated a trend (either upward or downward), another analysis is performed to determine if the trend is due to inherent error associated with the analytical test method for each sample analysis. For this analysis, graphs are generated to depict the trends, if present, and the range of associated measurement error.

Results of Trend Analysis for Groundwater

The Mann-Kendall Trend Test results are provided in Table 4-4. Time-versus-concentration plots for those wells and analytes exhibiting a statistically significant trend based on the Mann-Kendall Trend Test results (i.e., arsenic in DW14, DW18, and DW21) are provided on Figure 4-6. Although the Mann-Kendall Trend Test did not identify a trend in the total U results in DW19RD, a time-versus-concentration plot is provided on Figure 4-6 for this replacement well for DW19.

Analysta	Station	HU	N ^a	Test Statistics ^{b,c}		Trend ^d	
Analyte				S	Z	I renu	
	B16W06S	HU-A	27	-5	-0.08	No Trend	
	DW14	HU-B	27	-87	-1.80	Downward Trend	
Arsenic	DW18	HU-B	34	328	4.85	Upward Trend	
	DW19RS	HU-A	8	9	0.17	No Trend	
	DW21	HU-A	31	-211	-3.57	Downward Trend	
Cadmium	DW21	HU-A	13	7	0.37	No Trend	
Total U	DW19RD	HU-B	9	16	0.06	No Trend	
	DW19RS	HU-A	8	10	0.14	No Trend	

 Table 4-4. Results of Mann-Kendall Trend Test for Groundwater in CY 2021

¹ N is the number of unfiltered groundwater sample results for a particular analyte at the well over a particular time period. The time period is between January of 1999 and December of 2020. For DW19RD and DW19RS, which were installed in March 2019, the dataset was restricted to March 2019 to December 2021. For cadmium concentrations in DW21, the dataset was restricted to January 2005 to December 2021 in order to meet the Mann-Kendall Trend Test requirement that the dataset have a detection frequency greater than 50 percent.

^b Mann-Kendall Trend Tests were performed at a 95 percent level of confidence.

^c Test Statistics: S – S-statistic, Z – Z-score, or normalized test statistic (used if N>10).

^d Trend: The Z-score is compared to ± 1.64 to determine trend significance.

Inorganics

Based on the results of the Mann-Kendall Trend Test, two wells exhibit significant downward trends for arsenic (HU-A well DW21 and HU-B well DW14), and one well exhibits a significant upward trend for arsenic (HU-B well DW18). Because the Mann-Kendall Trend Test does not consider the effects of measurement error and does not provide any information concerning the magnitude of the trend, time-versus-concentration plots of arsenic in DW14, DW18, and DW21 were used to evaluate these factors (Figure 4-6). The plots also show the best-fit trend lines based on the data scatter. No other significant changes in the concentrations of the inorganic COCs occurred in HU-A or HU-B groundwater during CY 2021.

Radionuclides

The Mann-Kendall Trend Test results indicate there is no trend in total U concentrations in HU-A well DW19RS and HU-B well DW19RD. The time-versus-concentration plots for DW19RS and DW19RD are provided on Figure 4-5. The maximum concentration of total U in DW19RS and DW19RD in CY 2021 were 22.4 μ g/L and 166.2 μ g/L, respectively. The total U concentration in DW19RD exceeded the corresponding IL for HU-B groundwater (20 μ g/L). An expanded version of the time-versus-concentration plot for total U in DW19RD is provided on Figure 4-6. The best-fit trend line included on the time-versus concentration plot for total U in DW19RD is provided on Figure 4-6. The best-fit trend line included on the time-versus concentration plot for total U in DW19 and DW19RD confirms there is no significant trend in the results.

4.2.4 Evaluation of Potentiometric Surface

Groundwater elevations were measured in monitoring wells at the SLDS in February, May, August, and November of CY 2021. Potentiometric surface maps were created from the May and November measurements to illustrate groundwater flow conditions in wet and dry seasons, respectively. The potentiometric maps for both HU-A and HU-B are presented on Figures 4-7 through 4-10.

The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant typically slopes northeast toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (November) indicates groundwater flow patterns in HU-A were consistent for the wet and dry season conditions during CY 2021. During CY 2021, the HU-A potentiometric surface

elevations averaged approximately 2.7 ft higher during the wet season (May) than during the dry season (November).

As shown on Figures 4-8 and 4-10, the groundwater flow patterns in HU-B are strongly influenced by river stage. This indicates that groundwater in HU-B is hydraulically connected to the Mississippi River. The flow direction in HU-B is generally north-northeasterly toward the river in both the wet and dry seasons. A localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area. The HU-B groundwater elevations in CY 2021 averaged approximately 7 ft higher in the wet season (May) than during the dry season (November). In comparison, the difference in the Mississippi River stage in St. Louis was approximately 2.7 ft higher on May 10 (390.6 ft above mean sea level [amsl]) than on November 8 (387.9 ft amsl).

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 ENVIRONMENTAL QUALITY ASSURANCE PROGRAM

5.1 **PROGRAM OVERVIEW**

The environmental quality assurance (QA) program includes management of the QA and QC programs, plans, and procedures governing environmental monitoring activities at all SLS and at subcontracted vendor laboratories. This section describes the environmental monitoring standards of the FUSRAP and the goals for these programs, plans, and procedures.

The environmental QA program provides the FUSRAP with reliable, accurate, and precise monitoring data. The program furnishes guidance and directives to detect and prevent problems from the time a sample identification number is issued until the associated data are evaluated.

Key elements in achieving the goals of this program are maintaining compliance with the QA program; personnel training; compliance assessments; use of QC samples; documentation of field activities and laboratory analyses; and a review of data documents for precision, accuracy, and completeness.

General objectives are as follows:

- To provide data of sufficient quality and quantity to support ongoing remedial efforts, to aid in defining potential COCs, to meet the requirements of the EMG (USACE 1999a) and the *Sampling and Analysis Guide for the St. Louis Sites* (SAG) (USACE 2000), and to support the ROD (USACE 1998a);
- To provide data of sufficient quality to meet applicable State of Missouri and federal concerns (e.g., reporting requirements); and
- To ensure samples were collected using approved techniques and are representative of existing site conditions.

5.2 QUALITY ASSURANCE PROGRAM PLAN

The quality assurance program plan (QAPP) for activities performed at the SLDS is described within Section 3.0 of the SAG. The QAPP provides the organization, objectives, functional activities, and specific QA/QC activities associated with investigations and sampling activities at the SLDS.

QA/QC procedures are performed in accordance with applicable professional technical standards, USEPA requirements, government regulations and guidelines, and specific project goals and requirements. The QAPP was prepared in accordance with USEPA and USACE guidance documents, including *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (USEPA 1991), *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (USEPA 1994), and Engineer Manual (EM) 200-1-3, *Requirements for the Preparation of Sampling and Analysis Plans* (USACE 2001).

5.3 SAMPLING AND ANALYSIS GUIDE

The SAG summarizes standard operating procedures (SOPs) and data quality requirements for collecting and analyzing environmental data. The SAG integrates protocols and methodologies identified under various USACE and regulatory guidance. It describes administrative procedures for managing environmental data and governs sampling plan preparation, data review, evaluation and validation, database administration, and data archiving. The identified sampling and monitoring structures are delineated in programmatic documents such as the EMG (USACE 1999a), which is an upper tier companion document to the SAG (USACE 2000). The EMICY21 outlines the analyses to be performed at each site for various media (USACE 2020).

Flexibility to address non-periodic environmental sampling (e.g., specific studies regarding environmental impacts, well installations, and/or in-situ waste characterizations) was accomplished by the issuance of work descriptions. Environmental monitoring data obtained during these sampling activities were reported to USEPA Region 7 on a quarterly basis.

5.4 FIELD SAMPLE COLLECTION AND MEASUREMENT

Prior to beginning field sampling, field personnel were trained, as necessary, and participated in a project-specific readiness review. These activities ensured that standard procedures were followed in sample collection and completion of field logbooks, chain-of-custody forms, labels, and custody seals. Documentation of training and readiness was submitted to the project file.

The master field investigation documents are the site field logbooks. The primary purpose of these documents is to record each day's field activities; personnel on each sampling team; and any administrative occurrences, conditions, or activities that may have affected the fieldwork or data quality of any environmental samples for any given day. Guidance for documenting specific types of field sampling activities in field logbooks or log sheets is provided in Appendix C of EM 200-1-3 (USACE 2001).

At any point in the process of sample collection or data and document review, a non-conformance report may be initiated if non-conformances are identified (Leidos 2015a). Data entered into the St. Louis FUSRAP database may be flagged accordingly.

5.5 PERFORMANCE AND SYSTEM AUDITS

Performance and system audits of both field and laboratory activities were conducted to verify that sampling and analysis activities were performed in accordance with the procedures established in the SAG and activity-specific work description or the EMICY21 (USACE 2020).

5.5.1 Field Assessments

Internal assessments (audit or surveillance) of field activities (sampling and measurements) were conducted by the QA/QC Officer (or designee). Assessments included an examination of field sampling records; field instrument operating records; sample collection, handling, and packaging procedures; and maintenance of QA procedures and chain-of-custody forms. These assessments occurred at the onset of the project to verify that all established procedures were followed (systems audit).

Performance assessments followed the systems audit to ensure that deficiencies had been corrected and to verify that QA practices/procedures were being maintained throughout the duration of the project. These assessments involved reviewing field measurement records, instrumentation calibration records, and sample documentation.

External assessments may be conducted at the discretion of the USACE, USEPA Region 7, or the Missouri Department of Natural Resources (MDNR).

5.5.2 Laboratory Audits

The on-site FUSRAP St. Louis Radioanalytical Laboratory locations are subject to periodic review(s) by the local USACE Chemist to demonstrate compliance with the *Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories* (QSM) (DOD and DOE 2017). Accordingly, the on-site laboratories participate in blind, third-party performance evaluation studies (performance audits) at least twice per year, with

results reported to the local USACE point(s) of contact. In addition, contract laboratories are required to be accredited under the DOD Environmental Laboratory Accreditation Program (ELAP). The DOD ELAP requires an annual audit and re-accreditation every 3 years. The annual ELAP audit was performed on August 26 and 27, 2021.

These system audits include examining laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records. Performance audits consist of USACE laboratories receiving performance evaluation samples from an outside vendor for an ongoing assessment of laboratory precision and accuracy. The analytical results of the analysis of performance evaluation samples are evaluated by the local USACE Chemist to ensure that laboratories maintain acceptable performance.

Internal performance and system audits of laboratories were conducted by the Laboratory QA Manager as directed in the *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radioanalytical Laboratory* (USACE 2018). System audits included an examination of laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records against the requirements of the laboratory's SOPs. Internal performance audits were also conducted on a regular basis. Single-blind performance samples were prepared and submitted along with project samples to the laboratory for analysis. The Laboratory QA Manager evaluated the analytical results of these single-blind performance samples to ensure that the laboratory maintained acceptable performance. Quarterly QA/QC reports were generated and provided to the local USACE authority – the reports document the ongoing QC elements and provide for further monitoring of quality processes/status. Also, QA plans and methodology follow the guidance presented in the QSM (DOD and DOE 2017).

5.6 SUBCONTRACTED LABORATORY PROGRAMS

All samples collected during environmental monitoring activities were analyzed by USACE-approved subcontractor laboratories. QA samples were collected for groundwater and soil, and samples were analyzed by the designated USACE QA laboratory. Each laboratory supporting this work maintained statements of qualifications, including organizational structure, QA Manual, and SOPs. Additionally, subcontracted laboratories are also required to be an accredited laboratory under the DOD ELAP.

Samples collected during these investigations were analyzed by the USEPA methods contained in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846*, (USEPA 1993) and by other documented USEPA or nationally recognized methods. Laboratory SOPs are based on the QSM (DOD and DOE 2017).

5.7 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

QA/QC samples were collected and analyzed for the purpose of assessing the quality of the sampling effort and the reported analytical data. QA/QC samples include duplicate samples (-1) and split samples (-2). The equation utilized for accuracy and precision can be found in Section 5.9.

5.7.1 Duplicate Samples

Duplicate samples measure precision and were collected by the sampling teams. Samples were submitted for analysis to the on-site project laboratory or contract laboratories. The identity of duplicate samples is held blind to the analysts, and the purpose of these samples is to provide

activity-specific, field-originated information regarding the homogeneity of the sampled matrix and the consistency of the sampling effort. These samples were collected concurrently with the primary environmental samples and equally represent the medium at a given time and location. Duplicate samples were collected from each medium addressed by this project and were submitted to the contracted laboratories for analysis. Approximately one duplicate sample was collected for every 20 field samples of each matrix and analyte across the SLS. Precision is measured by the relative percent difference (RPD) for radiological and non-radiological analyses or by the normalized absolute difference (NAD) for radiological analyses.

The RPDs for non-radiological analyses are presented in Table 5-1. The RPDs and NADs for radiological analyses are presented in Table 5-2. The overall precision for the CY 2021 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

 Table 5-1. Non-Radiological Duplicate Sample Analysis for CY 2021 – Groundwater

Croundwater Samula Nama	Arsenic	Cadmium
Groundwater Sample Name ^a	RPD ^b	RPD ^b
SLD243241 / SLD243241-1	4.26	NC

^a Groundwater samples ending in "-1" are duplicate groundwater samples.

^b RPD criterion for liquid samples is less than or equal to 30 percent.

NC - not calculated (due to one or both concentrations being below minimum detectable concentrations [MDCs])

Table 5-2. Radiological Duplicate Sample Analysis for CY 2021 – Groundwater

Groundwater Sample Name ^a	Ra-226		Ra-228		Th-228		Th-230	
Groundwater Sample Name	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD243241 / SLD243241-1	NC	NA	*	*	38.03	0.41	48.61	0.67
Croundwater Sample Name	Th-232		U-234		U-235		U-238	
Groundwater Sample Name ^a	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD243241 / SLD243241-1	NC	NA	29.17	NA	NC	NA	42.13	0.73

^a Groundwater samples ending in "-1" are duplicate groundwater samples.

^b RPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

* Not calculated because either the parent or split sample was not analyzed.

NA – not applicable (see RPD)

NC – not calculated (due to one or both concentrations being below MDCs)

5.7.2 Split Samples

Split samples measure accuracy and were collected by the sampling team and sent to a USACE QA laboratory for analysis to provide an independent assessment of contractor and subcontractor laboratory performance. Approximately one split sample was collected for every 20 field samples of each matrix for non-radiological and radiological analytes across the SLS. The RPDs and NADs for non-radiological analyses are presented in Table 5-3. The RPDs and NADs for radiological analyses are presented in Table 5-4. The overall accuracy for CY 2021 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

 Table 5-3. Non-Radiological Split Sample Analysis for CY 2021 – Groundwater

Croundwater Samula Namai	Arsenic	Cadmium
Groundwater Sample Name ^a	RPD ^b	RPD ^b
SLD243241 / SLD243241-2	0.0	NC

^a Groundwater samples ending in "-2" are split groundwater samples.

^b RPD criterion for liquid samples is less than or equal to 30 percent.

NC - not calculated (due to one or both concentrations being below MDCs)

Croundwater Samula Namai	Ra-226		Ra-228		Th-228		Th-230	
Groundwater Sample Name ^a	RPD ^b	NAD						
SLD243241 / SLD243241-2	NC	NA	*	*	NC	NA	NC	NA
Cuana davatar Samala Namai	Th-232		U-234		U-235		U-238	
Groundwater Sample Name ^a	RPD ^b	NAD						
SLD243241 / SLD243241-2	NC	NA	3.57	NA	NC	NA	3.32	NA

 Table 5-4. Radiological Split Sample Analysis for CY 2021 – Groundwater

^a Groundwater samples ending in "-2" are split groundwater samples.

^b RPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

* Not calculated because either the parent or split sample was not analyzed.

NA – not applicable (see RPD)

NC – not calculated (due to one or both concentrations being below MDCs)

5.7.3 Equipment Rinsate Blanks

Equipment rinsate blank samples are typically taken from the rinsate water collected from equipment decontamination activities. These samples consist of analyte-free water that has been rinsed over sampling equipment for the purposes of evaluating the effectiveness of equipment decontamination. All of the monitoring wells have dedicated sampling equipment, rendering decontamination unnecessary. Because decontamination does not apply, equipment rinsate blanks were not employed.

5.8 DATA REVIEW, EVALUATION, AND VALIDATION

All data packages received from the analytical laboratory were reviewed and either evaluated and/or validated by data management personnel. Data validation is the systematic process of ensuring that the precision and accuracy of the analytical data are adequate for their intended use. Validation was performed in accordance with *Data Verification and Validation* (Leidos 2015b), and/or with project-specific guidelines. General chemical data quality management guidance found in Engineer Regulation (ER)-1110-1-263 (USACE 1998b) was also used when planning for chemical data management and evaluation. Additional details of data review, evaluation, and validation are provided in the *FUSRAP Laboratory Data Management Process for the St. Louis Site* (USACE 1999b). Data assessment guidance to determine the usability of data from hazardous, toxic, and radioactive waste projects is provided in EM-200-1-6 (USACE 1997).

One hundred (100) percent of the data generated from all analytical laboratories was independently reviewed and either evaluated or validated. The data review process documents the possible effects on the data from various QC failures; it does not determine data usability, nor does it include assignment of data validation qualifier (VQ) flags. The data evaluation or validation process uses the results of the data review to determine the usability of the data. The process of data evaluation summarizes the potential effects of QA/QC failures on the data, and the USACE District Chemist or District Health Physicist assesses their impact on the attainment of the project-specific data quality objectives (DQOs). Consistent with the data quality requirements, as defined in the DQOs, approximately 10 percent of all project data were validated.

5.9 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY

The data evaluation process considers precision, accuracy, representativeness, completeness, comparability, and sensitivity. This section provides detail to the particular parameters and to how the data were evaluated for each, with discussion and tables to present the associated data. An

evaluation of the overall precision, accuracy, representativeness, completeness, comparability, and sensitivity of the CY 2021 environmental monitoring activities was acceptable and complete.

Accuracy and precision can be measured by the RPD or the NAD using the following equation:

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) \times 100$$
$$NAD = \frac{|S-D|}{\sqrt{U_s^2 + U_D^2}}$$

where:

- S = Parent Sample Result
- D = Duplicate/Split Sample Result
- $U_{\rm S}$ = Parent Sample Uncertainty
- U_D = Duplicate/Split Sample Uncertainty

The RPD is calculated for all samples if a detectable result is reported for both the parent and the QA field split or field duplicate. For radiological samples, when the RPD is greater than 30 percent, the NAD is used to determine the accuracy or precision of the method. NAD accounts for uncertainty in the results, RPD does not. The NAD should be less than or equal to 1.96. Neither equation is used when the analyte in one or both of the samples is not detected. In cases in which neither equation can be used, the comparison is counted as acceptable in the overall number of comparisons.

Precision is a measure of mutual agreement among individual measurements performed under the same laboratory controls. To evaluate for precision, a field duplicate is submitted to the same laboratory as the original sample to be analyzed under the same laboratory conditions. The RPD and NAD between the two results was calculated and used as an indication of the precision of the analyses performed (Tables 5-1 and 5-2). Sample collection precision was measured in the laboratory by the analyses of duplicates. The overall precision for the CY 2021 environmental monitoring sampling activities was acceptable.

Accuracy provides a gauge or measure of the agreement between an observed result and the true value for an analysis. The RPD and NAD between the two results was calculated and used as an indication of the accuracy of the analyses performed (Tables 5-3 and 5-4). For this report, accuracy is measured through the use of the field split samples through a comparison of the prime laboratory results versus the results of an independent laboratory. The overall accuracy for CY 2021 environmental monitoring sampling activities was acceptable.

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Representativeness is a qualitative parameter that depends upon the proper design of the sampling program and proper laboratory protocols. Representativeness is satisfied through proper design of the sampling network, use of proper sampling techniques, following proper analytical procedures, and not exceeding holding times of the samples. Representativeness was determined by assessing the combined aspects of the QA program, QC measures, and data evaluations. The network design was developed from the EMICY21, the sampling protocols from the SAG have been followed, and analytical procedures were conducted

within the bounds of the QAPP. The overall representativeness of the CY 2021 environmental monitoring activities was acceptable.

Comparability expresses the confidence with which one dataset can be compared to another. The extent to which analytical data will be comparable depends upon the similarity of sampling and analytical methods, as well as sample-to-sample and historical comparability. Standardized and consistent procedures used to obtain analytical data are expected to provide comparable results. For example, post-CY 1997 analytical data may not be directly comparable to data collected before CY 1997, because of differences in DQOs. Additionally, some sample media (e.g., stormwater and radiological monitoring) have values that are primarily useful in the present, thus the comparison to historic data is not as relevant. However, the overall comparability of the applicable environmental monitoring data met the project DQOs.

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under normal conditions. It is expected that laboratories will provide data meeting QC acceptance criteria for all samples tested. For the CY 2021 environmental monitoring activities, the data completeness was 100 percent (St. Louis FUSRAP DQO for completeness is 90 percent).

Sensitivity is the determination of minimum detectable concentration (MDC) values that allows the investigation to assess the relative confidence that can be placed in an analytical result in comparison to the magnitude or level of analyte concentration observed. For this report, MDC is a term generically used to represent both the method detection limit (MDL) for non-radiological analytes and the minimum detectable activity (MDA) for radiological analytes. The closer a measured value to the MDC, the less confidence and more variation the measurement will have. Project sensitivity goals were expressed as quantitation level goals in the SAG. These levels were achieved or exceeded throughout the analytical process.

The MDC is reported for each result obtained by laboratory analysis. These very low MDCs are achieved through the use of gamma spectroscopy for all radionuclides of concern, with additional analyses from alpha spectroscopy for thorium, and inductively coupled plasma (ICP) for metals. Variations in MDCs for the same radiological analyte reflects variability in the detection efficiencies and conversion factors due to factors such as individual sample aliquot, sample density, and variations in analyte background radioactivity for gamma and alpha spectroscopy, at the laboratory. Variations in MDLs for the same non-radiological analyte reflect variability in calibrations between laboratories, dilutions, and analytical methods. In order to complete the data evaluation (i.e., precision, accuracy, representativeness, and comparability), analytical results that exceed the MDC of the analyte are desired.

5.10 DATA QUALITY ASSESSMENT SUMMARY

The overall quality of the data meets the established project objectives. Through proper implementation of the project data review, evaluation, validation, and assessment process, project information has been determined to be acceptable for use.

Data, as presented, have been qualified as usable, but estimated when necessary. Data that have been estimated have concentrations/activities that are below the quantitation limit or are indicative of accuracy, precision, or sensitivity less than desired but adequate for interpretation.

These data can withstand scientific scrutiny, are appropriate for their intended purpose, are technically defensible, and are of known and acceptable precision and accuracy. Data integrity has been documented through proper implementation of QA/QC measures. The environmental

information presented has an established confidence, which allows utilization for the project objectives and provides data for future needs.

5.11 RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES

 Table 5-5. Non-Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2021 – Groundwater

Groundwater	Arsenic ^b			Cadmium ^b			
Sample Name ^a	Result	DL	VQ	Result	DL	VQ	
SLD243241	24	4.0	=	0.37	0.2	J	
SLD243241-1	23	4.0	=	0.2	0.2	U	
SLD243241-2	24	0.5	J	0.3	0.3	U	

^a Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

^b Result values are expressed in $\mu g/L$.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "U" for not detected.

Table 5-6. Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2021 – Groundwater

Groundwater	Ra-226 ^a				Ra-228 ^a			Th-228 ^a				
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD243241	0.73	0.78	1.03	UJ	*	*	*	*	0.92	0.54	0.52	J
SLD243241-1	1.24	1.11	1.63	UJ	*	*	*	*	0.63	0.46	0.43	J
SLD243241-2	0.44	0.17	0.17	=	*	*	*	*	0.09	0.10	0.14	UJ
Groundwater	Th-230 ^a				Th-232 ^a			U-234 ^a				
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD243241	1.56	0.70	0.52	J	0.07	0.20	0.52	UJ	1.65	0.74	0.55	=
SLD243241-1	0.95	0.57	0.43	J	0.16	0.28	0.59	UJ	1.23	0.61	0.45	=
SLD243241-2	0.10	0.12	0.19	UJ	-0.06	0.03	0.17	UJ	1.71	0.39	0.17	=
Groundwater	U-235 ^a				U-238 ^a							
Sample Name ^b	Result	Error	MDC	VQ	Result	Error	MDC	VQ				
SLD243241	0.19	0.32	0.68	UJ	1.48	0.69	0.40	Ш				
SLD243241-1	-0.02	0.18	0.46	UJ	2.27	0.84	0.45	Ш				
SLD243241-2	0.06	0.09	0.16	UJ	1.53	0.36	0.12	Ш				

^a Results are expressed in pCi/L. Negative results are less than the laboratory system's background level.

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

* Data for analyte are not available from laboratory analysis. Ra-228 assumed to be in equilibrium with Th-228.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "UJ" analyte was not detected and had QC deficiencies.

6.0 RADIOLOGICAL DOSE ASSESSMENT

This section evaluates the cumulative dose to a hypothetically impacted individual from exposure to radiological contaminants at the SLDS and documents dose trends. The regulatory dose limit for members of the public is 100 mrem per year, as stated in 10 *CFR* 20.1301. Although 10 *CFR* 20.1301 is not an ARAR for the SLDS, the USACE has provided this evaluation to evaluate public exposures from St. Louis FUSRAP cleanup operations. Compliance with the dose limit in §20.1301 can be demonstrated by one of the two following methods (§20.1302(b)(1) and (2)):

- 1. Demonstrating by measurement or calculation that the TEDE to the individual likely to receive the highest dose from SLDS operations does not exceed the annual dose limit (i.e., 100 mrem per year); or
- 2. Demonstrating that: (*i*) the annual average concentration of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area does not exceed the values specified in Table 1 of Appendix B of 10 *CFR* 20; and (*ii*) if an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 2 mrem per hour.

The USACE has elected to demonstrate compliance by calculation of the TEDE to a hypothetical individual likely to receive the highest dose from the SLDS operations (method 1). This section describes the methodology employed for this evaluation.

Dose calculations are presented for a hypothetical maximally exposed individual at the SLDS. The monitoring data used in the dose calculations are reported in the respective environmental monitoring sections of this EMDAR.

Dose calculations related to airborne emissions, as required by 40 *CFR* 61, Subpart I (*National Emission Standards for Emissions of Radionuclides Other Than Radon From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered By Subpart H*), are presented in Appendix B (the "St. Louis Downtown Site 2021 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 *CFR* 61, Subpart I").

6.1 SUMMARY OF ASSESSMENT RESULTS

The TEDE from the SLDS to the receptor from all complete/applicable pathways combined was 6.4 mrem per year, estimated for an individual who works full-time at Gunther Salt (DT-4). From CY 2000 to CY 2020, the individual likely to receive the highest dose from SLDS operations was a full-time employee at Thomas and Proetz Lumber Company (DT-10) because it was located between the loadout pile and the active excavations. However, that company is no longer operating and excavation operations at SLDS have increased in the Gunther Salt (DT-4) vicinity. Therefore, a new receptor at Gunther Salt (DT-4) was selected as the individual likely to receive the highest dose from SLDS operations for CY 2021.

Figure 6-1 documents annual dose trends from CY 2000 to CY 2021 at the SLDS. A comparison of the maximum annual dose from CY 2000 to CY 2021 at the SLDS to the annual average natural background dose of approximately 620 mrem per year is provided on Figure 6-2.

6.2 PATHWAY ANALYSIS

Table 6-1 lists the four complete pathways for exposure from SLDS radiological contaminants evaluated by the St. Louis FUSRAP EMP. These pathways are used to identify data gaps in the

EMP and to estimate potential radiological exposures from the SLDS. Of the four complete pathways, three were applicable in CY 2021 and were thus incorporated into radiological dose estimates.

Exposure Pathway	Pathway Description	Applicable to CY 2021 Dose Estimate
Liquid A	Ingestion of groundwater from local wells downgradient from the site.	NA
Airborne A	Inhalation of particulates dispersed through wind erosion and RAs.	Y
Airborne B	Inhalation of Rn-222 and decay products emitted from contaminated soils/wastes.	Y
External	Direct gamma radiation from contaminated soils/wastes.	Y

Table 6-1. Complete Radiological Exposure Pathways

NA - not applicable for the site Y - applicable for the site

In developing specific elements of the St. Louis FUSRAP EMP, potential exposure pathways of the radioactive materials present on-site are reviewed to determine which pathways are complete. Evaluation of each exposure pathway is based on hypothesized sources, release mechanisms, types, probable environmental fates of contaminants, and the locations and activities of potential receptors. Pathways are then reviewed to determine whether a link exists between one or more radiological contaminant sources, or between one or more environmental transport processes, to an exposure point where human receptors are present. If it is determine that a link exists, the pathway is termed complete. Each complete pathway is reviewed to determine if a potential for exposure was present during CY 2021. If potential for exposure was present, the pathway is termed applicable pathways are considered in estimates of dose.

Table 6-1 shows the pathways applicable to the CY 2021 dose estimates for the SLDS. The Liquid A exposure pathway was not applicable in CY 2021, because the aquifer is of naturally low quality and it is not known to be used for any domestic purpose in the vicinity of the SLDS (DOE 1994).

6.3 EXPOSURE SCENARIOS

Dose calculations were performed for a maximally exposed individual at a critical receptor location for applicable exposure pathways (Table 6-1) to assess dose due to radiological releases from the SLDS. A second set of dose equivalent calculations were performed to meet NESHAP requirements (Appendix B), which were also used for purposes of TEDE calculation.

The scenarios and models used to evaluate these radiological exposures are conservative, but appropriate. Although radiation doses can be calculated or measured for individuals, it is not appropriate to predict the health risk to a single individual using the methods prescribed herein. Dose equivalents to a single individual are estimated by hypothesizing a maximally exposed individual and placing this individual in a reasonable, but conservative scenario. This method is acceptable when the magnitude of the dose to a hypothetical maximally exposed individual is small, as is the case for the SLDS. This methodology provides for reasonable estimates of potential exposure to the public and maintains a conservative approach. The scenarios and resulting estimated doses are outlined in Section 6.4.

6.4 DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS

The TEDE for the exposure scenario was calculated using CY 2021 monitoring data. Calculations for dose scenarios are provided in Appendix G. Dose equivalent estimates are well below the standards set by the U.S. Nuclear Regulatory Commission (NRC) for annual public exposure and USEPA NESHAP limits.

The CY 2021 TEDE for a hypothetical maximally exposed individual near the SLDS is 6.4 mrem per year.

This section discusses the estimated TEDE to a hypothetical maximally exposed individual assumed to frequent the perimeter of the SLDS and receive a radiation dose by the exposure pathways identified in Section 6.2. No private residences are adjacent to the site areas where uranium processing activities occurred. Therefore, all calculations of dose equivalent due to the applicable pathway assume a realistic residence time that is less than 100 percent. A full-time employee business receptor was considered to be the maximally exposed individual from the SLDS.

The exposure scenario assumptions include the following:

- Exposure to radiation from all SLDS sources occurs to the maximally exposed individual while working full-time outside at the receptor location facility located approximately 55 m from the assumed line source. Exposure time is 2,000 hours per year (Leidos 2022b).
- Exposure from external gamma radiation was calculated using environmental TLD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor. The site is assumed to represent a line-source to the receptor (Leidos 2022b).
- Exposure from airborne radioactive particulates was estimated using soil concentration data and air particulate monitoring data to determine a source term, and then running the CAP88-PC modeling code to estimate dose to the receptor (Leidos 2022b).
- Exposure from Rn-222 (and decay chain isotopes) was calculated using ATD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor (Leidos 2022b).

Based on the exposure scenario and assumptions described above, a maximally exposed individual working outside at the receptor location facility received 2.1 mrem per year from external gamma, less than 0.1 mrem per year from airborne radioactive particulates, and 4.2 mrem per year from Rn-222, for a TEDE of 6.4 mrem per year (Leidos 2022b). In comparison, the average exposure to natural background radiation in the United States results in a TEDE of approximately 620 mrem per year (NCRP 2009). Although the estimated dose to a maximally exposed individual working outside at the receptor location facility was two orders of magnitude less than the average background dose in the United States, it was higher than the trending average for SLDS receptors. This increase in estimated dose trend was likely due to the change in receptor location and the increased amount of excavation activity that occurred at the new receptor location facility in CY 2021.

7.0 **REFERENCES**

Cember, H., 1996. Introduction to Health Physics. Mcgraw-Hill, New York, NY. 1996.

- City of St. Louis 2005. City Ordinance 66777, effective August 2005.
- DOD 2000. U.S. Department of Defense, U.S. Department of Energy, U.S. Environmental Protection Agency, and U.S. Nuclear Regulatory Commission. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. NUREG 1575. EPA 402-R-97-016. August 2000.
- DOD and DOE 2017. U.S. Department of Defense and U.S. Department of Energy. *Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories*. DOD Quality Systems Manual Version 5.1 and DOE Quality Systems for Analytical Services Version 3.1. 2017.
- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site.* St. Louis, Missouri. DOE/OR/21949-280. January 1994.
- DOE 1995. U.S. Department of Energy. *Remedial Investigation Addendum for the St. Louis Site.* St. Louis, Missouri. DOE/OR/ 21950-132. September 1995.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*. John Wiley and Sons, Inc., New York. January 1994.
- Leidos 2015a. Leidos, Inc. Environmental Science & Engineering Operation, Standard Operating Procedure. "Control of Nonconforming Items." ESE A15.1. Revision 0. January 31, 2015.
- Leidos 2015b. Leidos, Inc. *Data Verification and Validation*. Environmental Science & Engineering Operation. Standard Operating Procedure. ESE DM-05. Revision 0. January 31, 2015.
- Leidos 2022a. Leidos, Inc. Radon Working Levels (WL) at SLDS. Calculation Package. March 2022.
- Leidos 2022b. Leidos, Inc. Total Effective Dose Equivalent (TEDE) to the Hypothetically Maximally Exposed Individual at SLDS. Calculation Package. March 2022.
- MSD 1998. Metropolitan St. Louis Sewer District. Letter dated October 30, 1998. From Bruce H. Litzsinger, Civil Engineer, to Ken Axetel, International Technology Corporation.
- MSD 2001. Metropolitan St. Louis Sewer District. Letter dated July 23, 2001. From Bruce H. Litzsinger, Civil Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: St. Louis Downtown Site. File: IU – Mallinckrodt 21120596-00.
- MSD 2004. Metropolitan St. Louis Sewer District. Letter dated October 13, 2004. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. File: IU Mallinckrodt 21120596-00.
- MSD 2006. Metropolitan St. Louis Sewer District. Letter dated June 19, 2006. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2008. Metropolitan St. Louis Sewer District. Letter dated May 22, 2008. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.

- MSD 2010. Metropolitan St. Louis Sewer District. Letter dated May 10, 2010. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2012. Metropolitan St. Louis Sewer District. Letter dated May 24, 2012. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2014. Metropolitan St. Louis Sewer District. Letter dated June 23, 2014. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2016. Metropolitan St. Louis Sewer District. Letter dated July 18, 2016. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2018. Metropolitan St. Louis Sewer District. Letter dated June 11, 2018. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2020. Metropolitan St. Louis Sewer District. Letter dated July 16, 2020. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-SPECGX 1011728100, SP809.
- NCRP 1988. National Council on Radiation Protection and Measurements. *Measurement of Radon and Radon Daughters in Air*. NCRP Report No. 97. November 1988.
- NCRP 2009. National Council on Radiation Protection and Measurements. *Ionizing Radiation Exposure of the Population of the United States*. NCRP Report No. 160. 3 March 2009.
- USACE 1997. U.S. Army Corps of Engineers, Environmental Quality. *Chemical Quality* Assurance for HTRW Projects. Engineer Manual. EM-200-1-6. October 10, 1997.
- USACE 1998a. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site.* St. Louis, Missouri. Final. July 1998.
- USACE 1998b. U.S. Army Corps of Engineers, Engineering and Design. Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities. Engineer Regulation. ER-1110-1-263. April 30, 1998.
- USACE 1999a. U.S. Army Corps of Engineers. *Environmental Monitoring Guide for the St. Louis Sites.* Final. December 1999.
- USACE 1999b. U.S. Army Corps of Engineers. FUSRAP Laboratory Data Management Process for the St. Louis Site. St. Louis, Missouri. June 1999.
- USACE 2000. U.S. Army Corps of Engineers. Sampling and Analysis Guide for the St. Louis Site. Final. October 2000.

- USACE 2001. U.S. Army Corps of Engineers, Environmental Quality. *Requirements for the Preparation of Sampling and Analysis Plans.* Engineer Manual. EM 200-1-3. February 1, 2001.
- USACE 2003. U.S. Army Corps of Engineers. *Phase 1 Ground-Water Remedial Action Alternative Assessment (GRAAA) at SLDS.* St. Louis Missouri. Final. June 2003.
- USACE 2018. U.S. Army Corps of Engineers. Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radiological Laboratory. St. Louis, Missouri. Revision 11. February 2018.
- USACE 2020. U.S. Army Corps of Engineers. *Environmental Monitoring Implementation Plan* for the St. Louis Downtown Site for Calendar Year 2021. St. Louis, Missouri. Revision 0. December 23, 2020.
- USEPA 1987. U.S. Environmental Protection Agency. *Environmental Radon*. Volume 35. New York. 1987.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C. *Exposure Factor Handbook*. EPA/600/8-89/043. July 1989.
- USEPA 1991. U.S. Environmental Protection Agency. Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans. QAMS-005/80. 1991.
- USEPA 1993. U.S. Environmental Protection Agency. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846.* Third Edition. Final Update III-A. EPASW-846.3-3a. March 1993.
- USEPA 1994. U.S. Environmental Protection Agency. *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations*. EPA QA/R-5. January 1994.
- USEPA 2000. U.S. Environmental Protection Agency. *Guidance for Data Quality Assessment -Practical Methods for Data Analysis.* EPA QA/G-9. QA00 Update. July 2000.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 10 CFR 20, Standards for Protection Against Radiation.
- 10 CFR 20.1301, Dose Limits for Individual Members of the Public.
- 40 CFR 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 192, Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings.

FIGURES

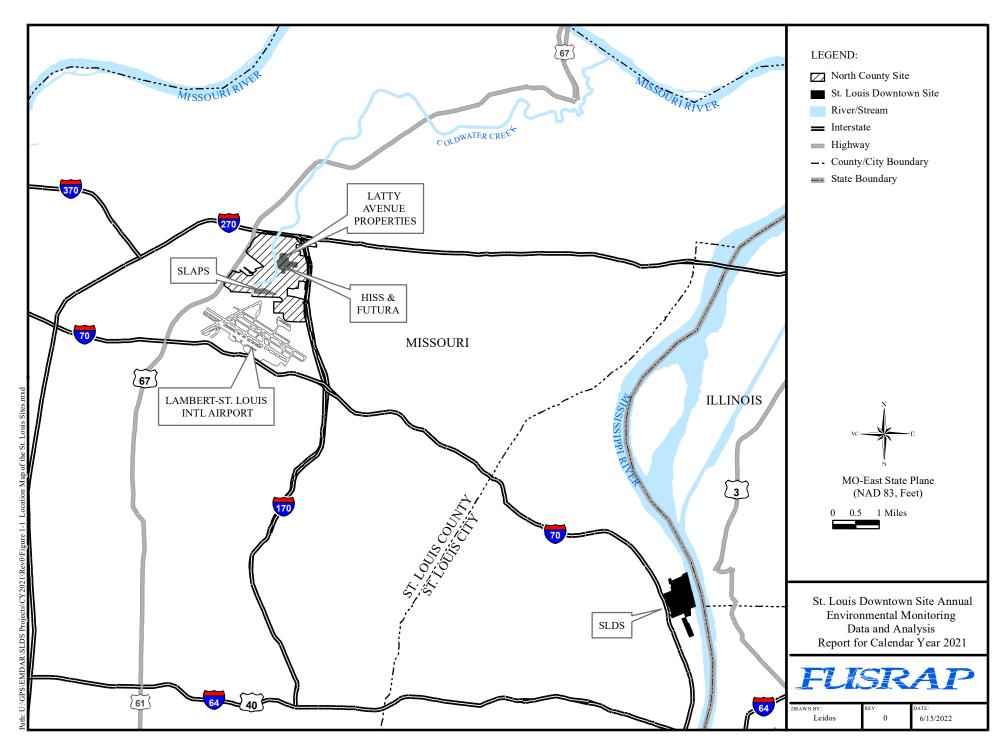
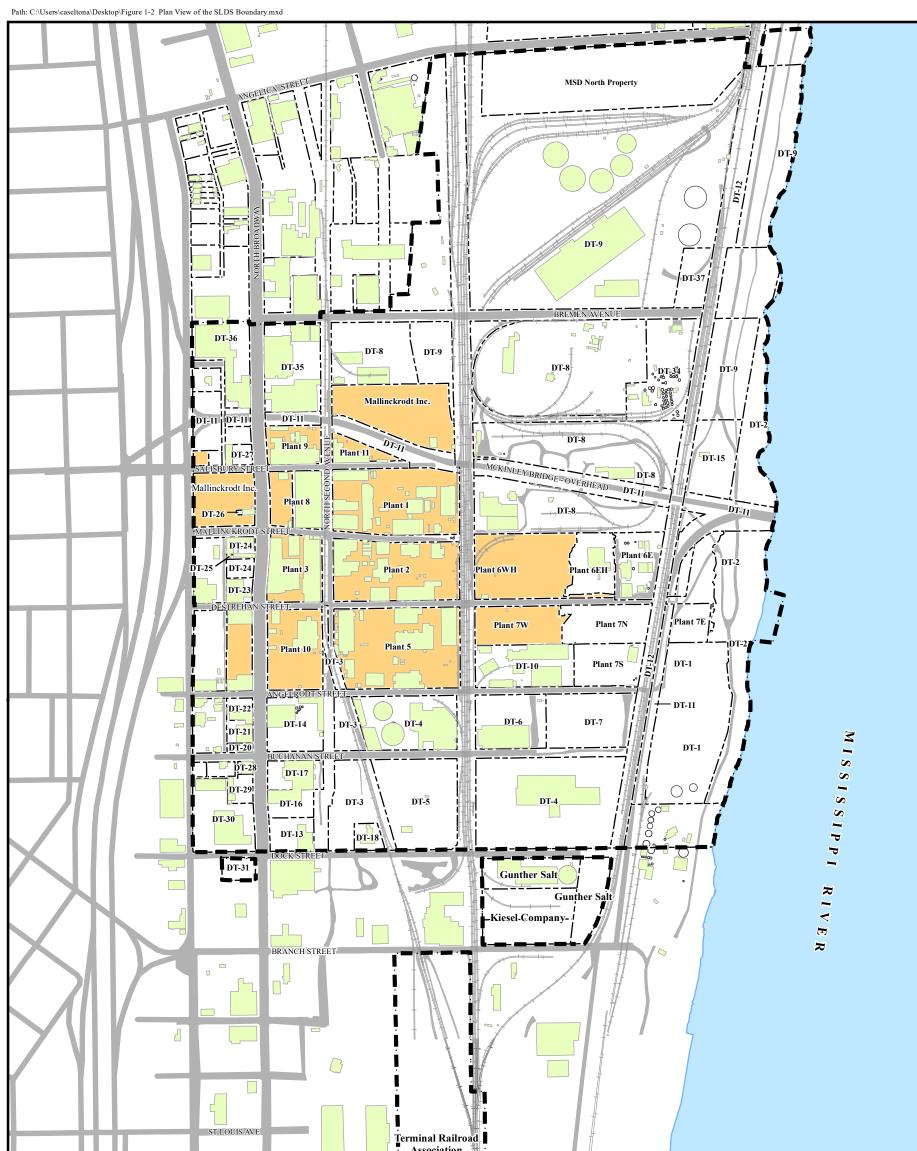



Figure 1-1. Location Map of the St. Louis Sites

	Soil Spoils Area		
LEGEND —— Railroad River/Stream		n n n n n n n n n n n n n n n n n n n	St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2021
· —· SLDS Boundary Road [] Property Boundary Building	Ν	IO-East State Plane (NAD 83, Feet)	FUSRAP
Mallinckrodt Property O Tank	0	260 520 Feet	DRAWN BY: REV: DATE: Leidos 0 7/5/2022

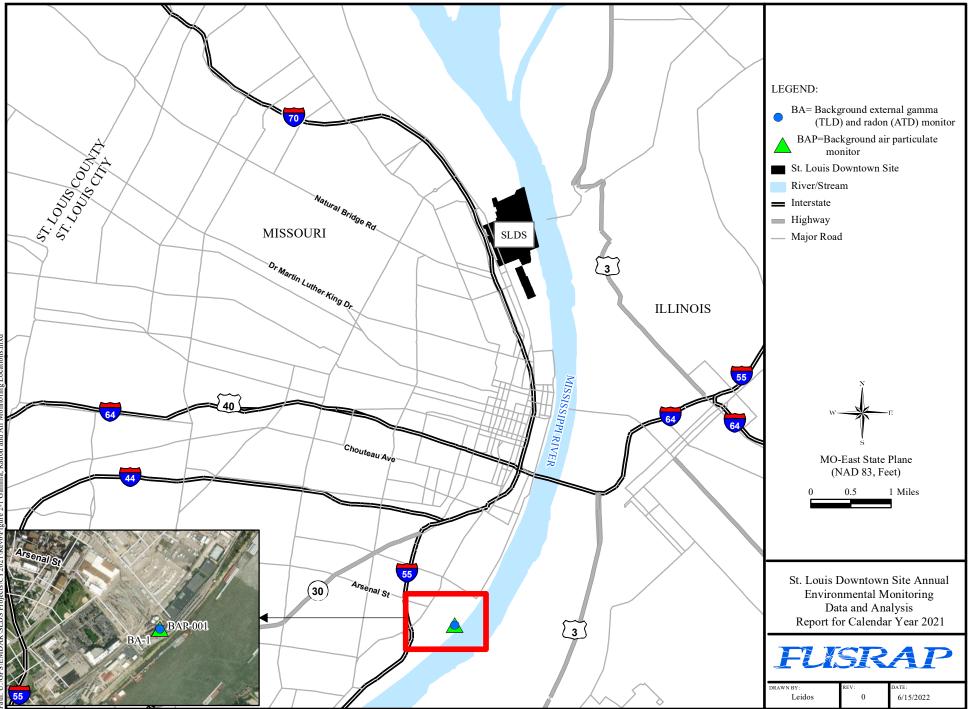


Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at the St. Louis Background Location - USACE Service Base

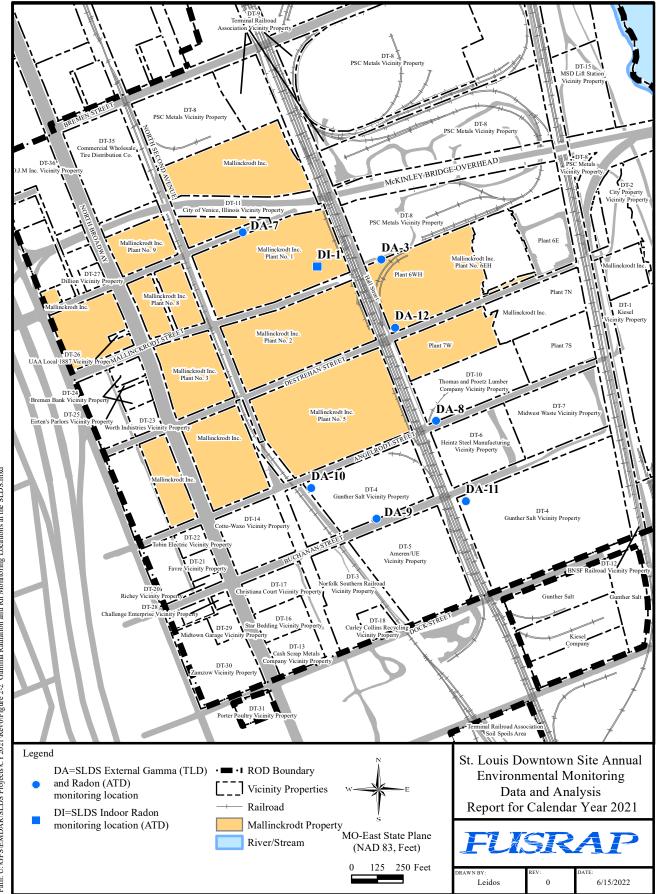


Figure 2-2. Gamma Radiation and Radon Monitoring Locations

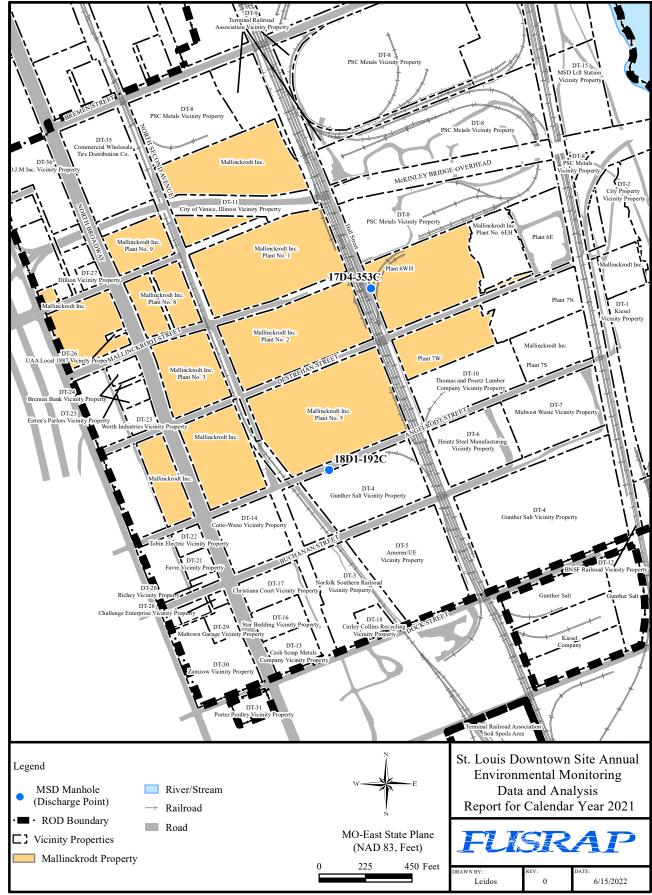
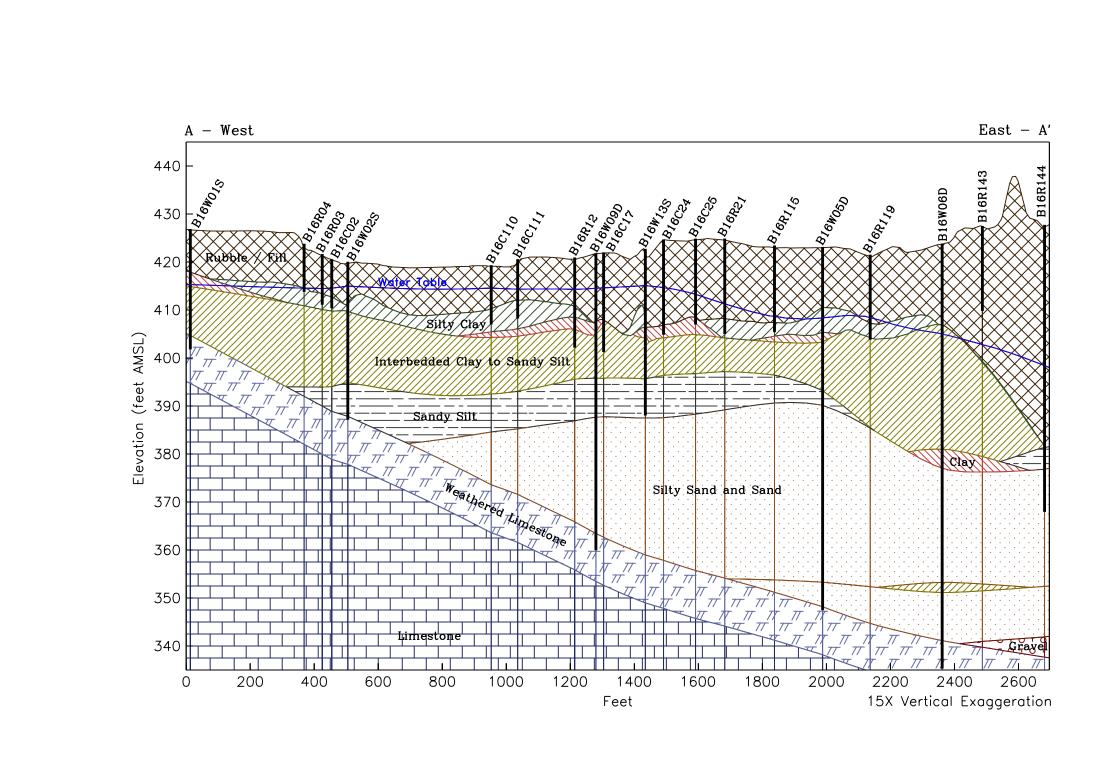



Figure 3-1. MSD Excavation Water Discharge Points

	1							
Unit Designation	Approximate Thickness (ft)	Description						
it (HU-A)	0-25	RUBBLE and FILL Grayish black (N2) to brownish black (5YR2/1). Dry to slightly moist, generally becoming moist at 5 to 6 ft and saturated at 10 to 12 ft. Slight cohesion, variable with depth, moisture content, and percentage of fines present. Consistency of relative density is unrepresentative due to large rubble fragments. Rubble is concrete, brick, glass, and coal slag. Percentage of fines as silt or clay increases with depth from 5 to 30 percent. Some weakly cemented aggregations of soil particles. Adhesion of fines to rubble increases with depth and higher moisture content. Degree of compaction is slight to moderate with frequent large voids.						
Upper Hydrostratigraphic Unit (HU-A)	0-10		ilty CLAY (CH) ayers are mostly olive gray (5Y2/1), with some olive black (5Y2/1). Predominantly occurs at contact of ndisturbed material, or at boundary of material with elevated activity.					
Hydrostra	0-5	CLAY (CL) Layers are light olive gray (5Y5/2), or dark greenish cohesion, medium stiff consistency. Tends to have lowes Slight to moderate plasticity.						
Upper	0-2.5	Interbedded CLAY, Silty CLAY, SILT and Sandy SILT (CL, ML, SM) Dark greenish gray (5GY4/1) to light olive gray (5Y6/1). Moist to saturated, dependent on percentage of particle size. Contacts are sharp, with structure normal to sampler axis to less than 15 degrees downdip. Layer thicknesses are variable, random in alternation with no predictable vertical gradation or lateral continuity. Some very fine-grained, rounded silica sand as stringers. Silt in dark mafic/biotite flakes. Some decomposed organics.						
tigraphic 3)	0-10	Sandy SILT (ML) Olive gray (5Y4/1). Moist with zones of higher sand content saturated. Slight to moderate cohesion, moderate compaction. Stiff to very stiff consistency, rapid dilatancy, nonplastic. Sand is well sorted, very fine and fine-grained rounded quartz particles.						
Lower Hydrostratigraphic Unit (HU-B)	0-50	Silty SAND and SAND (SM, SP, SW) Olive gray (5Y4/1). Saturated, slight cohesion, becoming noncohesive with decrease of silt particles with depth. Dense, moderate compaction. Moderate to well-graded, mostly fine- and medium-grained, with some fine- and coarse-grained particles. Mostly rounded with coarse grains slightly subrounded. Gradual gradation from upper unit, silty sand has abundant dark mafic/biotite flakes. Sand is well-graded, fine gravel to fine sand. Mostly medium-grained, with some fine-grained and few coarse-grained and fine gravel.						
Limestone Bedrock Unit (HU-C)	Total thickness not penetrated during drilling	LIMESTONE Light olive gray (5Y4/1) with interbedded chert nodules. Generally hard to very hard; difficult to scratch with knife. Slightly weathered, moderately fresh with little to no discoloration or staining. Top 5 ft is moderately fractured, with 99 percent of joints normal to the core axis. Joints are open, planar, and smooth. Some are slightly discolored with trace of hematite staining.						
	DES IN PARE	DOE 1994. NTHESES FOLLOWING THE LITHOLOGIES SSIFICATION SYSTEM (USCS) CODES.	FUSRAP					
THE CODES IN	PARENTHESI IROMA, HUE	ES FOLLOWING THE COLOR DESCRIPTIONS C, AND VALUE FROM THE MUNSELL SOIL	St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2021					
NOT TO SCALE			DRAWN BY: REV. NO./DATE: CAD FILE: C.Kaple 0 - 06-27-2022 NA					

Figure 4-1. Generalized Stratigraphic Column

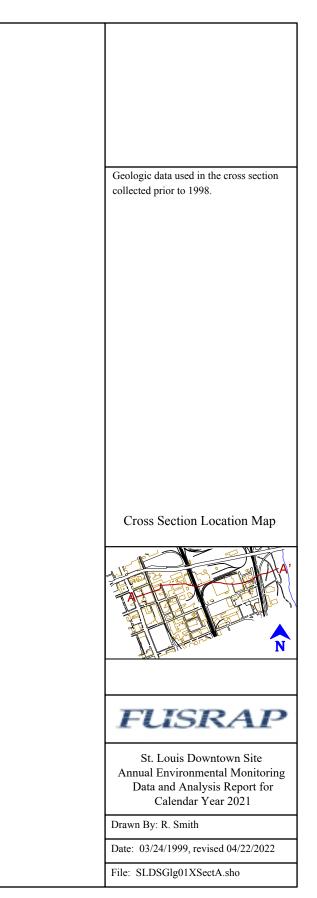


Figure 4-2. Geologic Cross-Section A-A'

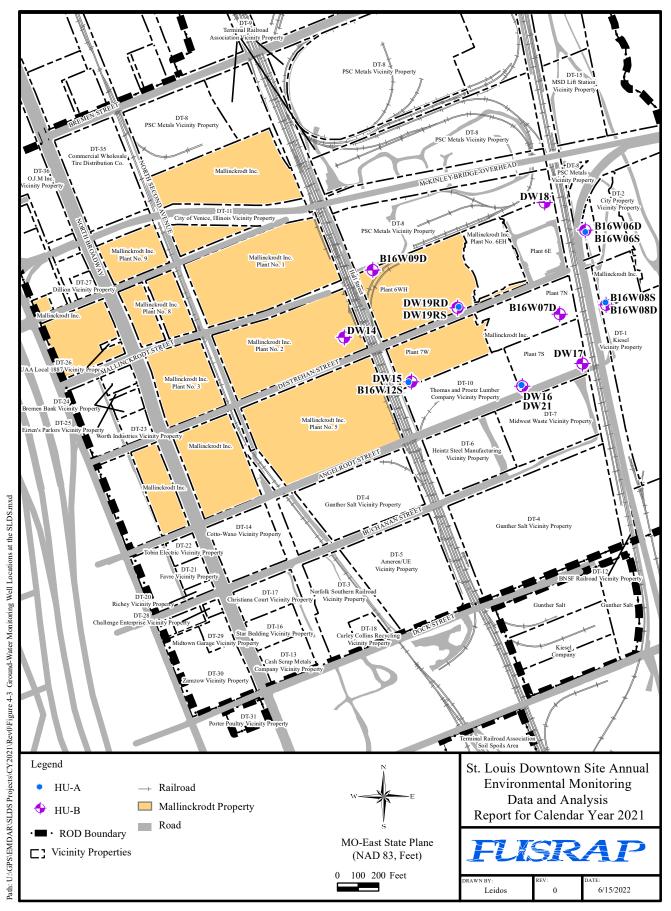
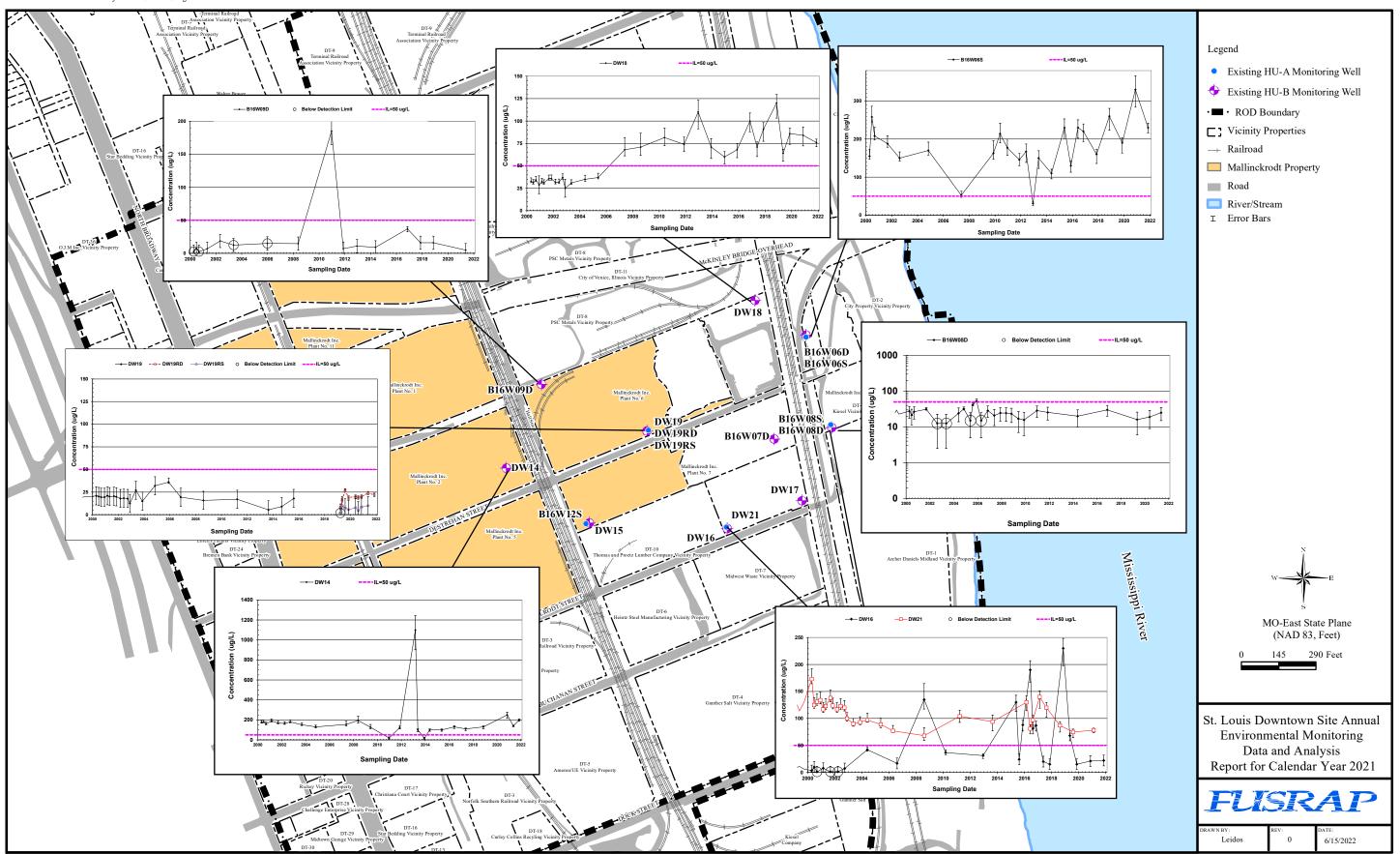
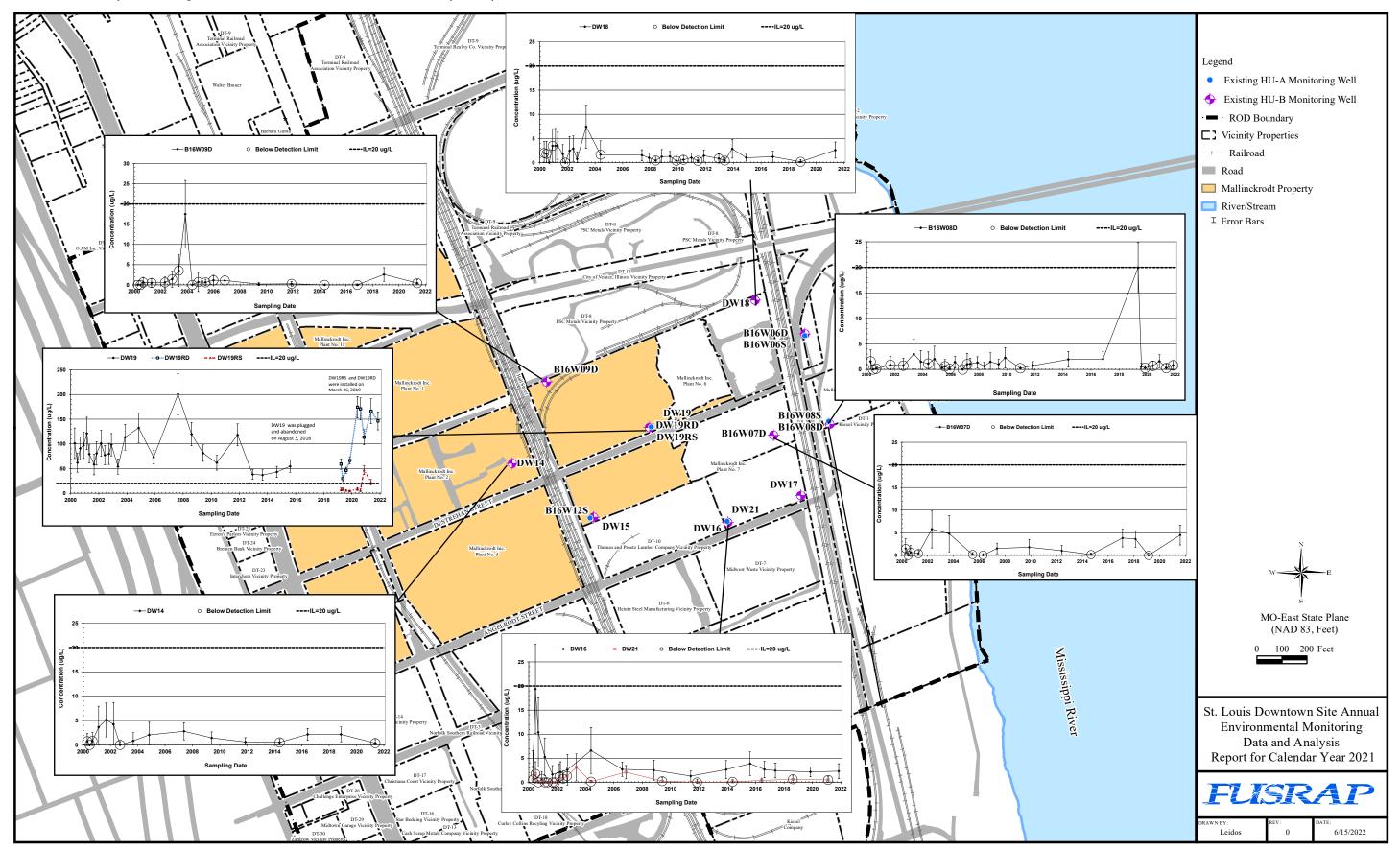




Figure 4-3. Groundwater Monitoring Well Locations

Path: U:\GPS\EMDAR\SLDS Projects\CY2021\Rev0\Figure 4-4 Arsenic Concentration Trends in Unfiltered Ground Water at the SLDS.mxd

Figure 4-4. Arsenic Time-Versus-Concentration Plots in Unfiltered Groundwater

Path: U:\GPS\EMDAR\SLDS Projects\CY2021\Rev0\Figure 4-5 Total Uranium Concentrations in Unfiltered HZ-A Ground Water at the Latty Avenue Properties.mxd

Figure 4-5. Total U Time-Versus-Concentration Plots in Unfiltered Groundwater

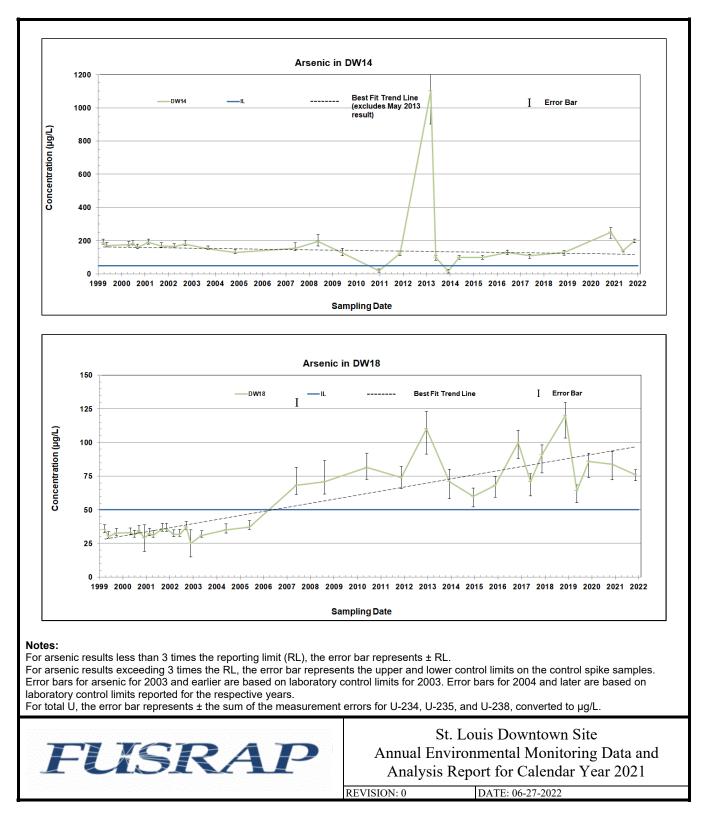
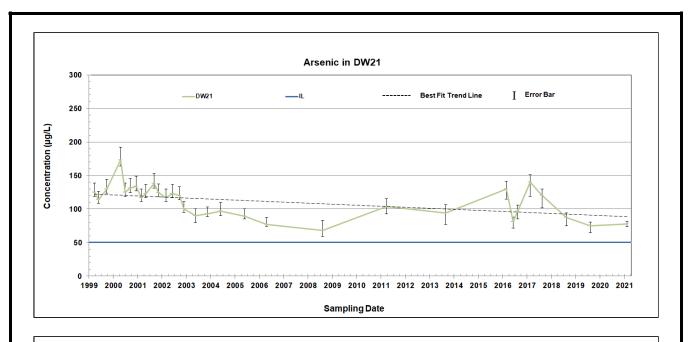
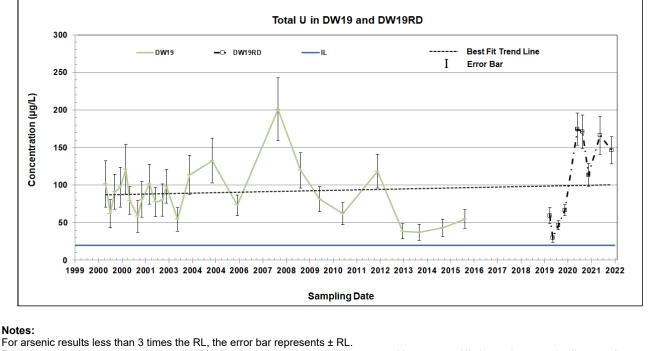




Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic and Total U in Groundwater Monitoring Wells

Notes:

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years. For total U, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.

Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic and Total U in Groundwater Monitoring Wells (Continued)

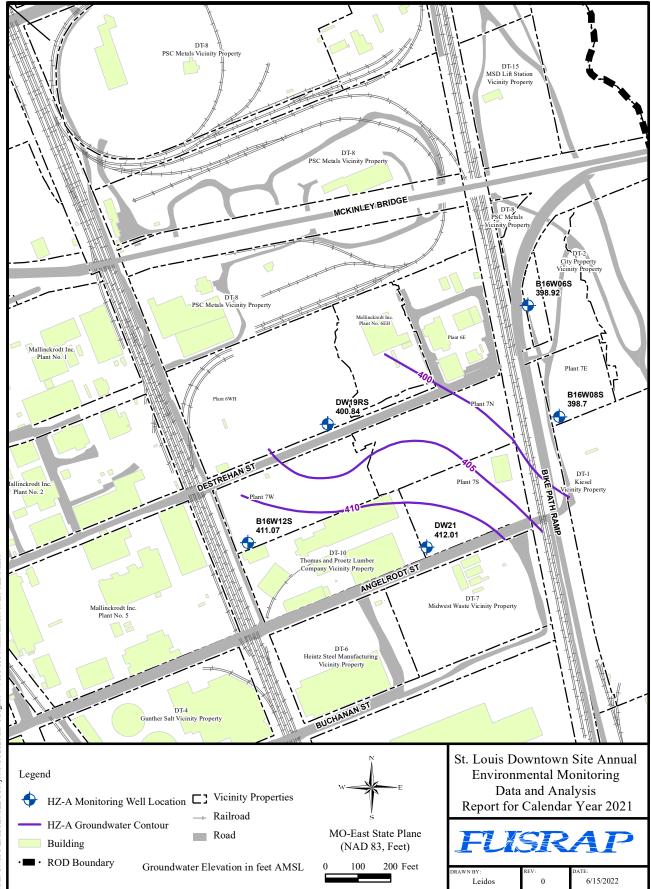


Figure 4-7. HU-A Potentiometric Surface (May 14, 2021)

Path: U:\GPS\EMDAR\SLDS Projects\CY2021\Rev0\Figure 4-7 HU-A Potentiometric at the SLDS.mxd

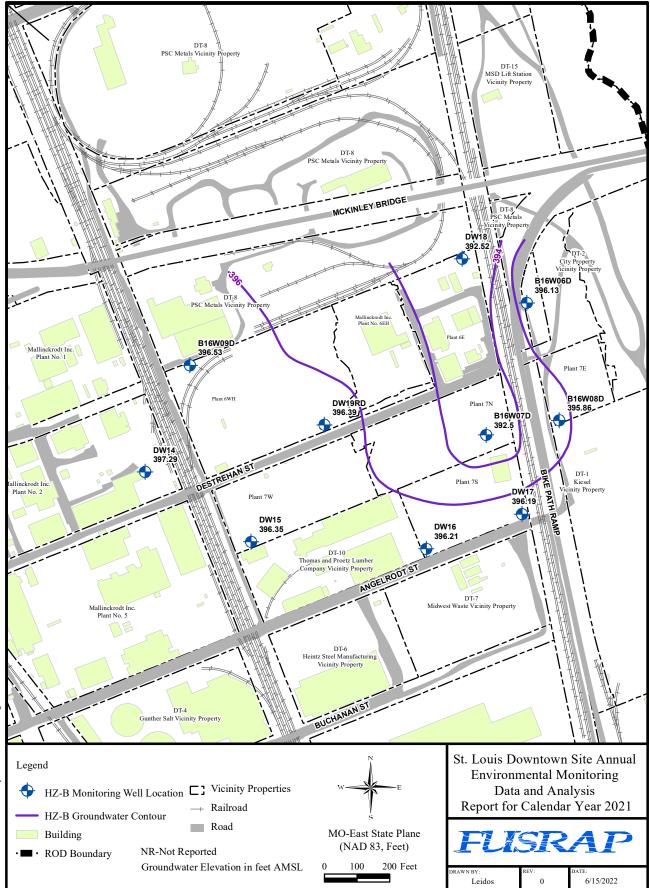


Figure 4-8. HU-B Potentiometric Surface (May 14, 2021)

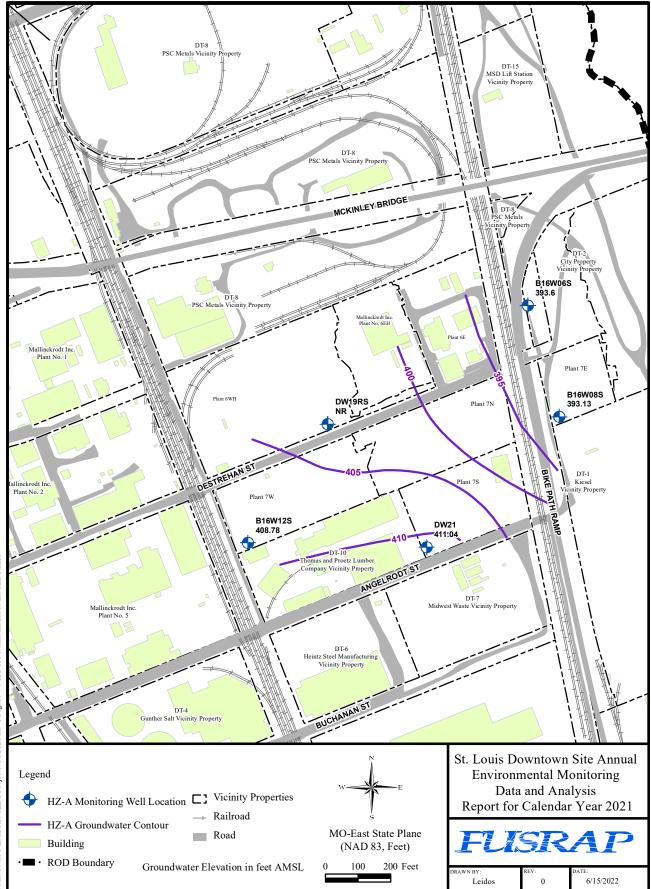


Figure 4-9. HU-A Potentiometric Surface (November 10, 2021)

Path: U:\GPS\EMDAR\SLDS Projects\CY2021\Rev0\Figure 4-9 HU-A Potentiometric at the SLDS.mxd

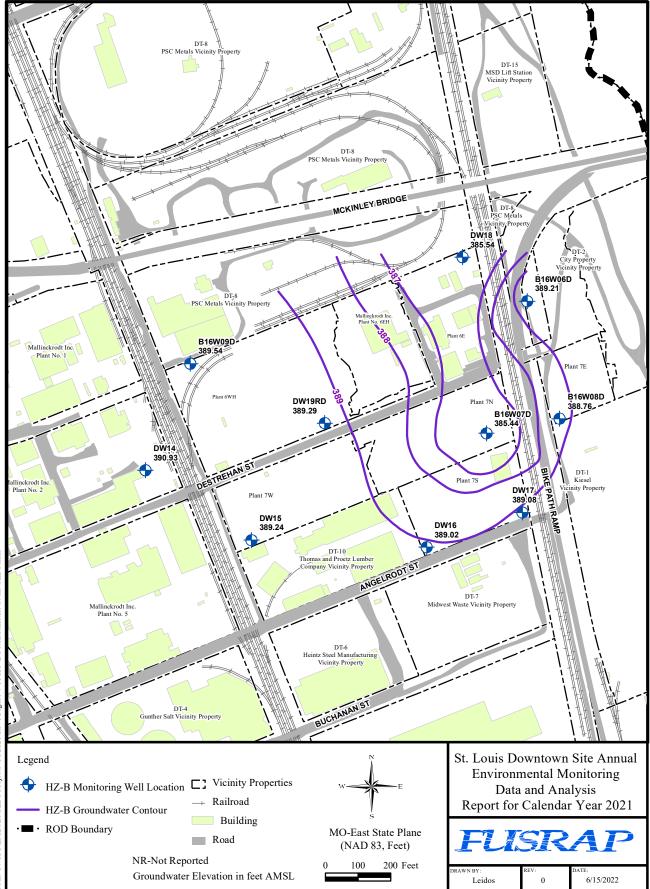


Figure 4-10. HU-B Potentiometric Surface (November 10, 2021)

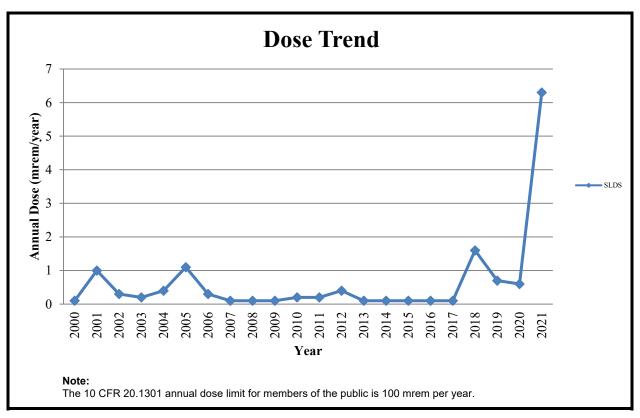


Figure 6-1. Dose Trends

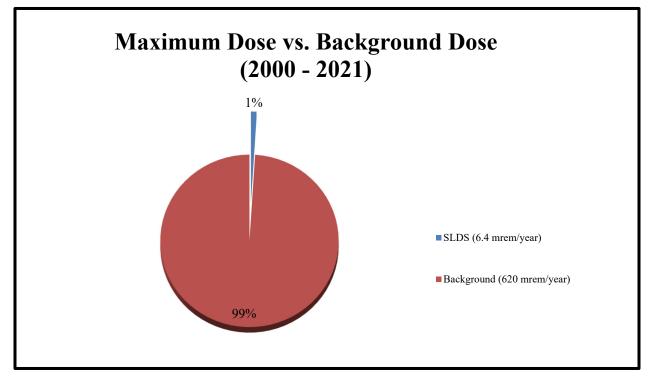


Figure 6-2. Maximum Dose vs. Background Dose

APPENDIX A

DOCUMENTS FINALIZED IN CALENDAR YEAR 2021

- Pre-Design Investigation Work Plan for St. Louis Downtown Site Vicinity Property Terminal Railroad Association (DT-9) Rail Spurs (March 10).
- Pre-Design Investigation Work Plan for St. Louis Downtown Site Vicinity Property Metropolitan Sewer District North Property (March 22).
- CY 2020 Fourth Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory and Associated Satellite Laboratories (April).
- Pre-Design Investigation Summary Report and Final Status Survey Evaluation Addendum for the Accessible Soil within the St. Louis Downtown Site Plant 2 Former Building 503 Area (May 7).
- CY 2021 First Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory and Associated Satellite Laboratories (June).
- Mallinckrodt Plant 2 North Remedial Action Work Area-Specific Description and Design Package (June 9).
- St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2020 (July 15).
- Post-Remedial Action Report and Final Status Survey Evaluation for the Accessible Soil within the St. Louis Downtown Site Vicinity Property City Property (DT-2) East of the Levee (July 21).
- CY 2021 Second Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory and Associated Satellite Laboratories (August).
- CY 2021 Third Quarter Laboratory QA/QC Report for the FUSRAP St. Louis Radioanalytical Laboratory and Associated Satellite Laboratories (November).
- Pre-Design Investigation Work Plan for St. Louis Downtown Site West Border Properties (December 17).
- Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2022 (December 23).

APPENDIX B

ST. LOUIS DOWNTOWN SITE 2021 RADIONUCLIDE EMISSIONS NESHAP REPORT SUBMITTED IN ACCORDANCE WITH REQUIREMENTS OF 40 *CFR* 61, SUBPART I

TABLE OF CONTENTS

SECT	ION		PAGE
LIST	OF TA	BLES	B-ii
LIST	OF FIG	GURES	B-i i
LIST	OF AT	TACHMENTS	B-ii
ACRC	ONYMS	S AND ABBREVIATIONS	B-iii
UNIT	ABBR	EVIATIONS	B-iv
EXEC	UTIVE	E SUMMARY AND DECLARATION STATEMENT	B-v
1.0	PURP	OSE	B- 1
2.0	METH	HOD	B-3
	2.1	EMISSION RATE	B-3
	2.2	EFFECTIVE DOSE EQUIVALENT	B-3
3.0	METE	EOROLOGICAL DATA	B-5
4.0		OUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE EDIATION	B-7
	4.1	SITE HISTORY	B-7
	4.2	MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2021	B-7
	4.3	SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS	B-7
	4.4	LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2021	B-8
	4.5	DISTANCES TO CRITICAL RECEPTORS	B-8
	4.6	EMISSIONS DETERMINATION	B-8
	4.7	CAP88-PC RESULTS	B-10
5.0	REFE	RENCES	B-11

LIST OF TABLES

NUMBER

PAGE

Table B-1.	St. Louis Wind Speed Frequency	B-5
Table B-2.	St. Louis Wind Rose Frequency	
Table B-3.	Critical Receptors for CY 2021	B-8
Table B-4.	Average Gross Alpha and Beta Airborne Particulate Emissions for CY 2021	B-8
Table B-5.	Excavation Effective Areas and Effective Diameters for CY 2021	B-9
Table B-6.	Site Release Flow Rates for CY 2021	B-9
Table B-7.	Area Airborne Radioactive Particulate Emission Rates Based on	
	Excavation Perimeter Air Samples for CY 2021	B-9
Table B-8.	CAP88-PC Results for Critical Receptors for CY 2021	B-10

LIST OF FIGURES

NUMBER

Figure B-1.	Critical	Receptors
-------------	----------	-----------

LIST OF ATTACHMENTS

Attachment B-1	Calculated Emission Rates
Attachment B-2	CAP88-PC Output Report

ACRONYMS AND ABBREVIATIONS

Ac	actinium
AEC	U.S. Atomic Energy Commission
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
CY	calendar year
DOE	U.S. Department of Energy
EDE	effective dose equivalent
FUSRAP	Formerly Utilized Sites Remedial Action Program
GIS	geographic information system
Mallinckrodt	Mallinckrodt LLC
MED	Manhattan Engineer District
NAD	normalized absolute difference
NESHAP	National Emission Standard for Hazardous Air Pollutants
Pa	protactinium
Ra	radium
RA	remedial action
ROD	Record of Decision for the St. Louis Downtown Site
SLDS	St. Louis Downtown Site
SLS	St. Louis Sites
SU	survey unit
Th	thorium
U	Uranium
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
VP	vicinity property

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

°C	degree(s) Celsius (centigrade)
µCi/cm ³	microcurie(s) per cubic centimeter
µCi/mL	microcurie(s) per milliliter
Ci	curie(s)
cm	centimeter(s)
cm ³	cubic centimeter(s)
m	meter(s)
m^2	square meter(s)
m^3	cubic meter(s)
mL	milliliter
mrem	millirem
pCi/g	picocuries per gram

EXECUTIVE SUMMARY AND DECLARATION STATEMENT

This report presents the results of National Emission Standard for Hazardous Air Pollutants (NESHAP) calculations for the St. Louis Formerly Utilized Sites Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS) for calendar year (CY) 2021. NESHAP requires the calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors. The report follows the requirements and procedures contained in 40 *Code of Federal Regulations (CFR)* 61, Subpart I, *National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.*

This NESHAP report evaluates SLDS properties where there was a reasonable potential for radionuclide emissions due to St. Louis FUSRAP activities. These sites include, Gunther Salt, and Plant 6 Loadout.

Emissions from the SLDS were evaluated for the entire CY 2021 to provide a conservative estimate of total emissions.

The NESHAP standard of EDE to a critical receptor from radionuclide emissions is 10 mrem per year. The SLDS did not exceed this standard. The EDE from radionuclide emissions at the SLDS was calculated using soil characterization data, air particulate monitoring data, and the U.S. Environmental Protection Agency (USEPA) CAP88-PC modeling code, which resulted in an EDE at the SLDS of 0.8 mrem per year.

The evaluation for the SLDS resulted in less than 10 percent of the dose standard prescribed in 40 *CFR* 61.102. This site is exempt from the reporting requirements of 40 *CFR* 61.104(a).

DECLARATION STATEMENT - 40 CFR 61.104(a)(xvi)

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See 18 U.S. Code 1001.

Signature

Date

Office:U.S. Army Corps of Engineers, St. Louis District OfficeAddress:114 James S McDonnell BoulevardHazelwood, MO 63042Jon Rankins

1.0 PURPOSE

This NESHAP report contains the EDE calculations from radionuclide emissions (exclusive of radon) to critical receptors from the SLDS properties at which a reasonable potential existed for radionuclide emissions due to St. Louis FUSRAP activities. These sites include Gunther Salt and Plant 6 Loadout. The air emissions from the SLDS are ground releases of particulate radionuclides in soil as a result of windblown action and remedial activity in the form of excavation and off-site disposal of soil.

2.0 METHOD

Emission rates for the SLDS were modeled using guidance documents (i.e., *A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities* [USEPA 1989]) referenced in 40 *CFR* 61, Appendix E, *Compliance Procedures Methods for Determining Compliance with Subpart I*, and were measured by collection of environmental air samples. Emission rates, along with appropriate meteorological data and distances to critical receptors¹, were input into the USEPA computer code CAP88-PC to obtain the EDE from the air emissions.

Although 40 *CFR* 61.103 requires the use of the USEPA computer code COMPLY, USEPA no longer supplies technical support for COMPLY. However, the USEPA lists both COMPLY and CAP88-PC as atmospheric models for assessing dose and risk from radioactive air emissions (USEPA 2020). The USEPA continues to maintain and update the CAP88-PC modeling program, and has updated it as recently as March 2020. In previous FUSRAP NESHAP reports, both COMPLY and CAP88-PC results have been compared. This comparison indicated that CAP88-PC is a comparable and conservative method of demonstrating compliance with 40 *CFR* 61, Subpart I. For these reasons, CAP88-PC was used in this NESHAP report to demonstrate compliance with the NESHAP standard.

2.1 EMISSION RATE

The method used to determine particulate radionuclide emission rates from the SLDS was 40 *CFR* 61, Appendix D, *Methods for Estimating Radionuclide Emissions*. Emissions during excavations were evaluated using air sampling data at the excavation and loadout perimeters.

2.2 EFFECTIVE DOSE EQUIVALENT

The EDE to critical receptors¹ is obtained using USEPA computer code CAP88-PC, Version 4.1 (USEPA 2020). CAP88-PC uses a Gaussian plume equation to estimate the dispersion of radionuclides and is referenced by the USEPA to demonstrate compliance with the NESHAP emissions criterion in 40 *CFR* 61. An area ground release at a height of 1.0 m is modeled for the SLDS.

The EDE is calculated by combining doses from ingestion, inhalation, air immersion, and external ground surface. CAP88-PC contains historical weather data libraries for major airports across the country, and the results can be modeled for receptors at multiple distances from the emissions source.

¹ "Critical receptors," as used in this report, are the locations for the nearest residence, farm, business, and school.

3.0 **METEOROLOGICAL DATA**

Meteorological data were obtained from the CAP88-PC code for the Lambert - St. Louis International Airport (wind file 13994.WND). Data in the file were accumulated from 1988 through 1992.

- Average Annual Wind Velocity: 4.446 m per second
- Average Annual Precipitation Rate: 111 cm per year
- Average Annual Air Temperature: 14.18 °C •

Wind speed frequency data were obtained from Lambert - St. Louis International Airport (see Table B-1).

Wind Speed Group (Knots)	Frequency (Percent)
0-3	10
4 – 7	29
8-12	36
13 - 18	21
19 - 24	3
25-31	1

Table B-1. St. Louis Wind Speed Frequency

Knot = 1.151 miles per hour

Wind direction frequency data were obtained from the CAP88-PC wind file, 13994.WND (see Table B-2).

Wind D	virection	Wind Frequency	Wind Direction		Wind Frequency
Wind Toward	Wind From	(Percent)	Wind Toward	Wind From	(Percent)
North	South	13.1	South	North	5.6
North-Northwest	South-Southeast	7.4	South-Southeast	North-Northwest	4.3
Northwest	Southeast	6.8	Southeast	Northwest	6.1
West-Northwest	East-Southeast	6.9	East-Southeast	West-Northwest	8.7
West	East	5.5	East	West	9.0
West-Southwest	East-Northeast	2.8	East-Northeast	West-Southwest	6.8
Southwest	Northeast	3.1	Northeast	Southwest	5.4
South-Southwest	North-Northeast	3.7	North-Northeast	South-Southwest	5.0

Table B-2. St. Louis Wind Rose Frequency

4.0 ST. LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE REMEDIATION

4.1 SITE HISTORY

From 1942 until 1957, Mallinckrodt LLC (Mallinckrodt) was contracted by the Manhattan Engineer District (MED) and the U.S. Atomic Energy Commission (AEC) to process uranium ore for the production of uranium metal. Residuals of the process, including spent pitchblende ore, and radium, thorium, uranium, and their radioactive decay products, were inadvertently released from the Mallinckrodt property into the environment. Residuals from the uranium process had elevated levels of radioactive radium, thorium, and uranium. From 1942 to 1945, Plants 1, 2, 6, 7, and 4 (now Plant 10) were involved in the development of uranium-processing techniques, uranium compounds and metal production, and uranium metal recovery from residues and scrap. Mallinckrodt decontaminated Plants 1 and 2 from 1948 through 1950 to meet the AEC criteria then in effect, and the AEC released these plants for use without radiological restrictions in 1951. MED/AEC operations ended in 1957.

A radiological survey conducted at the SLDS in 1977 found radiological contamination that exceeded existing guidelines. In response to this survey, it was determined that further investigation of the site was necessary to characterize the nature and extent of the contamination. In 1990, the USEPA Region 7 and the U.S. Department of Energy (DOE) established schedules and deliverables for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at the St. Louis Sites (SLS). In 1994, the DOE submitted the *Remedial Investigation Report for the St. Louis Site* (DOE 1994). The FUSRAP was transferred from the DOE to the U.S. Army Corps of Engineers (USACE) on October 13, 1997.

The *Record of Decision for the St. Louis Downtown Site* (ROD) was issued in October 1998 (USACE 1998). The USACE began remediation in October 1998, and characterization, pre-design investigation, and excavation activities have continued on Mallinckrodt and SLDS vicinity properties (VPs) through 2021.

4.2 MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2021

Excavation activities were performed at the SLDS areas of Gunther Salt (DT-4). Additionally, loadout activities were performed at Plant 6. Excavated soils placed in the loadout area are tamped down at the end of each night or sprayed with a surfactant over longer periods of time. The excavated soils were removed from the site by rail. General area air samples were collected around excavation and loadout perimeters during CY 2021, with the results used to determine the air emissions. In situ emissions from inactive areas of the SLDS were not calculated because the ground surface soil at the SLDS is generally covered with asphalt or concrete that limits the potential for material to become airborne.

4.3 SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS

For the SLDS excavation areas, the activity fraction for each radionuclide was determined based upon excavated area property-specific average soil radionuclide concentrations as determined from railcar data used to characterize the waste for shipment. Attachment B-1 contains Table B-1-1, a summary table of the radionuclide concentrations for each area or plant and VPs. The averaged total alpha and total beta air particulate concentrations at each SLDS property and the activity fraction for each corresponding property were used to calculate the emission rate for each area.

4.4 LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2021

Wind erosion during periods of remedial action (RA) excavations and periods in which the loadout pile was uncovered is assumed for the particulate radionuclide emission determinations from the SLDS. Unexcavated plants and VPs do not contribute to the emission determinations for periods of inactivity due to the low activity and cover.

4.5 DISTANCES TO CRITICAL RECEPTORS

The distances to critical receptors are shown on Figure B-1 and listed in Table B-3. Distances and directions to critical receptors are determined by using tools in a geographic information system (GIS).

	Nearest Residence		Nearest Residence Farm		Business		School	
Sources	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction
Gunther Salt	200	West	1,900	East	55	Southeast	700	Northwest
Plant 6 Loadout	400	Southwest	1,850	East	60	North	700	West

 Table B-3. Critical Receptors for CY 2021

4.6 EMISSIONS DETERMINATION

4.6.1 Measured Airborne Radioactive Particulate Emissions

Particulate air samples were collected from several locations at prominent wind directions from around the perimeter of the SLDS excavations and loadout area to measure the radionuclide emissions from remedial activities. The sample locations were established at the start of each remedial activity and provide the basis for determining the radionuclide emission rates during CY 2021. The average gross alpha and beta concentrations (in μ Ci/mL) are determined for each area or plant location for CY 2021. The area or plant average concentrations are presented in Table B-4.

Table B-4. Average Gross Alpha and Beta Airborne Particulate Emissionsfor CY 2021

Monitoring Logation	Average Concentration (µCi/mL) ^a			
Monitoring Location	Gross Alpha	Gross Beta		
Gunther Salt (DT-4)	4.39E-15	3.17E-14		
Plant 6 Loadout	5.36E-15	3.24E-14		
Background Concentrations ^b	4.31E-15	2.17E-14		

Average concentration values for the sampling period by location.

^b These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of the EDE.

The activity fractions for all radionuclides at each SLDS property were determined as discussed in Section 4.3 of this NESHAP report. The product of the radionuclide activity fraction and the gross concentration for each property provides the radionuclide emission concentration (in μ Ci/cm³) for that area. The gross average concentration (μ Ci/cm³) is converted to a release (emission) rate, measured in Ci per year using Equations 1 and 2 from *A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities* (USEPA 1989). Equation 1 is used to determine the effective diameter of a non-circular stack or vent.

$$D = (1.3 A)^{1/2}$$
 Equation 1

where:

D = effective diameter of the release in m

A = area of the stack, vent, or release point (in m^2)

Table B-5 provides the effective surface area available for release of airborne radionuclides normalized to one year and the effective diameter for each area or plant of the SLDS where excavation or loadout was conducted in CY 2021. Calculation of the effective surface area is contained in Attachment B-1.

 Table B-5. Excavation Effective Areas and Effective Diameters for CY 2021

SLDS Location	Effective Area (m ²)	Effective Diameter (m)
Gunther Salt	263	19
Plant 6 Loadout	2,000	51

The average annual wind speed for the Lambert – St. Louis International Airport is provided in CAP88-PC as 4.446 m per second. Conversion of this wind speed to a flow rate through stacks with the listed effective diameters for each area is completed using Equation 2.

$$\mathbf{F} = \mathbf{V} \, \boldsymbol{\pi} \, (\mathbf{D})^2 \, / \, 4 \qquad \qquad Equation \, 2$$

where:

V = wind velocity (in m per minute) = 266.76 m per minute

F = flow rate (in m³ per minute)

 π = mathematical constant

D = effective diameter of the release (in m) determined using Equation 1

Converting the velocity of emissions from the sites to an effective flow rate, results in the following site release flow rates for the SLDS areas, as listed in Table B-6. The product of the flow rate, the activity fraction associated with each radionuclide, and the appropriate conversion factors provide the site emission rate for each radionuclide, as listed in Table B-7. Flow rate and average radionuclide concentration data are contained in Attachment B-1.

 Table B-6. Site Release Flow Rates for CY 2021

SLDS Location	Site Release Flow Rate (m ³ /minute)
Gunther Salt	7.2E+04
Plant 6 Loadout	5.4E+05

4.6.2 Total Airborne Radioactive Particulate Emission Rates

The CY 2021 emission rates for each excavated SLDS area are presented in Table B-7 and are based on the air samples collected from the perimeter of the excavated areas.

Table B-7. Area Airborne Radioactive Particulate Emission Rates Based on Excavation Perimeter Air Samples for CY 2021

Dadianualida	Emission (Ci/year) ^a		
Radionuclide	Gunther Salt	Plant 6 Loadout	
Uranium (U)-238	5.8E-05	5.0E-04	
U-235	3.5E-06	3.1E-05	
U-234	5.8E-05	5.0E-04	
Radium (Ra)-226	9.7E-06	1.3E-04	

Dedienselide	Emission (Ci/year) ^a		
Radionuclide	Gunther Salt	Plant 6 Loadout	
Thorium (Th)-232	1.7E-06	3.7E-05	
Th-230	2.4E-05	2.2E-04	
Th-228	1.7E-06	3.7E-05	
Ra-224	1.7E-06	3.7E-05	
Th-234	5.6E-04	4.2E-03	
Protactinium (Pa)-234m	5.6E-04	4.2E-03	
Th-231	3.4E-05	2.6E-04	
Ra-228	1.7E-05	3.2E-04	
Actinium (Ac)-228	1.7E-05	3.2E-04	
Pa-231	2.1E-06	1.8E-05	
Ac-227	4.1E-06	2.8E-05	

Table B-7. Area Airborne Radioactive Particulate Emission Rates Based on Excavation
Perimeter Air Samples for CY 2021 (Continued)

Release rate based on 365-day period at a respective flow rate (as presented in Table B-6) as determined from the average annual wind speed (4.446 m per second) and the effective site area (as presented in Table B-5) for each location.

4.7 CAP88-PC RESULTS

The CAP88-PC report is contained in Attachment B-2. The effective area factor input was taken from Table B-5. This evaluation demonstrates that all SLDS critical receptors receive less than 10 percent of the dose standard prescribed in 40 *CFR* 61.102; therefore, the SLDS is exempt from the reporting requirements of 40 *CFR* 61.104(a). The results are summarized in Table B-8.

 Table B-8. CAP88-PC Results for Critical Receptors for CY 2021

	Dose (mrem/year)				
Source	Nearest Residence ^a	Farm ^a	Business ^b	School ^b	
Gunther Salt	< 0.1	< 0.1	< 0.1	< 0.1	
Plant 6 Loadout	0.2	0.1	0.8	< 0.1	
SLDS Total Dose ^c	0.2	0.1	0.8	< 0.1	

100 percent occupancy factor.

^b Corrected for the 23 percent occupancy factor (40 hours per week for 50 weeks per year).

^c Combined dose from all sources at the SLDS.

5.0 **REFERENCES**

- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site.* St. Louis, Missouri. DOE/OR/21949-280. January 1999.
- USACE 1998. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site.* St. Louis, Missouri. Final. July 1998.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Radiation Programs, Washington, D.C. A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities. EPA 520/1-89-002. October 1989.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 18 U.S. Code 1001. U.S. Code, Title 18, Crimes and Criminal Procedure; Part I, Crimes; Chapter 47, Fraud and False Statements; Section 1001, Statements or entries generally.
- 40 CFR 61, Subpart I. National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 61, Appendix D. Methods for Estimating Radionuclide Emissions.
- 40 CFR 61, Appendix E. Compliance Procedures Methods for Determining Compliance with Subpart I.

APPENDIX B

FIGURE

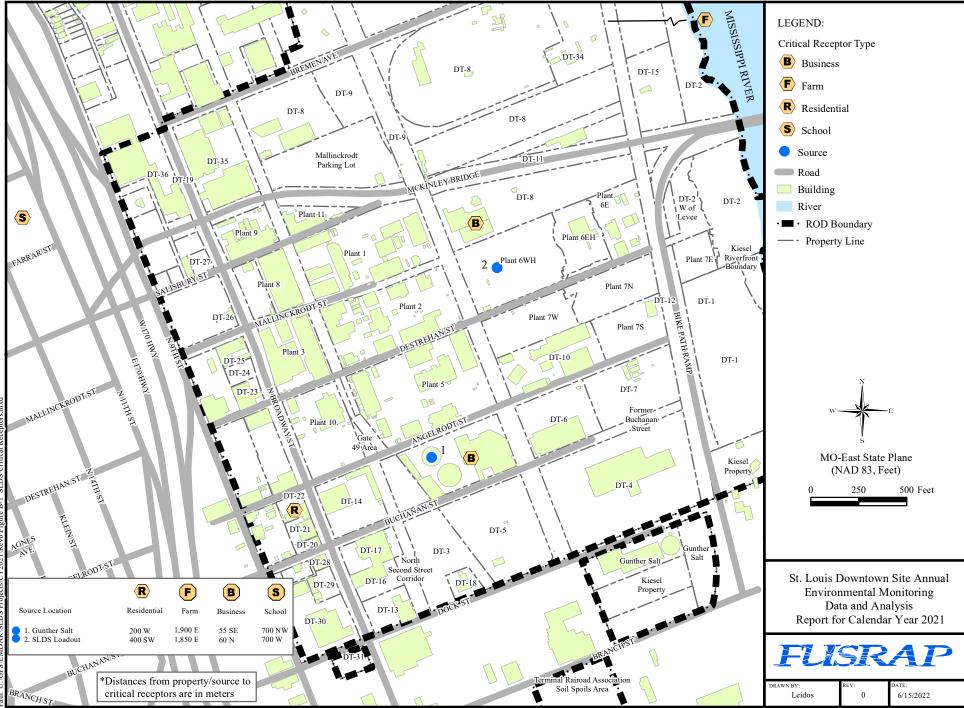


Figure B-1. Critical Receptors

ATTACHMENT B-1

CALCULATED EMISSION RATES

Property	Gunther Salt	Plant 6 Loadout Average	
Radionuclide	Average Concentration (pCi/g) ^a		
U-238	13.0	5.8	
U-235	0.8	0.4	
U-234	13.0	5.8	
Ra-226	2.2	1.5	
Th-232	0.4	0.4	
Th-230	5.5	2.6	
Th-228	0.4	0.4	
Ra-224	0.4	0.4	
Th-234	13.0	5.8	
Pa-234m	13.0	5.8	
Th-231	0.8	0.4	
Ra-228	0.4	0.4	
Ac-228	0.4	0.4	
Pa-231	0.5	0.2	
Ac-227	0.9	0.3	

Table B-1-1. Excavation/Loadout Area Soil Radionuclide Concentrations for CY 2021ª

Average concentration from the SLDS CY 2021 excavated property and loadout area. When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide.

Table B-1-2. Average Gross Alpha and Beta Airborne Particulate Concentrationsfor CY 2021

Manitaning Lagation	Average Concentration (µCi/mL) for Location ^a		
Monitoring Location	Gross Alpha	Gross Beta	
Gunther Salt	4.39E-15	3.17E-14	
Plant 6 Loadout	5.36E-15	3.24E-14	
Background Concentration ^b	4.31E-15	2.17E-14	

Average concentration values for the sampling period by location.

^b These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of EDE.

Excavation Location Name	Surface Area (m ²)	Start Date ^a	Backfill Date ^a
Gunther Salt Area 1, Inside Dome 1, SU-6J through SU-6Z and SU-6aa through SU-6II	614	01/04/21	04/16/21
Gunther Salt Area 1, Beneath Dome 1 Wall, SU-6W1 through SU-6W63	29	04/27/21	07/07/21
Gunther Salt Area 4, Outside Dome 1, SU-4bbb through SU-4yyy	273	08/12/21	11/17/21
Gunther Salt Area 4, Outside Dome 2, SU-4uu through SU-4yy	112	03/29/21	05/03/21
Plant 6 Loadout	2,000	01/01/21	12/31/21

Table B-1-3. Excavation Data for CY 2021

Open/close dates set to start or stop at the CY boundary.

Location	Total Days	Surface Area × Total Days	Average Surface Area/Year (A) ^a (m ²)		Flow Rate $F = V \pi [(D)^2 / 4] * 60$ (m ³ /minute)
Gunther Salt					
Gunther Salt Area 1,					
Inside Dome 1, SU-6J					
through SU-6Z and					
SU-6aa through SU-6II	103	63,242			
Gunther Salt Area 1,					
Beneath Dome 1 Wall,					
SU-6W1 through					
SU-6W63	72	2,088			
Gunther Salt Area 4,					
Outside Dome 1, SU-4bbb					
through SU-4yyy	98	26,754			
Gunther Salt Area 4,					
Outside Dome 2, SU-4uu					
through SU-4yy	36	4,032			
	Total	96,116	263	19	7.2E+04
Plant 6 Loadout					
Plant 6 Loadout	365	730,000			
	Total	730,000	2,000	51	5.4E+05

 Table B-1-4. Average Surface Area and Flow Rate Per Location for CY 2021

^a Average surface area/year = $[\Sigma(surface area x total days)]/365.$

Table B-1-5. Airborne Radioactive Particulate Emissions Based on Excavation Perimeter Air Samples for CY 2021

Property	Gunther Salt			Plant 6 Loadout		
Radionuclide	Activity Fraction ^a	Emission Conc. (μCi/cm ³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (µCi/cm ³) ^b	Release Rate (Ci/year) ^c
U-238	0.35	1.5E-15	5.8E-05	0.32	1.7E-15	5.0E-04
U-235	0.02	9.4E-17	3.5E-06	0.02	1.1E-16	3.1E-05
U-234 ^d	0.35	1.5E-15	5.8E-05	0.32	1.7E-15	5.0E-04
Ra-226	0.06	2.6E-16	9.7E-06	0.09	4.6E-16	1.3E-04
Th-232	0.01	4.6E-17	1.7E-06	0.02	1.3E-16	3.7E-05
Th-230	0.15	6.5E-16	2.4E-05	0.15	7.8E-16	2.2E-04
Th-228	0.01	4.6E-17	1.7E-06	0.02	1.3E-16	3.7E-05
Ra-224 ^d	0.01	4.6E-17	1.7E-06	0.02	1.3E-16	3.7E-05
Th-234	0.47	1.5E-14	5.6E-04	0.45	1.5E-14	4.2E-03
Pa-234m ^d	0.47	1.5E-14	5.6E-04	0.45	1.5E-14	4.2E-03
Th-231 ^d	0.03	9.1E-16	3.4E-05	0.03	9.0E-16	2.6E-04
Ra-228	0.01	4.5E-16	1.7E-05	0.03	1.1E-15	3.2E-04
Ac-228 ^d	0.01	4.5E-16	1.7E-05	0.03	1.1E-15	3.2E-04
Pa-231 ^d	0.01	5.5E-17	2.1E-06	0.01	6.2E-17	1.8E-05
Ac-227 ^d	0.02	1.1E-16	4.1E-06	0.02	9.8E-17	2.8E-05

^a Derived from the average soil radionuclide concentrations for the SLDS, as presented in Table B-1-1.

^b Emission concentration is equal to the activity fraction times the gross alpha or gross beta airborne particulate concentrations listed in Table B-1-2.
 ^c Release rate based on 365-day period at measured flow rate (Table B-1-4) for each site, as determined from the average annual wind speed (4.446 m per second) and calculated site area (Table B-1-4).

(Note: $1 \text{ mL} = 1 \text{ cm}^3$).

^d When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide. Conc. – concentration

ATTACHMENT B-2

CAP88-PC OUTPUT REPORT

CAP88 OUTPUT RESULTS

GUNTHER SALT

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Mon Mar 14 13:19:58 2022

Facility: SLDS Gunther Salt Excavation Address: City: St. Louis State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2021 DOSE Age Group: Adult

Comments: Air

Dataset Name: SLDS Gunther Sal Dataset Date: Mar 14, 2022 01:19 PM Wind File: C:\Users\randy\OneDrive\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
5	· · ·
Adrenals	8.72E-02
UB_Wall	9.38E-02
Bone_Sur	8.63E+00
Brain	9.06E-02
Breasts	9.80E-02
St_Wall	9.16E-02
SI_Wall	9.11E-02
ULI_Wall	9.81E-02
LLI_Wall	1.12E-01
Kidneys	2.35E-01
Liver	7.02E-01
Muscle	9.99E-02
Ovaries	1.61E-01
Pancreas	8.76E-02
R_Marrow	4.61E-01
Skin	1.79E+00
Spleen	9.21E-02
Testes	1.73E-01
Thymus	9.10E-02
Thyroid	9.42E-02
GB_Wall	8.81E-02
Ht_Wall	9.07E-02
Uterus	9.00E-02
ET_Reg	5.84E-01
Lung	1.79E+00
Effectiv	4.91E-01

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	1.54E-02 3.93E-01 3.17E-06 8.24E-02 4.09E-01 8.24E-02
TOTAL	4.91E-01

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
Nuclide U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 At-218 Bi-214 Rn-218 Po-214 T1-210 Pb-210 Bi-210 Hg-206 Po-210 T1-206 U-235 Th-231 Pa-231 Ac-227 Th-227 Fr-223 Ra-223 Rn-219 At-219 Bi-215 Po-211 Bi-211	Individual
T1-207 Po-211 Th-232 Ra-228 Ac-228 Th-228	3.89E-04 1.49E-07 1.31E-02 2.00E-02 8.31E-03 1.77E-02
Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 T1-208	1.77E-02 1.23E-03 5.73E-06 1.38E-07 1.26E-03 1.47E-03 0.00E+00 1.01E-02
TOTAL	4.91E-01

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu Stomach Colon Liver LUNG Bone Skin Breast Ovary Bladder Kidneys Thyroid Leukemia Residual	8.69E-10 3.10E-09 9.15E-09 8.82E-09 2.13E-07 5.76E-09 1.77E-09 3.63E-09 1.81E-09 2.09E-09 1.12E-09 2.51E-10 4.79E-09 1.16E-08
Total	2.67E-07
TOTAL	2.67E-07

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	5.28E-09 2.25E-07 1.47E-12 3.76E-08 2.30E-07 3.76E-08
TOTAL	2.67E-07

SUMMARY Page 4

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
 U-238	4.34E-08
Th-234	2.30E-09
Pa-234m	2.70E-09
Pa-234	1.65E-10
U-234	5.30E-08
Th-230	5.42E-08
Ra-226	9.92E-09
Rn-222	4.69E-12
Po-218	6.86E-17
Pb-214	3.00E-09
At-218	7.12E-17
Bi-214	1.73E-08
Rn-218	1.83E-18
Po-214	9.98E-13
T1-210	6.84E-12
Pb-210	1.23E-11
Bi-210	4.94E-11
Hg-206	1.59E-17
Po-210	6.33E-14
T1-206	1.17E-16
U-235	3.48E-09
Th-231	6.01E-11
Pa-231	5.91E-09
Ac-227	2.46E-08
Th-227	4.28E-10
Fr-223	2.77E-12
Ra-223	4.77E-10
Rn-219	2.09E-10
At-219	0.00E+00
Bi-215	7.67E-16
Po-215	6.40E-13
Pb-211 Bi-211	2.68E-10 1.69E-10
T1-207	5.00E-11
Po-211	8.15E-14
Th-232	5.84E-09
Ra-228	9.31E-09
Ac-228	4.43E-09
Th-228	1.80E-08
Ra-224	1.40E-09
Rn-220	3.14E-12
Po-216	7.60E-14
Pb-212	6.84E-10
Bi-212	5.66E-10
Po-212	0.00E+00
T1-208	5.52E-09
TOTAL	2.67E-07

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

	Distance (m)				
Direction	n 55	200	700	1900	
N	4.9E-01	6.4E-02	1.6E-02	1.2E-02	
NNW	2.6E-01	3.8E-02	1.3E-02	1.1E-02	
NW WNW	2.9E-01 2.9E-01 3.5E-01	4.3E-02 5.0E-02	1.3E-02 1.4E-02 1.5E-02	1.1E-02	School
W	2.7E-01	<mark>4.1E-02</mark>	1.4E-02	1.1E-02	Residence
WSW	1.4E-01	2.5E-02	1.2E-02	1.1E-02	
SW	1.9E-01	3.1E-02	1.3E-02	1.1E-02	
SSW	2.3E-01	3.6E-02	1.3E-02	1.1E-02	
S	2.1E-01	3.3E-02	1.3E-02	1.1E-02	
SSE	1.5E-01	2.6E-02	1.2E-02	1.1E-02	
SE	<mark>2.1E-01</mark>	3.3E-02	1.3E-02	1.1E-02	Business
ESE	3.5E-01	4.9E-02	1.4E-02	1.1E-02	
E	4.4E-01	6.1E-02	1.5E-02	<mark>1.2E-02</mark>	Farm
ENE	3.7E-01	5.3E-02	1.5E-02	1.1E-02	
NE	2.3E-01	3.6E-02	1.3E-02	1.1E-02	
NNE	2.0E-01	3.2E-02	1.3E-02	1.1E-02	

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

		Distance (m)			
Directio	on 55	200	700	1900	
N	2.7E-07	3.3E-08	6.5E-09	4.2E-09	
NNW	1.4E-07	1.9E-08	5.1E-09	3.9E-09	
NW	1.6E-07	2.1E-08	5.4E-09	4.0E-09	
WNW	1.9E-07	2.5E-08	5.8E-09	4.0E-09	
W	1.5E-07	2.0E-08	5.2E-09	4.0E-09	
WSW	7.4E-08	1.2E-08	4.4E-09	3.8E-09	
SW	1.0E-07	1.5E-08	4.7E-09	3.9E-09	
SSW	1.2E-07	1.8E-08	5.0E-09	3.9E-09	
S	1.1E-07	1.6E-08	4.9E-09	3.9E-09	
SSE	8.1E-08	1.2E-08	4.5E-09	3.8E-09	
SE	1.1E-07	1.6E-08	4.9E-09	3.9E-09	
ESE	1.9E-07	2.5E-08	5.7E-09	4.0E-09	
E	2.4E-07	3.1E-08	6.3E-09	4.1E-09	
ENE	2.0E-07	2.7E-08	5.9E-09	4.1E-09	
NE	1.3E-07	1.8E-08	5.0E-09	3.9E-09	
NNE	1.1E-07	1.5E-08	4.8E-09	3.9E-09	

CAP88 OUTPUT RESULTS PLANT 6 LOADOUT

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Mon Mar 28 08:27:19 2022

Facility:	SLDS Loadou	ıt	
Address:			
City:	St. Louis		
State:	MO	Zip:	63147

Source Category: Area Source Type: Area Emission Year: 2021 DOSE Age Group: Adult

Comments: Air

Dataset Name: SLDS Loadout. Dataset Date: Mar 28, 2022 08:27 AM Wind File: C:\Users\randy\OneDrive\Documents\CAP88\Wind Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg	8.18E-01 8.92E-01 5.91E+01 8.56E-01 9.30E-01 8.65E-01 8.60E-01 9.08E-01 1.01E+00 4.32E+00 9.52E-01 1.29E+00 8.24E-01 3.55E+00 1.33E+01 8.71E-01 1.41E+00 8.59E-01 8.91E-01 8.28E-01 8.56E-01 8.49E-01 4.83E+00
Lung	1.46E+01
Effectiv	3.84E+00

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem)
INGESTION	1.56E-01
INHALATION	2.85E+00
AIR IMMERSION	2.82E-05
GROUND SURFACE	8.28E-01
INTERNAL	3.01E+00
EXTERNAL	8.28E-01
TOTAL	3.84E+00

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	2.64E-01
Th-234	1.54E-02
Pa-234m	9.77E-02
Pa-234	1.93E-03
U-234	3.19E-01
Th-230	6.79E-01
Ra-226	1.09E-01
Rn-222	8.38E-05
Po-218	1.50E-09
Pb-214	5.47E-02
At-218	5.63E-09
Bi-214	3.20E-01
Rn-218	3.26E-11
Po-214	1.77E-05
Tl-210	1.25E-04
Pb-210	2.69E-04
Bi-210	4.35E-03
Hg-206	3.51E-10
Po-210	1.13E-06
Tl-206	1.02E-08
U-235	2.55E-02
Th-231	8.24E-04
Pa-231	3.80E-01
Ac-227	4.48E-01
Th-227	4.36E-03
Fr-223	4.11E-05
Ra-223	4.88E-03
Rn-219	2.11E-03
At-219	0.00E+00
Bi-215	9.49E-09
Po-215	6.45E-06
Pb-211	4.15E-03
Bi-211	1.71E-03
T1-207	2.15E-03
Po-211	8.23E-07
Th-232	2.11E-01
Ra-228	2.75E-01
Ac-228	1.21E-01
Th-228	2.84E-01
Ra-224	1.95E-02
Rn-220	8.37E-05
Po-216	2.02E-06
Pb-212	1.84E-02
Bi-212	2.14E-02
Po-212	0.00E+00
Tl-208	1.48E-01
TOTAL	3.84E+00

SUMMARY Page 3

CANCER RISK SUMMARY

	Selected Individual Total Lifetime
Cancer	Fatal Cancer Risk
Esophagu	8.60E-09
Stomach	3.18E-08
Colon	9.01E-08
Liver	5.69E-08
LUNG	1.70E-06
Bone	4.43E-08
Skin	1.32E-08
Breast	3.79E-08
Ovary	1.57E-08
Bladder	2.07E-08
Kidneys	9.34E-09
Thyroid	2.57E-09
Leukemia	4.88E-08
Residual	1.19E-07
Total	2.20E-06
TOTAL	2.20E-06

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	5.53E-08 1.74E-06 1.39E-11 4.00E-07 1.80E-06 4.00E-07
TOTAL	2.20E-06

SUMMARY Page 4

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
U-238	2.75E-07
Th-234	1.31E-08
Pa-234m	1.71E-08
Pa-234	1.05E-09
U-234	3.36E-07
Th-230	3.66E-07
Ra-226	9.76E-08
Rn-222	4.57E-11
Po-218	6.69E-16
Pb-214	2.93E-08
At-218	6.94E-16
Bi-214	1.69E-07
Rn-218	1.78E-17
Po-214	9.73E-12
T1-210	6.67E-11
Pb-210	1.21E-10
Bi-210	4.82E-10
Hg-206	1.56E-16
Po-210	6.18E-13
T1-206	1.14E-15
U-235	2.27E-08
Th-231	3.89E-10 3.73E-08
Pa-231 Ac-227	1.24E-07
Th-227	2.36E-09
Fr-223	1.53E-09
Ra-223	2.63E-09
Rn-219	1.16E-09
At-219	0.00E+00
Bi-215	4.24E-15
Po-215	3.54E-12
Pb-211	1.48E-09
Bi-211	9.33E-10
T1-207	2.76E-10
Po-211	4.51E-13
Th-232	9.36E-08
Ra-228	1.28E-07
Ac-228	6.46E-08
Th-228	2.89E-07
Ra-224	2.25E-08
Rn-220	4.58E-11
Po-216	1.11E-12
Pb-212	1.00E-08
Bi-212	8.27E-09
Po-212	0.00E+00
T1-208	8.06E-08
TOTAL	2.20E-06

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

	Distance (m)													
Directio	n 60	300	400	700	1850									
N NNW NW WNW W	3.5E+00 3.1E+00 2.9E+00 3.1E+00 2.5E+00	3.8E-01 2.4E-01 2.7E-01 3.1E-01 2.6E-01	2.6E-01 1.9E-01 2.0E-01 2.2E-01 1.9E-01	1.6E-01 1.4E-01 1.4E-01 1.5E-01 1.4E-01	1.2E-01 1.1E-01 1.1E-01 1.2E-01 1.1E-01	Business								
NSW SW SSW S	1.7E+00 1.8E+00 2.0E+00 1.9E+00	1.8E-01 2.1E-01 2.3E-01 2.2E-01	1.5E-01 1.7E-01 1.8E-01 1.7E-01	1.2E-01 1.3E-01	1.1E-01 1.1E-01 1.1E-01	Residence		Salt)						
SSE SE ESE E ENE	1.7E+00 2.2E+00 3.2E+00 3.8E+00 3.4E+00	1.8E-01 2.2E-01 3.0E-01 3.6E-01 3.2E-01	1.5E-01 1.7E-01 2.2E-01 2.5E-01 2.3E-01	1.2E-01 1.3E-01 1.5E-01 1.6E-01 1.5E-01	1.1E-01 1.1E-01 1.2E-01 1.2E-01 1.2E-01	Farm	Gunther	Salt)						
NE NNE	2.5E+00 2.6E+00	2.3E-01 2.1E-01	1.8E-01 1.7E-01	1.3E-01 1.3E-01	1.1E-01 1.1E-01									

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

			Dist	ance (m)		
Directi	on 60	300	400	700	1850	
N	2.0E-06	1.9E-07	1.3E-07	7.0E-08	4.4E-08	
NNW	1.7E-06	1.2E-07	8.5E-08	5.5E-08	4.2E-08	
NW	1.6E-06	1.3E-07	9.3E-08	5.8E-08	4.2E-08	
WNW	1.7E-06	1.5E-07	1.0E-07	6.2E-08	4.3E-08	
W	1.4E-06	1.2E-07	8.8E-08	5.6E-08	4.2E-08	
WSW	9.8E-07	8.0E-08	6.3E-08	4.7E-08	4.0E-08	
SW	1.0E-06	9.7E-08	7.2E-08	5.0E-08	4.1E-08	
SSW	1.2E-06	1.1E-07	8.1E-08	5.3E-08	4.1E-08	
S	1.1E-06	1.0E-07	7.5E-08	5.2E-08	4.1E-08	
SSE	9.6E-07	8.2E-08	6.4E-08	4.8E-08	4.0E-08	
SE	1.2E-06	1.0E-07	7.6E-08	5.2E-08	4.1E-08	
ESE	1.8E-06	1.5E-07	1.0E-07	6.1E-08	4.3E-08	
Е	2.2E-06	1.8E-07	1.2E-07	6.8E-08	4.4E-08	
ENE	1.9E-06	1.6E-07	1.1E-07	6.3E-08	4.3E-08	
NE	1.4E-06	1.1E-07	8.1E-08	5.3E-08	4.1E-08	
NNE	1.5E-06	1.0E-07	7.4E-08	5.1E-08	4.1E-08	

APPENDIX C

ENVIRONMENTAL THERMOLUMINESCENT DOSIMETER, ALPHA TRACK DETECTOR, AND PERIMETER AIR DATA

(On the CD-ROM on the Back Cover of this Report)

THIS PAGE INTENTIONALLY LEFT BLANK

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG219185	BAP-001	01/04/21	Gross Alpha/Beta	Gross Alpha	1.01E-14	1.73E-15	4.93E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219185	BAP-001	01/04/21	Gross Alpha/Beta	Gross Beta	3.15E-14	3.15E-15	9.57E-16	µCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG219185	BAP-001	01/04/21	Gross Alpha/Beta	Gross Alpha	8.20E-15	1.54E-15	4.93E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219185	BAP-001	01/04/21	Gross Alpha/Beta	Gross Beta	3.32E-14	3.26E-15	9.57E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219186	BAP-001	01/11/21	Gross Alpha/Beta	Gross Alpha	5.87E-15	1.28E-15	4.85E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG219186	BAP-001	01/11/21	Gross Alpha/Beta	Gross Beta	2.68E-14	2.79E-15	9.41E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237162	BAP-001	01/19/21	Gross Alpha/Beta	Gross Alpha	4.88E-15	1.08E-15	4.21E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237162	BAP-001	01/19/21	Gross Alpha/Beta	Gross Beta	2.32E-14	2.42E-15	8.17E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237163	BAP-001	01/25/21	Gross Alpha/Beta	Gross Alpha	3.41E-15	1.05E-15	5.83E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237163	BAP-001	01/25/21	Gross Alpha/Beta	Gross Beta	1.47E-14	2.04E-15	1.13E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237164	BAP-001	02/01/21	Gross Alpha/Beta	Gross Alpha	2.24E-15	7.83E-16	4.89E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237164	BAP-001	02/01/21	Gross Alpha/Beta	Gross Beta	1.51E-14	1.92E-15	9.50E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237165	BAP-001	02/08/21	Gross Alpha/Beta	Gross Alpha	7.84E-15	1.59E-15	5.60E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237165	BAP-001	02/08/21	Gross Alpha/Beta	Gross Beta	3.25E-14	3.34E-15	1.09E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237166	BAP-001	02/17/21	Gross Alpha/Beta	Gross Alpha	5.10E-15	1.05E-15	3.74E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237166	BAP-001	02/17/21	Gross Alpha/Beta	Gross Beta	3.20E-14	2.96E-15	7.27E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237167	BAP-001	02/22/21	Gross Alpha/Beta	Gross Alpha	5.40E-15	1.49E-15	7.35E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237167	BAP-001	02/22/21	Gross Alpha/Beta	Gross Beta	3.49E-14	3.81E-15	1.43E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237168	BAP-001	03/01/21	Gross Alpha/Beta	Gross Alpha	2.19E-15	8.00E-16	5.21E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237168	BAP-001	03/01/21	Gross Alpha/Beta	Gross Beta	1.65E-14	2.08E-15	1.01E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237169	BAP-001	03/08/21	Gross Alpha/Beta	Gross Alpha	3.23E-15	9.47E-16	4.99E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237169	BAP-001	03/08/21	Gross Alpha/Beta	Gross Beta	2.51E-14	2.69E-15	9.69E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237170	BAP-001	03/15/21	Gross Alpha/Beta	Gross Alpha	2.54E-15	8.30E-16	4.87E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237170	BAP-001	03/15/21	Gross Alpha/Beta	Gross Beta	1.85E-14	2.18E-15	9.46E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237171	BAP-001	03/22/21	Gross Alpha/Beta	Gross Alpha	1.58E-15	7.11E-16	5.59E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237171	BAP-001	03/22/21	Gross Alpha/Beta	Gross Beta	2.00E-14	2.41E-15	1.09E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237172	BAP-001	03/29/21	Gross Alpha/Beta	Gross Alpha	8.36E-16	4.79E-16	4.58E-16	µCi/mL	J	T04, T20	Background Air (Particulate Air)-Environmental Monitoring
BKG237172	BAP-001	03/29/21	Gross Alpha/Beta	Gross Beta	1.31E-14	1.73E-15	8.89E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237173	BAP-001	04/05/21	Gross Alpha/Beta	Gross Alpha	7.08E-15	1.53E-15	4.90E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237173	BAP-001	04/05/21	Gross Alpha/Beta	Gross Beta	1.67E-14	2.16E-15	9.70E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237174	BAP-001	04/12/21	Gross Alpha/Beta	Gross Alpha	6.01E-15	1.34E-15	4.43E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237174	BAP-001	04/12/21	Gross Alpha/Beta	Gross Beta	1.45E-14	1.91E-15	8.77E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237175	BAP-001	04/19/21	Gross Alpha/Beta	Gross Alpha	4.32E-15	1.17E-15	4.87E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237175	BAP-001	04/19/21	Gross Alpha/Beta	Gross Beta	1.08E-14	1.66E-15	9.65E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237176	BAP-001	04/26/21	Gross Alpha/Beta	Gross Alpha	5.86E-15	1.32E-15	4.42E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237176	BAP-001	04/26/21	Gross Alpha/Beta	Gross Beta	1.71E-14	2.12E-15	8.75E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237177	BAP-001	05/03/21	Gross Alpha/Beta	Gross Alpha	5.14E-15	1.29E-15	4.90E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237177	BAP-001	05/03/21	Gross Alpha/Beta	Gross Beta	2.02E-14	2.45E-15	9.70E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237178	BAP-001	05/10/21	Gross Alpha/Beta	Gross Alpha	2.54E-15	8.36E-16	4.28E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237178	BAP-001	05/10/21	Gross Alpha/Beta	Gross Beta	1.25E-14	1.72E-15	8.47E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237179	BAP-001	05/17/21	Gross Alpha/Beta	Gross Alpha	2.66E-15	9.35E-16	5.11E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237179	BAP-001	05/17/21	Gross Alpha/Beta	Gross Beta	1.18E-14	1.78E-15	1.01E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237180	BAP-001	05/24/21	Gross Alpha/Beta	Gross Alpha	5.46E-15	1.29E-15	4.57E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237180	BAP-001	05/24/21	Gross Alpha/Beta	Gross Beta	2.04E-14	2.42E-15	9.04E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237181	BAP-001	06/01/21	Gross Alpha/Beta	Gross Alpha	2.52E-15	8.21E-16	4.15E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2021

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG237181	BAP-001	06/01/21	Gross Alpha/Beta	Gross Beta	1.40E-14	1.82E-15	8.21E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237182	BAP-001	06/07/21	Gross Alpha/Beta	Gross Alpha	3.88E-15	1.13E-15	5.04E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237182	BAP-001	06/07/21	Gross Alpha/Beta	Gross Beta	2.18E-14	2.61E-15	9.99E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237183	BAP-001	06/14/21	Gross Alpha/Beta	Gross Alpha	2.40E-15	8.80E-16	5.03E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237183	BAP-001	06/14/21	Gross Alpha/Beta	Gross Beta	1.39E-14	1.95E-15	9.96E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237184	BAP-001	06/21/21	Gross Alpha/Beta	Gross Alpha	3.46E-15	1.05E-15	4.96E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237184	BAP-001	06/21/21	Gross Alpha/Beta	Gross Beta	2.62E-14	2.95E-15	9.83E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237185	BAP-001	06/28/21	Gross Alpha/Beta	Gross Alpha	1.82E-15	7.54E-16	4.86E-16	µCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237185	BAP-001	06/28/21	Gross Alpha/Beta	Gross Beta	1.36E-14	1.90E-15	9.63E-16	µCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237185	BAP-001	06/28/21	Gross Alpha/Beta	Gross Alpha	2.03E-15	7.97E-16	4.86E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237185	BAP-001	06/28/21	Gross Alpha/Beta	Gross Beta	1.50E-14	2.02E-15	9.63E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237186	BAP-001	07/06/21	Gross Alpha/Beta	Gross Alpha	4.64E-15	1.05E-15	3.83E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237186	BAP-001	07/06/21	Gross Alpha/Beta	Gross Beta	1.24E-14	1.72E-15	1.07E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237187	BAP-001	07/12/21	Gross Alpha/Beta	Gross Alpha	5.65E-15	1.39E-15	5.66E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237187	BAP-001	07/12/21	Gross Alpha/Beta	Gross Beta	1.65E-14	2.38E-15	1.57E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237188	BAP-001	07/19/21	Gross Alpha/Beta	Gross Alpha	4.08E-15	1.02E-15	4.19E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237188	BAP-001	07/19/21	Gross Alpha/Beta	Gross Beta	1.26E-14	1.79E-15	1.17E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237189	BAP-001	07/26/21	Gross Alpha/Beta	Gross Alpha	7.32E-15	1.49E-15	4.78E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237189	BAP-001	07/26/21	Gross Alpha/Beta	Gross Beta	2.41E-14	2.83E-15	1.33E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237190	BAP-001	08/02/21	Gross Alpha/Beta	Gross Alpha	6.88E-15	1.39E-15	4.42E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237190	BAP-001	08/02/21	Gross Alpha/Beta	Gross Beta	2.67E-14	2.97E-15	1.23E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237191	BAP-001	08/09/21	Gross Alpha/Beta	Gross Alpha	4.46E-15	1.11E-15	4.58E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237191	BAP-001	08/09/21	Gross Alpha/Beta	Gross Beta	2.03E-14	2.49E-15	1.28E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237192	BAP-001	08/16/21	Gross Alpha/Beta	Gross Alpha	3.55E-15	9.87E-16	4.60E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237192	BAP-001	08/16/21	Gross Alpha/Beta	Gross Beta	1.53E-14	2.09E-15	1.28E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237192	BAP-001	08/23/21	Gross Alpha/Beta	Gross Alpha	4.87E-15	1.16E-15	4.57E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237193	BAP-001	08/23/21	Gross Alpha/Beta	Gross Beta	2.58E-14	2.92E-15	1.27E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237194	BAP-001	08/30/21	Gross Alpha/Beta	Gross Alpha	4.02E-15	1.01E-15	4.19E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237194	BAP-001	08/30/21	Gross Alpha/Beta	Gross Beta	2.57E-14	2.84E-15	1.17E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237194 BKG237195	BAP-001	09/07/21	Gross Alpha/Beta	Gross Alpha	3.42E-15	9.13E-16	4.07E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237195	BAP-001	09/07/21	Gross Alpha/Beta	Gross Beta	2.15E-14	2.49E-15	1.13E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237195	BAP-001	09/13/21	Gross Alpha/Beta	Gross Alpha	3.34E-15	1.01E-15	5.11E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237196	BAP-001	09/13/21	Gross Alpha/Beta	Gross Beta	2.65E-14	3.08E-15	1.42E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237190	BAP-001	09/20/21	Gross Alpha/Beta	Gross Alpha	2.00E-15	7.36E-16	4.56E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237197 BKG237197	BAP-001	09/20/21	Gross Alpha/Beta	Gross Beta	1.78E-14	2.29E-15	1.27E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237197 BKG237198	BAP-001	09/27/21	Gross Alpha/Beta	Gross Alpha	2.09E-15	7.56E-16	4.62E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237198	BAP-001	09/27/21	Gross Alpha/Beta	Gross Beta	1.88E-14	2.38E-15	1.29E-15	μCi/mL μCi/mL	_		Background Air (Particulate Air)-Environmental Monitoring
BKG237198		09/27/21	-		1.41E-15			· · · · · · · · · · · · · · · · · · ·	=		
	BAP-001		Gross Alpha/Beta	Gross Alpha		6.26E-16	4.62E-16	μCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237198	BAP-001	09/27/21	Gross Alpha/Beta	Gross Beta	1.71E-14	2.24E-15	1.29E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237199	BAP-001	10/04/21	Gross Alpha/Beta	Gross Alpha	6.50E-15	1.36E-15	4.75E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237199	BAP-001	10/04/21	Gross Alpha/Beta	Gross Beta	2.07E-14	2.45E-15	9.33E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237200	BAP-001	10/07/21	Gross Alpha/Beta	Gross Alpha	6.85E-15	2.06E-15	1.10E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237200	BAP-001	10/07/21	Gross Alpha/Beta	Gross Beta	2.28E-14	3.55E-15	2.15E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237201	BAP-001	10/18/21	Gross Alpha/Beta	Gross Alpha	6.76E-15	1.46E-15	5.32E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237201	BAP-001	10/18/21	Gross Alpha/Beta	Gross Beta	2.33E-14	2.74E-15	1.05E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2021 (Continued)

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG237202	BAP-001	10/25/21	Gross Alpha/Beta	Gross Alpha	6.78E-15	1.37E-15	4.57E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237202	BAP-001	10/25/21	Gross Alpha/Beta	Gross Beta	2.39E-14	2.67E-15	8.99E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237203	BAP-001	11/01/21	Gross Alpha/Beta	Gross Alpha	3.22E-15	9.51E-16	4.95E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237203	BAP-001	11/01/21	Gross Alpha/Beta	Gross Beta	1.29E-14	1.83E-15	9.73E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237204	BAP-001	11/08/21	Gross Alpha/Beta	Gross Alpha	5.46E-15	1.24E-15	4.83E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237204	BAP-001	11/08/21	Gross Alpha/Beta	Gross Beta	2.89E-14	3.11E-15	9.49E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237205	BAP-001	11/15/21	Gross Alpha/Beta	Gross Alpha	4.80E-15	1.17E-15	4.96E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237205	BAP-001	11/15/21	Gross Alpha/Beta	Gross Beta	2.03E-14	2.44E-15	9.76E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237206	BAP-001	11/22/21	Gross Alpha/Beta	Gross Alpha	3.99E-15	1.04E-15	4.75E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237206	BAP-001	11/22/21	Gross Alpha/Beta	Gross Beta	2.20E-14	2.54E-15	9.33E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237207	BAP-001	11/29/21	Gross Alpha/Beta	Gross Alpha	4.29E-15	1.15E-15	5.43E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237207	BAP-001	11/29/21	Gross Alpha/Beta	Gross Beta	2.88E-14	3.21E-15	1.07E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237208	BAP-001	12/06/21	Gross Alpha/Beta	Gross Alpha	4.06E-15	1.04E-15	4.69E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237208	BAP-001	12/06/21	Gross Alpha/Beta	Gross Beta	3.11E-14	3.26E-15	9.22E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237209	BAP-001	12/13/21	Gross Alpha/Beta	Gross Alpha	2.18E-15	8.11E-16	5.31E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237209	BAP-001	12/13/21	Gross Alpha/Beta	Gross Beta	2.38E-14	2.78E-15	1.04E-15	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237210	BAP-001	12/20/21	Gross Alpha/Beta	Gross Alpha	3.50E-15	9.63E-16	4.66E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237210	BAP-001	12/20/21	Gross Alpha/Beta	Gross Beta	2.70E-14	2.93E-15	9.16E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237211	BAP-001	12/27/21	Gross Alpha/Beta	Gross Alpha	2.63E-15	8.33E-16	4.67E-16	µCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237211	BAP-001	12/27/21	Gross Alpha/Beta	Gross Beta	4.38E-14	4.24E-15	9.18E-16	µCi/mL			Background Air (Particulate Air)-Environmental Monitoring
BKG237211	BAP-001	12/27/21	Gross Alpha/Beta	Gross Alpha	3.98E-15	1.03E-15	4.67E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG237211	BAP-001	12/27/21	Gross Alpha/Beta	Gross Beta	4.16E-14	4.08E-15	9.18E-16	µCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2021 (Continued)

VQs:

= - Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

Validation Reason Codes:

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS240718	BA-1	04/06/21	Radiological	External gamma radiation	19.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
HIS242907	BA-1	07/07/21	Radiological	External gamma radiation	19.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
HIS248088	BA-1	10/05/21	Radiological	External gamma radiation	19.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
HIS253428	BA-1	01/05/22	Radiological	External gamma radiation	19.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240721	DA-3	04/06/21	Radiological	External gamma radiation	18.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242914	DA-3	07/07/21	Radiological	External gamma radiation	19.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248094	DA-3	10/05/21	Radiological	External gamma radiation	20.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253435	DA-3	01/05/22	Radiological	External gamma radiation	20.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240722	DA-7	04/06/21	Radiological	External gamma radiation	21.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242915	DA-7	07/07/21	Radiological	External gamma radiation	21.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248095	DA-7	10/05/21	Radiological	External gamma radiation	23.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253436	DA-7	01/05/22	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240723	DA-8	04/06/21	Radiological	External gamma radiation	21.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242916	DA-8	07/07/21	Radiological	External gamma radiation	22.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248096	DA-8	10/05/21	Radiological	External gamma radiation	23.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253437	DA-8	01/05/22	Radiological	External gamma radiation	21.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240723-1	DA-8dup	04/06/21	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242916-1	DA-8dup	07/07/21	Radiological	External gamma radiation	20.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248096-1	DA-8dup	10/05/21	Radiological	External gamma radiation	21	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253437-1	DA-8dup	01/05/22	Radiological	External gamma radiation	21.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240724	DA-9	04/06/21	Radiological	External gamma radiation	20.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242917	DA-9	07/07/21	Radiological	External gamma radiation	23.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248097	DA-9	10/05/21	Radiological	External gamma radiation	22.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253438	DA-9	01/05/22	Radiological	External gamma radiation	20.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240725	DA-10	04/06/21	Radiological	External gamma radiation	20.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242918	DA-10	07/07/21	Radiological	External gamma radiation	21.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248098	DA-10	10/05/21	Radiological	External gamma radiation	23.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253439	DA-10	01/05/22	Radiological	External gamma radiation	22	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240726	DA-11	04/06/21	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242919	DA-11	07/07/21	Radiological	External gamma radiation	19.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248099	DA-11	10/05/21	Radiological	External gamma radiation	21.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253440	DA-11	01/05/22	Radiological	External gamma radiation	19.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021
SLD240727	DA-12	04/06/21	Radiological	External gamma radiation	19.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2021
SLD242920	DA-12	07/07/21	Radiological	External gamma radiation	19	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2021
SLD248100	DA-12	10/05/21	Radiological	External gamma radiation	21.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2021
SLD253441	DA-12	01/05/22	Radiological	External gamma radiation	19.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2021

Table C-2. TLD (External Gamma Radiation) Results for CY 2021

VQ:

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216482	GUNTHER SALT	01/04/21	Gross Alpha/Beta	Gross Alpha	3.86E-15	5.20E-15	8.24E-15	μCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216482	GUNTHER SALT	01/04/21	Gross Alpha/Beta	Gross Beta	4.85E-14	1.72E-14	2.18E-14	µCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216483	GUNTHER SALT	01/05/21	Gross Alpha/Beta	Gross Alpha	5.89E-15	5.93E-15	8.14E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216483	GUNTHER SALT	01/05/21	Gross Alpha/Beta	Gross Beta	3.04E-14	1.52E-14	2.15E-14	µCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD216484	GUNTHER SALT	01/06/21	Gross Alpha/Beta	Gross Alpha	2.89E-15	4.90E-15	8.50E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216484	GUNTHER SALT	01/06/21	Gross Alpha/Beta	Gross Beta	4.20E-14	1.69E-14	2.25E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216485	GUNTHER SALT	01/07/21	Gross Alpha/Beta	Gross Alpha	-3.75E-16	3.26E-15	8.82E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216485	GUNTHER SALT	01/07/21	Gross Alpha/Beta	Gross Beta	2.30E-14	1.55E-14	2.33E-14	µCi/mL	UJ	T04, T05	SLDS (General Area)-Perimeter Air
SLD216486	GUNTHER SALT	01/11/21	Gross Alpha/Beta	Gross Alpha	6.32E-15	6.36E-15	8.74E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216486	GUNTHER SALT	01/11/21	Gross Alpha/Beta	Gross Beta	2.43E-14	1.55E-14	2.31E-14	µCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD216487	GUNTHER SALT	01/12/21	Gross Alpha/Beta	Gross Alpha	3.13E-15	5.31E-15	9.20E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216487	GUNTHER SALT	01/12/21	Gross Alpha/Beta	Gross Beta	4.38E-14	1.82E-14	2.44E-14	µCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216488	GUNTHER SALT	01/13/21	Gross Alpha/Beta	Gross Alpha	5.38E-15	6.15E-15	9.03E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216488	GUNTHER SALT	01/13/21	Gross Alpha/Beta	Gross Beta	7.18E-14	2.06E-14	2.39E-14	µCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216489	GUNTHER SALT	01/14/21	Gross Alpha/Beta	Gross Alpha	4.95E-15	5.67E-15	8.32E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216489	GUNTHER SALT	01/14/21	Gross Alpha/Beta	Gross Beta	3.68E-14	1.61E-14	2.20E-14	µCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216490	GUNTHER SALT	01/19/21	Gross Alpha/Beta	Gross Alpha	-1.54E-15	2.42E-15	9.03E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216490	GUNTHER SALT	01/19/21	Gross Alpha/Beta	Gross Beta	2.75E-14	1.63E-14	2.39E-14	µCi/mL	J	T04, T20	SLDS (General Area)-Perimeter Air
SLD216491	GUNTHER SALT	01/20/21	Gross Alpha/Beta	Gross Alpha	7.68E-16	4.06E-15	9.03E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216491	GUNTHER SALT	01/20/21	Gross Alpha/Beta	Gross Beta	6.48E-15	1.40E-14	2.39E-14	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216492	GUNTHER SALT	01/21/21	Gross Alpha/Beta	Gross Alpha	1.86E-15	4.52E-15	8.74E-15	µCi/mL	UJ	T06	SLDS (General Area)-Perimeter Air
SLD216492	GUNTHER SALT	01/21/21	Gross Alpha/Beta	Gross Beta	3.71E-14	1.68E-14	2.31E-14	μCi/mL	=		SLDS (General Area)-Perimeter Air
SLD216493	GUNTHER SALT	01/25/21	Gross Alpha/Beta	Gross Alpha	4.27E-15	5.70E-15	8.97E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216493	GUNTHER SALT	01/25/21	Gross Alpha/Beta	Gross Beta	1.37E-14	1.54E-14	2.51E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216494	GUNTHER SALT	01/26/21	Gross Alpha/Beta	Gross Alpha	7.97E-16	3.96E-15	8.76E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216494	GUNTHER SALT	01/26/21	Gross Alpha/Beta	Gross Beta	2.09E-14	1.59E-14	2.45E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216495	GUNTHER SALT	01/27/21	Gross Alpha/Beta	Gross Alpha	3.05E-15	5.08E-15	8.76E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216495	GUNTHER SALT	01/27/21	Gross Alpha/Beta	Gross Beta	3.31E-14	1.71E-14	2.45E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216496	GUNTHER SALT	01/28/21	Gross Alpha/Beta	Gross Alpha	2.97E-15	4.95E-15	8.53E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216496	GUNTHER SALT	01/28/21	Gross Alpha/Beta	Gross Beta	8.56E-15	1.42E-14	2.38E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216497	GUNTHER SALT	02/01/21	Gross Alpha/Beta	Gross Alpha	5.30E-15	6.01E-15	8.76E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216497	GUNTHER SALT	02/01/21	Gross Alpha/Beta	Gross Beta	1.49E-14	1.52E-14	2.45E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216498	GUNTHER SALT	02/02/21	Gross Alpha/Beta	Gross Alpha	5.48E-15	6.21E-15	9.06E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216498	GUNTHER SALT	02/02/21	Gross Alpha/Beta	Gross Beta	4.13E-14	1.83E-14	2.53E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216499	GUNTHER SALT	02/03/21	Gross Alpha/Beta	Gross Alpha	4.27E-15	5.70E-15	8.97E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216499	GUNTHER SALT	02/03/21	Gross Alpha/Beta	Gross Beta	2.92E-14	1.70E-14	2.51E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216500	GUNTHER SALT	02/04/21	Gross Alpha/Beta	Gross Alpha	7.51E-15	6.45E-15	7.89E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216500	GUNTHER SALT	02/04/21	Gross Alpha/Beta	Gross Beta	3.73E-14	1.61E-14	2.18E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216501	GUNTHER SALT	02/08/21	Gross Alpha/Beta	Gross Alpha	9.35E-15	7.41E-15	8.61E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216501	GUNTHER SALT	02/08/21	Gross Alpha/Beta	Gross Beta	6.81E-14	2.02E-14	2.37E-14	μCi/mL	=	, -	Gunther Salt (General Area)-Perimeter Air
SLD216502	GUNTHER SALT	02/10/21	Gross Alpha/Beta	Gross Alpha	1.08E-14	1.02E-14	1.32E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216502	GUNTHER SALT	02/10/21	Gross Alpha/Beta	Gross Beta	7.21E-14	2.79E-14	3.65E-14	μCi/mL	=	,	Gunther Salt (General Area)-Perimeter Air
SLD216503	GUNTHER SALT	02/11/21	Gross Alpha/Beta	Gross Alpha	5.86E-15	6.20E-15	8.61E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216503	GUNTHER SALT	02/11/21	Gross Alpha/Beta	Gross Beta	3.75E-14	1.72E-14	2.37E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216504	GUNTHER SALT	02/17/21	Gross Alpha/Beta	Gross Alpha	8.00E-15	6.87E-15	8.41E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2021

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD216504	GUNTHER SALT	02/17/21	Gross Alpha/Beta	Gross Beta	3.97E-14	1.71E-14	2.32E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216505	GUNTHER SALT	02/18/21	Gross Alpha/Beta	Gross Alpha	5.58E-15	6.82E-15	1.02E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216505	GUNTHER SALT	02/18/21	Gross Alpha/Beta	Gross Beta	5.57E-14	2.16E-14	2.82E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216506	GUNTHER SALT	02/22/21	Gross Alpha/Beta	Gross Alpha	5.73E-15	6.06E-15	8.41E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216506	GUNTHER SALT	02/22/21	Gross Alpha/Beta	Gross Beta	5.43E-14	1.86E-14	2.32E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216507	GUNTHER SALT	02/23/21	Gross Alpha/Beta	Gross Alpha	3.45E-15	5.13E-15	8.41E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216507	GUNTHER SALT	02/23/21	Gross Alpha/Beta	Gross Beta	1.98E-14	1.51E-14	2.32E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216508	GUNTHER SALT	02/24/21	Gross Alpha/Beta	Gross Alpha	2.35E-15	4.66E-15	8.53E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216508	GUNTHER SALT	02/24/21	Gross Alpha/Beta	Gross Beta	2.16E-14	1.54E-14	2.35E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216509	GUNTHER SALT	02/25/21	Gross Alpha/Beta	Gross Alpha	5.50E-15	5.81E-15	8.07E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216509	GUNTHER SALT	02/25/21	Gross Alpha/Beta	Gross Beta	3.07E-14	1.57E-14	2.22E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216510	GUNTHER SALT	03/01/21	Gross Alpha/Beta	Gross Alpha	1.20E-15	4.05E-15	8.53E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216510	GUNTHER SALT	03/01/21	Gross Alpha/Beta	Gross Beta	4.03E-14	1.74E-14	2.35E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216511	GUNTHER SALT	03/02/21	Gross Alpha/Beta	Gross Alpha	8.61E-15	6.83E-15	7.93E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216511	GUNTHER SALT	03/02/21	Gross Alpha/Beta	Gross Beta	4.25E-14	1.67E-14	2.18E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216512	GUNTHER SALT	03/03/21	Gross Alpha/Beta	Gross Alpha	3.19E-15	4.73E-15	7.76E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216512	GUNTHER SALT	03/03/21	Gross Alpha/Beta	Gross Beta	3.52E-14	1.57E-14	2.14E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216513	GUNTHER SALT	03/04/21	Gross Alpha/Beta	Gross Alpha	5.81E-15	6.14E-15	8.53E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216513	GUNTHER SALT	03/04/21	Gross Alpha/Beta	Gross Beta	4.34E-14	1.77E-14	2.35E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216514	GUNTHER SALT	03/08/21	Gross Alpha/Beta	Gross Alpha	4.22E-15	5.15E-15	7.72E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216514	GUNTHER SALT	03/08/21	Gross Alpha/Beta	Gross Beta	4.07E-14	1.62E-14	2.13E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD216515	GUNTHER SALT	03/09/21	Gross Alpha/Beta	Gross Alpha	2.49E-15	6.22E-15	1.21E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216515	GUNTHER SALT	03/09/21	Gross Alpha/Beta	Gross Beta	2.32E-14	1.64E-14	2.45E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216516	GUNTHER SALT	03/10/21	Gross Alpha/Beta	Gross Alpha	5.67E-15	7.73E-15	1.23E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216516	GUNTHER SALT	03/10/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.71E-14	2.49E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216517	GUNTHER SALT	03/11/21	Gross Alpha/Beta	Gross Alpha	-1.92E-14	2.94E-14	1.10E-13	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216517	GUNTHER SALT	03/11/21	Gross Alpha/Beta	Gross Beta	1.03E-13	1.35E-13	2.23E-13	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216518	GUNTHER SALT	03/15/21	Gross Alpha/Beta	Gross Alpha	-2.09E-15	3.18E-15	1.20E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216518	GUNTHER SALT	03/15/21	Gross Alpha/Beta	Gross Beta	2.88E-14	1.70E-14	2.42E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216519	GUNTHER SALT	03/17/21	Gross Alpha/Beta	Gross Alpha	-5.25E-15	8.01E-15	3.01E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216519	GUNTHER SALT	03/17/21	Gross Alpha/Beta	Gross Beta	3.78E-14	3.82E-14	6.08E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216520	GUNTHER SALT	03/16/21	Gross Alpha/Beta	Gross Alpha	7.71E-16	4.35E-15	9.73E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216520	GUNTHER SALT	03/16/21	Gross Alpha/Beta	Gross Beta	6.65E-15	1.16E-14	1.97E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216521	GUNTHER SALT	03/22/21	Gross Alpha/Beta	Gross Alpha	8.74E-16	4.92E-15	1.10E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216521	GUNTHER SALT	03/22/21	Gross Alpha/Beta	Gross Beta	2.74E-14	1.58E-14	2.23E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD216522	GUNTHER SALT	03/24/21	Gross Alpha/Beta	Gross Alpha	-6.51E-16	5.03E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216522	GUNTHER SALT	03/24/21	Gross Alpha/Beta	Gross Beta	-5.24E-15	1.42E-14	2.77E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216523	GUNTHER SALT	03/23/21	Gross Alpha/Beta	Gross Alpha	8.84E-16	4.98E-15	1.12E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD216523	GUNTHER SALT	03/23/21	1	Gross Beta	7.62E-15	1.33E-14		μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
			Gross Alpha/Beta				2.25E-14				
SLD216524	GUNTHER SALT	03/09/21	Gross Alpha/Beta	Gross Alpha	8.61E-15	7.20E-15	8.90E-15	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD216524	GUNTHER SALT	03/09/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.26E-14	1.80E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238753	GUNTHER SALT	03/10/21	Gross Alpha/Beta	Gross Alpha	1.79E-15	4.47E-15	8.70E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238753	GUNTHER SALT	03/10/21	Gross Alpha/Beta	Gross Beta	3.38E-14	1.39E-14	1.76E-14	µCi/mL	Ш		Gunther Salt (General Area)-Perimeter Air
SLD238754	GUNTHER SALT	03/11/21	Gross Alpha/Beta	Gross Alpha	4.07E-15	5.56E-15	8.86E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238754	GUNTHER SALT	03/11/21	Gross Alpha/Beta	Gross Beta	1.55E-14	1.18E-14	1.79E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238755	GUNTHER SALT	03/15/21	Gross Alpha/Beta	Gross Alpha	3.99E-15	5.44E-15	8.66E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD238755	GUNTHER SALT	03/15/21	Gross Alpha/Beta	Gross Beta	3.86E-14	1.44E-14	1.75E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238756	GUNTHER SALT	03/16/21	Gross Alpha/Beta	Gross Alpha	1.77E-15	4.41E-15	8.59E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238756	GUNTHER SALT	03/16/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.23E-14	1.74E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238757	GUNTHER SALT	03/17/21	Gross Alpha/Beta	Gross Alpha	-1.49E-15	2.27E-15	8.51E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238757	GUNTHER SALT	03/17/21	Gross Alpha/Beta	Gross Beta	3.52E-14	1.38E-14	1.72E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238758	GUNTHER SALT	03/18/21	Gross Alpha/Beta	Gross Alpha	1.76E-15	4.40E-15	8.55E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238758	GUNTHER SALT	03/18/21	Gross Alpha/Beta	Gross Beta	1.64E-15	9.60E-15	1.73E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238759	GUNTHER SALT	03/22/21	Gross Alpha/Beta	Gross Alpha	3.92E-15	5.34E-15	8.51E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238759	GUNTHER SALT	03/22/21	Gross Alpha/Beta	Gross Beta	2.82E-14	1.30E-14	1.72E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238760	GUNTHER SALT	03/23/21	Gross Alpha/Beta	Gross Alpha	-4.09E-16	3.16E-15	8.59E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238760	GUNTHER SALT	03/23/21	Gross Alpha/Beta	Gross Beta	4.60E-14	1.51E-14	1.74E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD238761	GUNTHER SALT	03/24/21	Gross Alpha/Beta	Gross Alpha	-5.90E-16	4.56E-15	1.24E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238761	GUNTHER SALT	03/24/21	Gross Alpha/Beta	Gross Beta	1.36E-14	1.55E-14	2.51E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
			*					· ·			
SLD238762	GUNTHER SALT	03/25/21	Gross Alpha/Beta	Gross Alpha	-4.09E-16	3.16E-15	8.59E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238762	GUNTHER SALT	03/25/21	Gross Alpha/Beta	Gross Beta	1.01E-14	1.08E-14	1.74E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238763	GUNTHER SALT	03/29/21	Gross Alpha/Beta	Gross Alpha	5.34E-15	5.80E-15	7.95E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238763	GUNTHER SALT	03/29/21 03/30/21	Gross Alpha/Beta	Gross Beta	2.35E-14	1.31E-14	1.82E-14	μCi/mL μCi/mL		T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238764 SLD238764	GUNTHER SALT GUNTHER SALT	03/30/21	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	5.73E-16 2.87E-14	3.04E-15 1.27E-14	7.15E-15 1.64E-14	μCi/mL μCi/mL	UJ =	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD238764 SLD238765	GUNTHER SALT	03/31/21	Gross Alpha/Beta	Gross Alpha	1.73E-15	3.92E-15	7.56E-15	μCi/mL μCi/mL	– UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238765	GUNTHER SALT	03/31/21	Gross Alpha/Beta	Gross Beta	2.02E-14	1.22E-14	1.73E-14	μCi/mL μCi/mL	UJ I	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238766	GUNTHER SALT	04/07/21	Gross Alpha/Beta	Gross Alpha	6.33E-15	1.08E-14	1.86E-14	μCi/mL	IJ	T04, 120	Gunther Salt (General Area)-Perimeter Air
SLD238766	GUNTHER SALT	04/07/21	Gross Alpha/Beta	Gross Beta	1.74E-14	2.55E-14	4.26E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238767	GUNTHER SALT	04/15/21	Gross Alpha/Beta	Gross Alpha	5.52E-16	4.23E-15	1.03E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238767	GUNTHER SALT	04/15/21	Gross Alpha/Beta	Gross Beta	2.94E-15	1.32E-14	2.35E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238768	GUNTHER SALT	04/19/21	Gross Alpha/Beta	Gross Alpha	1.85E-15	4.72E-15	9.41E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238768	GUNTHER SALT	04/19/21	Gross Alpha/Beta	Gross Beta	4.97E-14	1.79E-14	2.15E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238776	GUNTHER SALT	04/22/21	Gross Alpha/Beta	Gross Alpha	5.74E-15	7.40E-15	1.12E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238776	GUNTHER SALT	04/22/21	Gross Alpha/Beta	Gross Beta	3.25E-14	1.63E-14	2.17E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238777	GUNTHER SALT	04/27/21	Gross Alpha/Beta	Gross Alpha	9.13E-15	8.85E-15	1.13E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238777	GUNTHER SALT	04/27/21	Gross Alpha/Beta	Gross Beta	5.24E-14	1.89E-14	2.19E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238778	GUNTHER SALT	04/28/21	Gross Alpha/Beta	Gross Alpha	5.37E-15	8.68E-15	1.47E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238778	GUNTHER SALT	04/28/21	Gross Alpha/Beta	Gross Beta	2.61E-14	1.91E-14	2.84E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238779	GUNTHER SALT	05/03/21	Gross Alpha/Beta	Gross Alpha	5.52E-15	7.10E-15	1.07E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238779	GUNTHER SALT	05/03/21	Gross Alpha/Beta	Gross Beta	1.26E-14	1.31E-14	2.08E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238780	GUNTHER SALT	05/04/21	Gross Alpha/Beta	Gross Alpha	5.25E-15	8.48E-15	1.43E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238780	GUNTHER SALT	05/04/21	Gross Alpha/Beta	Gross Beta	3.04E-14	1.94E-14	2.77E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238781	GUNTHER SALT	05/05/21	Gross Alpha/Beta	Gross Alpha	2.39E-15	5.58E-15	1.09E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238781	GUNTHER SALT	05/05/21	Gross Alpha/Beta	Gross Beta	2.03E-14	1.43E-14	2.10E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238782	GUNTHER SALT	05/10/21	Gross Alpha/Beta	Gross Alpha	-8.67E-16	3.57E-15	1.18E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238782	GUNTHER SALT	05/10/21	Gross Alpha/Beta	Gross Beta	2.61E-14	1.61E-14	2.29E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238783 SLD238783	GUNTHER SALT GUNTHER SALT	05/11/21 05/11/21	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	-8.20E-16 4.31E-14	3.38E-15 1.76E-14	1.12E-14 2.17E-14	μCi/mL μCi/mL	UJ =	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD238783 SLD238784	GUNTHER SALT	05/12/21	Gross Alpha/Beta	Gross Alpha	4.31E-14 1.11E-14	8.97E-15	2.17E-14 1.01E-14	μCi/mL μCi/mL	- T	T04, T20	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
			<u>.</u>						J		
SLD238784	GUNTHER SALT	05/12/21	Gross Alpha/Beta	Gross Beta	2.67E-14	1.44E-14	1.96E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD238785	GUNTHER SALT	05/13/21	Gross Alpha/Beta	Gross Alpha	3.98E-15	6.43E-15	1.09E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238785	GUNTHER SALT	05/13/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.35E-14	2.10E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238786	GUNTHER SALT	05/17/21	Gross Alpha/Beta	Gross Alpha	3.98E-15	6.43E-15	1.09E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238786	GUNTHER SALT	05/17/21	Gross Alpha/Beta	Gross Beta	4.28E-14	1.72E-14	2.10E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238787	GUNTHER SALT	05/18/21	Gross Alpha/Beta	Gross Alpha	-1.30E-15	4.54E-15	1.30E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238787	GUNTHER SALT	05/18/21	Gross Alpha/Beta	Gross Beta	1.83E-14	1.41E-14	2.12E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238788	GUNTHER SALT	05/19/21	Gross Alpha/Beta	Gross Alpha	5.78E-15	9.04E-15	1.53E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238788	GUNTHER SALT	05/19/21	Gross Alpha/Beta	Gross Beta	2.68E-14	1.73E-14	2.49E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238789	GUNTHER SALT	05/20/21	Gross Alpha/Beta	Gross Alpha	2.47E-16	5.24E-15	1.24E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238789	GUNTHER SALT	05/20/21	Gross Alpha/Beta	Gross Beta	2.44E-14	1.44E-14	2.02E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238790	GUNTHER SALT	05/25/21	Gross Alpha/Beta	Gross Alpha	2.48E-16	5.27E-15	1.25E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238790	GUNTHER SALT	05/25/21	Gross Alpha/Beta	Gross Beta	2.19E-14	1.41E-14	2.03E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238791	GUNTHER SALT	05/26/21	Gross Alpha/Beta	Gross Alpha	7.66E-15	8.47E-15	1.24E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238791	GUNTHER SALT	05/26/21	Gross Alpha/Beta	Gross Beta	1.74E-14	1.34E-14	2.02E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238792	GUNTHER SALT	05/27/21	Gross Alpha/Beta	Gross Alpha	-1.68E-15	5.85E-15	1.68E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238792	GUNTHER SALT	05/27/21	Gross Alpha/Beta	Gross Beta	8.23E-15	1.60E-14	2.74E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238793	GUNTHER SALT	06/01/21	Gross Alpha/Beta	Gross Alpha	5.74E-15	7.40E-15	1.12E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238793	GUNTHER SALT	06/01/21	Gross Alpha/Beta	Gross Beta	3.16E-14	1.64E-14	2.22E-14	μCi/mL	J	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238794	GUNTHER SALT	06/02/21	Gross Alpha/Beta	Gross Alpha	1.30E-14	1.05E-14	1.18E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238794	GUNTHER SALT	06/02/21	Gross Alpha/Beta	Gross Beta	2.52E-14	1.63E-14	2.34E-14	μCi/mL	J	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238795	GUNTHER SALT	06/03/21	Gross Alpha/Beta	Gross Alpha	1.07E-14	1.37E-14	2.08E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238795	GUNTHER SALT	06/03/21	Gross Alpha/Beta	Gross Beta	5.33E-14	2.98E-14	4.12E-14	μCi/mL	J	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238796	GUNTHER SALT	06/07/21	Gross Alpha/Beta	Gross Alpha	7.90E-15	8.66E-15	1.20E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238796	GUNTHER SALT	06/07/21	Gross Alpha/Beta	Gross Beta	3.90E-14	1.82E-14	2.37E-14	μCi/mL	J	F01	Gunther Salt (General Area)-Perimeter Air
SLD238797	GUNTHER SALT	06/08/21	Gross Alpha/Beta	Gross Alpha	-2.36E-15	8.08E-16	1.07E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238797	GUNTHER SALT	06/08/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.36E-14	2.13E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238798	GUNTHER SALT	06/09/21	Gross Alpha/Beta	Gross Alpha	8.54E-15	7.49E-15	8.96E-15	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238798	GUNTHER SALT	06/09/21	Gross Alpha/Beta	Gross Beta	1.06E-14	1.11E-14	1.78E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238799	GUNTHER SALT	06/10/21	Gross Alpha/Beta	Gross Alpha	9.04E-15	9.92E-15	1.37E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238799	GUNTHER SALT	06/10/21	Gross Alpha/Beta	Gross Beta	1.86E-14	1.74E-14	2.71E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238800	GUNTHER SALT	06/14/21	Gross Alpha/Beta	Gross Alpha	1.32E-14	1.06E-14	1.20E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238800	GUNTHER SALT	06/14/21	Gross Alpha/Beta	Gross Beta	5.03E-14	1.96E-14	2.37E-14	μCi/mL	J	F01	Gunther Salt (General Area)-Perimeter Air
SLD238801	GUNTHER SALT	06/15/21	Gross Alpha/Beta	Gross Alpha	1.58E-14	1.11E-14	1.13E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238801	GUNTHER SALT	06/15/21	Gross Alpha/Beta	Gross Beta	2.71E-14	1.60E-14	2.24E-14	μCi/mL	J	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238802	GUNTHER SALT	06/16/21	Gross Alpha/Beta	Gross Alpha	7.43E-15	8.15E-15	1.13E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238802	GUNTHER SALT	06/16/21	Gross Alpha/Beta	Gross Beta	2.21E-14	1.52E-14	2.23E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238802 SLD238803	GUNTHER SALT	06/21/21	Gross Alpha/Beta	Gross Alpha	1.24E-14	9.98E-15	1.13E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238803 SLD238803	GUNTHER SALT	06/21/21	Gross Alpha/Beta	Gross Beta	1.82E-14	1.47E-14	2.23E-14	μCi/mL μCi/mL	J UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238803	GUNTHER SALT	06/22/21	Gross Alpha/Beta	Gross Alpha	1.63E-14	1.15E-14	1.17E-14	μCi/mL	<u>т</u>	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238804 SLD238804	GUNTHER SALT	06/22/21	Gross Alpha/Beta	Gross Beta	3.20E-14	1.70E-14	2.31E-14	μCi/mL μCi/mL	J T	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238804 SLD238805	GUNTHER SALT	06/23/21	Gross Alpha/Beta	Gross Alpha	9.54E-15	8.36E-15	1.00E-14	μCi/mL μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238805 SLD238805	GUNTHER SALT	06/23/21	Gross Alpha/Beta	Gross Beta	2.91E-14	1.48E-14	1.98E-14	μCi/mL μCi/mL	J	F01, T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238805 SLD238806	GUNTHER SALT	06/23/21	Gross Alpha/Beta	Gross Alpha	2.91E-14 2.03E-16	4.67E-15	1.98E-14 1.18E-14	μCi/mL μCi/mL	J UJ	T01, 104, 120 T06	Gunther Salt (General Area)-Perimeter Air
SLD238806 SLD238806	GUNTHER SALT	06/28/21	<u>.</u>	Gross Alpha Gross Beta	2.03E-16 3.80E-14	4.67E-13 2.28E-14	3.35E-14		UJ T	T04, T20	Gunther Salt (General Area)-Perimeter Air
			Gross Alpha/Beta					μCi/mL	J		
SLD238807	GUNTHER SALT	06/29/21	Gross Alpha/Beta	Gross Alpha	3.25E-15	6.18E-15	1.12E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238807	GUNTHER SALT	06/29/21	Gross Alpha/Beta	Gross Beta	1.94E-14	1.97E-14	3.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238808	GUNTHER SALT	06/30/21	Gross Alpha/Beta	Gross Alpha	1.60E-15	4.99E-15	1.04E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD238808	GUNTHER SALT	06/30/21	Gross Alpha/Beta	Gross Beta	1.72E-15	1.65E-14	2.94E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238809	GUNTHER SALT	07/06/21	Gross Alpha/Beta	Gross Alpha	1.00E-14	8.71E-15	1.03E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238809	GUNTHER SALT	07/06/21	Gross Alpha/Beta	Gross Beta	3.09E-14	2.05E-14	3.07E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238810	GUNTHER SALT	07/07/21	Gross Alpha/Beta	Gross Alpha	3.81E-15	6.05E-15	1.01E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238810	GUNTHER SALT	07/07/21	Gross Alpha/Beta	Gross Beta	2.73E-14	1.98E-14	3.02E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238811	GUNTHER SALT	07/12/21	Gross Alpha/Beta	Gross Alpha	7.12E-15	7.74E-15	1.06E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238811	GUNTHER SALT	07/12/21	Gross Alpha/Beta	Gross Beta	1.16E-14	1.88E-14	3.15E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238812	GUNTHER SALT	07/13/21	Gross Alpha/Beta	Gross Alpha	2.29E-15	5.19E-15	1.00E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238812	GUNTHER SALT	07/13/21	Gross Alpha/Beta	Gross Beta	3.40E-14	2.03E-14	2.98E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238813	GUNTHER SALT	07/14/21	Gross Alpha/Beta	Gross Alpha	6.94E-15	7.54E-15	1.03E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238813	GUNTHER SALT	07/14/21	Gross Alpha/Beta	Gross Beta	2.99E-14	2.04E-14	3.07E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238840	GUNTHER SALT	08/04/21	Gross Alpha/Beta	Gross Alpha	9.90E-15	1.01E-14	1.44E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238840	GUNTHER SALT	08/04/21	Gross Alpha/Beta	Gross Beta	3.57E-14	2.23E-14	3.30E-14	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238841	GUNTHER SALT	08/10/21	Gross Alpha/Beta	Gross Alpha	7.76E-15	9.01E-15	1.36E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238841	GUNTHER SALT	08/10/21	Gross Alpha/Beta	Gross Beta	3.26E-14	2.09E-14	3.11E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238842	GUNTHER SALT	08/11/21	Gross Alpha/Beta	Gross Alpha	9.77E-15	1.00E-14	1.42E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238842	GUNTHER SALT	08/11/21	Gross Alpha/Beta	Gross Beta	5.14E-14	2.37E-14	3.25E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238843	GUNTHER SALT	08/12/21	Gross Alpha/Beta	Gross Alpha	3.11E-15	5.29E-15	9.18E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238843	GUNTHER SALT	08/12/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.41E-14	2.10E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238844	GUNTHER SALT	08/16/21	Gross Alpha/Beta	Gross Alpha	1.03E-14	1.05E-14	1.49E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238844	GUNTHER SALT	08/16/21	Gross Alpha/Beta	Gross Beta	3.92E-14	2.33E-14	3.41E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238845	GUNTHER SALT	08/17/21	Gross Alpha/Beta	Gross Alpha	1.67E-14	1.10E-14	1.20E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238845	GUNTHER SALT	08/17/21	Gross Alpha/Beta	Gross Beta	4.17E-14	1.99E-14	2.76E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238846	GUNTHER SALT	08/18/21	Gross Alpha/Beta	Gross Alpha	5.39E-15	7.36E-15	1.18E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238846	GUNTHER SALT	08/18/21	Gross Alpha/Beta	Gross Beta	3.65E-14	1.91E-14	2.71E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238847	GUNTHER SALT	08/23/21	Gross Alpha/Beta	Gross Alpha	7.12E-15	8.28E-15	1.25E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238847	GUNTHER SALT	08/23/21	Gross Alpha/Beta	Gross Beta	3.84E-14	2.01E-14	2.85E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238848	GUNTHER SALT	08/24/21	Gross Alpha/Beta	Gross Alpha	6.15E-15	7.15E-15	1.08E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238848	GUNTHER SALT	08/24/21	Gross Alpha/Beta	Gross Beta	4.46E-14	1.85E-14	2.46E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238849	GUNTHER SALT	08/25/21	Gross Alpha/Beta	Gross Alpha	1.20E-14	9.42E-15	1.16E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238849	GUNTHER SALT	08/25/21	Gross Alpha/Beta	Gross Beta	3.49E-14	1.86E-14	2.65E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238850	GUNTHER SALT	09/01/21	Gross Alpha/Beta	Gross Alpha	4.35E-15	7.39E-15	1.28E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238850	GUNTHER SALT	09/01/21	Gross Alpha/Beta	Gross Beta	2.41E-14	1.90E-14	2.94E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238852	GUNTHER SALT	09/07/21	Gross Alpha/Beta	Gross Alpha	4.14E-15	6.92E-15	1.19E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238852	GUNTHER SALT	09/07/21	Gross Alpha/Beta	Gross Beta	3.67E-14	2.08E-14	2.96E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238853	GUNTHER SALT	09/08/21	Gross Alpha/Beta	Gross Alpha	2.32E-15	5.73E-15	1.13E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238853	GUNTHER SALT	09/08/21	Gross Alpha/Beta	Gross Beta	1.68E-14	1.76E-14	2.83E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238854	GUNTHER SALT	09/13/21	Gross Alpha/Beta	Gross Alpha	5.63E-16	3.88E-15	9.36E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238854	GUNTHER SALT	09/13/21	Gross Alpha/Beta	Gross Beta	2.90E-14	1.64E-14	2.33E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238855	GUNTHER SALT	09/14/21	Gross Alpha/Beta	Gross Alpha	4.91E-15	6.48E-15	9.96E-15	μCi/mL	IJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238855	GUNTHER SALT	09/14/21	Gross Alpha/Beta	Gross Beta	1.29E-14	1.53E-14	2.48E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238856	GUNTHER SALT	09/15/21	Gross Alpha/Beta	Gross Alpha	3.62E-15	6.05E-15	1.04E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238856	GUNTHER SALT	09/15/21	Gross Alpha/Beta	Gross Beta	2.42E-14	1.73E-14	2.59E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238857	GUNTHER SALT	09/20/21	Gross Alpha/Beta	Gross Alpha	-2.11E-15	7.01E-16	9.21E-15	μCi/mL	UJ	T04, 105	Gunther Salt (General Area)-Perimeter Air
SLD238857 SLD238857	GUNTHER SALT	09/20/21	Gross Alpha/Beta	Gross Beta	1.19E-14	1.41E-14	2.30E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238857 SLD238858	GUNTHER SALT	09/20/21	Gross Alpha/Beta	Gross Alpha	3.41E-15	4.50E-15	6.92E-15	μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238858 SLD238858	GUNTHER SALT	09/21/21	*	· · · · ·	2.01E-14	1.20E-14	1.73E-14	μCi/mL μCi/mL	T	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238838	UUNINEK SALI	09/21/21	Gross Alpha/Beta	Gross Beta	2.01E-14	1.20E-14	1./3E-14	µCI/mL	J	104, 120	Gununer San (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD238859	GUNTHER SALT	09/22/21	Gross Alpha/Beta	Gross Alpha	4.29E-15	5.66E-15	8.70E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238859	GUNTHER SALT	09/22/21	Gross Alpha/Beta	Gross Beta	1.70E-14	1.41E-14	2.17E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238860	GUNTHER SALT	09/23/21	Gross Alpha/Beta	Gross Alpha	7.73E-15	8.64E-15	1.21E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238860	GUNTHER SALT	09/23/21	Gross Alpha/Beta	Gross Beta	1.22E-14	1.81E-14	3.02E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238861	GUNTHER SALT	09/27/21	Gross Alpha/Beta	Gross Alpha	8.14E-15	7.23E-15	8.79E-15	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238861	GUNTHER SALT	09/27/21	Gross Alpha/Beta	Gross Beta	7.80E-14	2.09E-14	2.19E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238862	GUNTHER SALT	09/28/21	Gross Alpha/Beta	Gross Alpha	3.30E-15	5.51E-15	9.47E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238862	GUNTHER SALT	09/28/21	Gross Alpha/Beta	Gross Beta	3.82E-14	1.76E-14	2.36E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238863	GUNTHER SALT	09/29/21	Gross Alpha/Beta	Gross Alpha	1.15E-14	8.71E-15	9.47E-15	µCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238863	GUNTHER SALT	09/29/21	Gross Alpha/Beta	Gross Beta	4.45E-14	1.84E-14	2.36E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238864	GUNTHER SALT	09/30/21	Gross Alpha/Beta	Gross Alpha	3.32E-15	8.22E-15	1.63E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238864	GUNTHER SALT	09/30/21	Gross Alpha/Beta	Gross Beta	2.41E-14	2.53E-14	4.05E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238865	GUNTHER SALT	10/04/21	Gross Alpha/Beta	Gross Alpha	2.72E-15	5.62E-15	1.04E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238865	GUNTHER SALT	10/04/21	Gross Alpha/Beta	Gross Beta	5.24E-14	2.13E-14	2.81E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238866	GUNTHER SALT	10/05/21	Gross Alpha/Beta	Gross Alpha	4.00E-15	1.47E-14	3.13E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238866	GUNTHER SALT	10/05/21	Gross Alpha/Beta	Gross Beta	9.23E-14	5.71E-14	8.42E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238867	GUNTHER SALT	10/06/21	Gross Alpha/Beta	Gross Alpha	3.00E-15	6.19E-15	1.15E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238867	GUNTHER SALT	10/06/21	Gross Alpha/Beta	Gross Beta	4.94E-14	2.26E-14	3.09E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238868	GUNTHER SALT	10/07/21	Gross Alpha/Beta	Gross Alpha	1.28E-14	1.95E-14	3.24E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238868	GUNTHER SALT	10/07/21	Gross Alpha/Beta	Gross Beta	5.47E-14	5.46E-14	8.72E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238869	GUNTHER SALT	10/11/21	Gross Alpha/Beta	Gross Alpha	3.21E-15	4.90E-15	8.14E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238869	GUNTHER SALT	10/11/21	Gross Alpha/Beta	Gross Beta	3.94E-14	1.65E-14	2.19E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD238870	GUNTHER SALT	10/12/21	Gross Alpha/Beta	Gross Alpha	8.56E-15	6.86E-15	8.07E-15	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238870	GUNTHER SALT	10/12/21	Gross Alpha/Beta	Gross Beta	4.92E-14	1.74E-14	2.17E-14	μCi/mL	=	101, 120	Gunther Salt (General Area)-Perimeter Air
SLD238871	GUNTHER SALT	10/13/21	Gross Alpha/Beta	Gross Alpha	5.33E-15	5.74E-15	8.07E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238871	GUNTHER SALT	10/13/21	Gross Alpha/Beta	Gross Beta	4.27E-14	1.67E-14	2.17E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD238872	GUNTHER SALT	10/14/21	Gross Alpha/Beta	Gross Alpha	2.10E-15	4.33E-15	8.03E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238872	GUNTHER SALT	10/14/21	Gross Alpha/Beta	Gross Beta	3.02E-14	1.53E-15	2.16E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238873	GUNTHER SALT	10/18/21	Gross Alpha/Beta	Gross Alpha	-4.50E-17	3.11E-15	8.07E-15	μCi/mL	IJ	T04, 120	Gunther Salt (General Area)-Perimeter Air
SLD238873	GUNTHER SALT	10/18/21	Gross Alpha/Beta	Gross Beta	5.21E-14	1.76E-14	2.17E-14	μCi/mL	=	100	Gunther Salt (General Area)-Perimeter Air
SLD238874	GUNTHER SALT	10/19/21	Gross Alpha/Beta	Gross Alpha	6.14E-15	7.67E-15	1.16E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238874	GUNTHER SALT	10/19/21	Gross Alpha/Beta	Gross Beta	3.33E-14	2.11E-14	3.13E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238875	GUNTHER SALT	10/20/21	Gross Alpha/Beta	Gross Alpha	3.65E-15	5.57E-15	9.26E-15	μCi/mL	IJ	T04, 120	Gunther Salt (General Area)-Perimeter Air
SLD238875	GUNTHER SALT	10/20/21	Gross Alpha/Beta	Gross Beta	2.73E-14	1.69E-14	2.49E-14	μCi/mL	I	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD238876	GUNTHER SALT	10/25/21	Gross Alpha/Beta	Gross Alpha	7.18E-15	7.73E-15	1.09E-14	μCi/mL	J UJ	T04, 120	Gunther Salt (General Area)-Perimeter Air
SLD238876	GUNTHER SALT	10/25/21	Gross Alpha/Beta	Gross Beta	1.74E-14	1.82E-14	2.92E-14	μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238876 SLD238877	GUNTHER SALT	10/25/21	Gross Alpha/Beta	Gross Alpha	-1.42E-14	2.83E-15	1.02E-14	μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD238877 SLD238877	GUNTHER SALT	10/26/21	Gross Alpha/Beta	Gross Alpha Gross Beta	-1.42E-13 1.54E-14	1.70E-14	2.74E-14	μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238877 SLD238878	GUNTHER SALT	10/26/21	Gross Alpha/Beta	Gross Alpha	4.16E-15	5.20E-15	2.74E-14 7.89E-15	μCi/mL μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD238878 SLD238878	GUNTHER SALT	10/27/21	Gross Alpha/Beta	Gross Alpha Gross Beta	4.16E-15 2.18E-14	1.42E-14	7.89E-13 2.12E-14	μCi/mL μCi/mL	UJ T	T04, T20	Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
SLD238878 SLD238879	GUNTHER SALT	10/27/21	Gross Alpha/Beta		-4.80E-17	3.31E-15	2.12E-14 8.60E-15	μCi/mL μCi/mL	J UJ	T04, 120 T06	
SLD238879 SLD238879	GUNTHER SALT	10/28/21	*	Gross Alpha	-4.80E-17 2.77E-14		2.31E-14		UJ		Gunther Salt (General Area)-Perimeter Air Gunther Salt (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Beta		1.59E-14		µCi/mL	J	T04, T20	
SLD238880	GUNTHER SALT	11/01/21	Gross Alpha/Beta	Gross Alpha	1.04E-15	3.81E-15	8.14E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238880	GUNTHER SALT	11/01/21	Gross Alpha/Beta	Gross Beta	1.74E-14	1.41E-14	2.19E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238881	GUNTHER SALT	11/02/21	Gross Alpha/Beta	Gross Alpha	3.05E-15	1.12E-14	2.39E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238881	GUNTHER SALT	11/02/21	Gross Alpha/Beta	Gross Beta	5.75E-14	4.21E-14	6.42E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238882	GUNTHER SALT	11/03/21	Gross Alpha/Beta	Gross Alpha	4.34E-15	6.62E-15	1.10E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD238882	GUNTHER SALT	11/03/21	Gross Alpha/Beta	Gross Beta	5.43E-14	2.24E-14	2.96E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238883	GUNTHER SALT	11/09/21	Gross Alpha/Beta	Gross Alpha	7.87E-15	6.84E-15	8.48E-15	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238883	GUNTHER SALT	11/09/21	Gross Alpha/Beta	Gross Beta	5.41E-14	1.85E-14	2.28E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238884	GUNTHER SALT	11/10/21	Gross Alpha/Beta	Gross Alpha	8.40E-15	7.15E-15	8.98E-15	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238884	GUNTHER SALT	11/10/21	Gross Alpha/Beta	Gross Beta	5.26E-14	1.87E-14	2.37E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238885	GUNTHER SALT	11/15/21	Gross Alpha/Beta	Gross Alpha	2.59E-15	4.68E-15	8.29E-15	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238885	GUNTHER SALT	11/15/21	Gross Alpha/Beta	Gross Beta	3.18E-14	1.56E-14	2.19E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238886	GUNTHER SALT	11/17/21	Gross Alpha/Beta	Gross Alpha	1.09E-15	7.68E-15	1.75E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238886	GUNTHER SALT	11/17/21	Gross Alpha/Beta	Gross Beta	3.30E-14	2.93E-14	4.62E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238887	GUNTHER SALT	11/23/21	Gross Alpha/Beta	Gross Alpha	1.49E-15	1.05E-14	2.39E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238887	GUNTHER SALT	11/23/21	Gross Alpha/Beta	Gross Beta	3.72E-14	3.93E-14	6.33E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238904	GUNTHER SALT	12/14/21	Gross Alpha/Beta	Gross Alpha	-1.07E-15	4.77E-15	1.18E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238904	GUNTHER SALT	12/14/21	Gross Alpha/Beta	Gross Beta	1.40E-14	1.47E-14	2.37E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238905	GUNTHER SALT	12/15/21	Gross Alpha/Beta	Gross Alpha	3.41E-15	6.34E-15	1.12E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238905	GUNTHER SALT	12/15/21	Gross Alpha/Beta	Gross Beta	3.21E-15	1.29E-14	2.25E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238906	GUNTHER SALT	12/16/21	Gross Alpha/Beta	Gross Alpha	1.01E-14	9.12E-15	1.27E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238906	GUNTHER SALT	12/16/21	Gross Alpha/Beta	Gross Beta	5.01E-14	1.95E-14	2.55E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238907	GUNTHER SALT	12/20/21	Gross Alpha/Beta	Gross Alpha	-1.10E-15	4.91E-15	1.21E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238907	GUNTHER SALT	12/20/21	Gross Alpha/Beta	Gross Beta	3.85E-14	1.77E-14	2.44E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238908	GUNTHER SALT	12/21/21	Gross Alpha/Beta	Gross Alpha	9.35E-15	8.44E-15	1.18E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238908	GUNTHER SALT	12/21/21	Gross Alpha/Beta	Gross Beta	6.67E-14	2.00E-14	2.36E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238909	GUNTHER SALT	12/22/21	Gross Alpha/Beta	Gross Alpha	1.20E-15	5.53E-15	1.13E-14	µCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD238909	GUNTHER SALT	12/22/21	Gross Alpha/Beta	Gross Beta	3.36E-14	1.62E-14	2.26E-14	µCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD238910	GUNTHER SALT	12/30/21	Gross Alpha/Beta	Gross Alpha	9.18E-15	8.29E-15	1.15E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD238910	GUNTHER SALT	12/30/21	Gross Alpha/Beta	Gross Beta	1.51E-14	1.46E-14	2.32E-14	µCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD234260	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Alpha	5.58E-15	6.50E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234260	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Beta	3.83E-14	2.22E-14	2.32E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234261	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Alpha	1.74E-16	4.19E-15	9.81E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234261	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Beta	5.58E-14	2.28E-14	2.24E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234262	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Alpha	4.56E-15	6.21E-15	1.03E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234262	P6WH LOADOUT	01/04/21	Gross Alpha/Beta	Gross Beta	4.25E-14	2.27E-14	2.35E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234263	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Alpha	5.60E-15	6.53E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234263	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Beta	5.22E-14	2.33E-14	2.33E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234264	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Alpha	4.79E-15	6.52E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234264	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Beta	5.53E-14	2.47E-14	2.47E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234265	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Alpha	4.77E-15	6.49E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234265	P6WH LOADOUT	01/05/21	Gross Alpha/Beta	Gross Beta	4.59E-14	2.39E-14	2.46E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234266	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Alpha	1.91E-16	4.60E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234266	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Beta	4.37E-14	2.37E-14	2.46E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234267	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Alpha	2.47E-15	5.60E-15	1.07E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234267	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Beta	6.09E-14	2.49E-14	2.45E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234268	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Alpha	4.60E-15	6.26E-15	1.04E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234268	P6WH LOADOUT	01/06/21	Gross Alpha/Beta	Gross Beta	4.72E-14	2.32E-14	2.37E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234269	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Alpha	4.83E-15	6.58E-15	1.09E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234269	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Beta	3.89E-14	2.36E-14	2.49E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234270	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Alpha	3.59E-15	6.02E-15	1.07E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234270	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Beta	3.65E-14	2.30E-14	2.44E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234271	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Alpha	3.49E-15	5.86E-15	1.04E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234271	P6WH LOADOUT	01/07/21	Gross Alpha/Beta	Gross Beta	3.55E-14	2.24E-14	2.37E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234272	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Alpha	1.83E-16	4.41E-15	1.03E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234272	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Beta	1.49E-14	2.08E-14	2.36E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234273	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Alpha	1.23E-15	4.74E-15	9.94E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234273	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Beta	1.92E-14	2.03E-14	2.27E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234274	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Alpha	4.62E-15	6.29E-15	1.04E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234274	P6WH LOADOUT	01/11/21	Gross Alpha/Beta	Gross Beta	4.30E-14	2.30E-14	2.38E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234275	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Alpha	2.49E-15	5.65E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234275	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Beta	5.15E-14	2.44E-14	2.47E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234276	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Alpha	9.30E-15	7.93E-15	1.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234276	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Beta	5.18E-14	2.42E-14	2.45E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234277	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Alpha	4.62E-15	6.29E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234277	P6WH LOADOUT	01/12/21	Gross Alpha/Beta	Gross Beta	4.16E-14	2.29E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234278	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Alpha	1.92E-16	4.62E-15	1.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234278	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Beta	2.47E-14	2.24E-14	2.47E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234279	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Alpha	2.39E-15	5.42E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234279	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Beta	6.05E-14	2.42E-14	2.37E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234280	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Alpha	7.99E-15	7.18E-15	9.24E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234280	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Beta	6.18E-14	1.70E-14	1.70E-14	μCi/mL	=	101, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234280 SLD234281	P6WH LOADOUT	01/13/21	Gross Alpha/Beta	Gross Alpha	2.54E-15	5.31E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234281	P6WH LOADOUT	01/14/21	Gross Alpha/Beta	Gross Beta	6.68E-14	1.78E-14	1.74E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234281 SLD234282	P6WH LOADOUT	01/14/21	Gross Alpha/Beta	Gross Alpha	6.86E-15	6.80E-15	9.20E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234282	P6WH LOADOUT	01/14/21	Gross Alpha/Beta	Gross Beta	5.09E-14	1.59E-14	1.69E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234282 SLD234283	P6WH LOADOUT	01/14/21	Gross Alpha/Beta	Gross Alpha	4.69E-15	6.07E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234283	P6WH LOADOUT	01/14/21	Gross Alpha/Beta	Gross Beta	6.46E-14	1.73E-14	1.70E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234283	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Alpha	2.61E-15	5.46E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234284 SLD234284	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Beta	4.84E-14	1.62E-14	9.71E-13 1.78E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234284 SLD234285	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Alpha	3.63E-15	5.72E-15	9.37E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234285	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Beta	2.58E-14	1.33E-14	9.37E-13 1.72E-14	μCi/mL μCi/mL	UJ I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234285 SLD234286	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Alpha	3.89E-15	6.13E-15	1.72E-14 1.00E-14	μCi/mL μCi/mL	J UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234286	P6WH LOADOUT	01/19/21	Gross Alpha/Beta	Gross Beta	3.38E-14	1.49E-14	1.84E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234280 SLD234287	P6WH LOADOUT	01/20/21	Gross Alpha/Beta	Gross Alpha	-2.12E-15	3.02E-15	1.04E-14 1.02E-14	μCi/mL μCi/mL	– UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234287 SLD234287	P6WH LOADOUT	01/20/21	Gross Alpha/Beta	Gross Beta	4.06E-14	1.58E-14	1.02E-14 1.87E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234287 SLD234288	P6WH LOADOUT		*		3.82E-15				– UJ	T06	
SLD234288 SLD234288	P6WH LOADOUT	01/20/21	Gross Alpha/Beta	Gross Alpha		6.01E-15	9.84E-15	µCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
		01/20/21	Gross Alpha/Beta	Gross Beta	4.61E-14	1.61E-14	1.81E-14	μCi/mL		T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234289	P6WH LOADOUT	01/20/21	Gross Alpha/Beta	Gross Alpha	4.73E-15	6.12E-15	9.32E-15	μCi/mL	UJ	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234289	P6WH LOADOUT	01/20/21	Gross Alpha/Beta	Gross Beta	3.07E-14	1.38E-14	1.71E-14	µCi/mL	=	Τ0(Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234290	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Alpha	2.86E-16	4.30E-15	9.58E-15	μCi/mL	UJ _	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234290	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Beta	4.34E-14	1.55E-14	1.76E-14	μCi/mL	=	T 07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234291	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Alpha	-8.60E-16	3.66E-15	9.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234291	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Beta	2.65E-14	1.36E-14	1.77E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234292	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Alpha	1.50E-15	5.13E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234292	P6WH LOADOUT	01/21/21	Gross Alpha/Beta	Gross Beta	3.55E-14	1.52E-14	1.85E-14	µCi/mL	=	T 0 (Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234293	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Alpha	-8.49E-16	3.61E-15	9.49E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234293	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Beta	2.11E-14	1.28E-14	1.74E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234294	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Alpha	3.32E-16	5.00E-15	1.11E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234294	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Beta	1.19E-14	1.34E-14	2.04E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234295	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Alpha	1.58E-15	5.38E-15	1.06E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234295	P6WH LOADOUT	01/25/21	Gross Alpha/Beta	Gross Beta	1.61E-14	1.34E-14	1.94E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234296	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Alpha	2.78E-16	4.19E-15	9.32E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234296	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Beta	2.43E-14	1.30E-14	1.71E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234297	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Alpha	3.75E-15	5.90E-15	9.66E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234297	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Beta	1.62E-14	1.24E-14	1.77E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234298	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Alpha	2.59E-15	5.43E-15	9.66E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234298	P6WH LOADOUT	01/26/21	Gross Alpha/Beta	Gross Beta	1.77E-14	1.26E-14	1.77E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234299	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Alpha	6.11E-15	6.81E-15	9.75E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234299	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Beta	2.39E-14	1.34E-14	1.79E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234300	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Alpha	1.58E-15	5.07E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234300	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Beta	2.68E-14	1.56E-14	2.28E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234301	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Alpha	4.45E-16	4.35E-15	9.67E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234301	P6WH LOADOUT	01/27/21	Gross Alpha/Beta	Gross Beta	3.12E-14	1.55E-14	2.18E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234302	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Alpha	3.80E-15	5.95E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234302	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Beta	2.96E-14	1.58E-14	2.27E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234303	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Alpha	1.54E-15	4.93E-15	9.85E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234303	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Beta	2.61E-14	1.52E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234304	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Alpha	3.55E-15	5.57E-15	9.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234304	P6WH LOADOUT	01/28/21	Gross Alpha/Beta	Gross Beta	1.88E-14	1.39E-14	2.13E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234305	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Alpha	6.91E-15	6.88E-15	9.76E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234305	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Beta	2.94E-14	1.54E-14	2.20E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234306	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Alpha	2.76E-15	5.67E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234306	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Beta	1.62E-14	1.48E-14	2.34E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234307	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Alpha	7.30E-15	7.26E-15	1.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234307	P6WH LOADOUT	02/01/21	Gross Alpha/Beta	Gross Beta	5.12E-14	1.82E-14	2.33E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234308	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Alpha	8.70E-17	3.00E-15	7.64E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234308	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Beta	3.67E-14	1.62E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234309	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Alpha	2.30E-15	4.47E-15	8.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234309	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Beta	1.22E-14	1.45E-14	2.37E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234310	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Alpha	4.79E-15	5.80E-15	8.64E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234310	P6WH LOADOUT	03/09/21	Gross Alpha/Beta	Gross Beta	3.11E-14	1.73E-14	2.51E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234311	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Alpha	1.39E-14	9.07E-15	1.02E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234311	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Beta	6.53E-14	1.94E-14	2.29E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234312	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Alpha	1.19E-14	8.59E-15	1.03E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234312	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Beta	7.07E-14	2.00E-14	2.33E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234313	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Alpha	1.98E-14	1.02E-14	9.72E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234313	P6WH LOADOUT	02/03/21	Gross Alpha/Beta	Gross Beta	7.09E-14	1.93E-14	2.19E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234314	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Alpha	4.65E-15	6.02E-15	9.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234314	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Beta	1.42E-14	1.35E-14	2.16E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234315	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Alpha	3.87E-15	6.06E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234315	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Beta	1.38E-14	1.44E-14	2.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234316	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Alpha	-2.95E-15	2.46E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234316	P6WH LOADOUT	02/04/21	Gross Alpha/Beta	Gross Beta	2.37E-14	1.56E-14	2.34E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234317	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Alpha	4.56E-15	5.90E-15	9.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234317	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Beta	4.44E-14	1.63E-14	2.11E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234318	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Alpha	5.94E-15	6.65E-15	9.94E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234318	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Beta	4.29E-14	1.70E-14	2.24E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234319	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Alpha	7.16E-15	7.13E-15	1.01E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234319	P6WH LOADOUT	02/08/21	Gross Alpha/Beta	Gross Beta	5.10E-14	1.80E-14	2.28E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234320	P6WH LOADOUT	02/09/21	Gross Alpha/Beta	Gross Alpha	2.61E-15	4.21E-15	7.11E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234320	P6WH LOADOUT	02/09/21	Gross Alpha/Beta	Gross Beta	2.23E-14	1.46E-14	2.20E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234321	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Alpha	1.55E-14	8.65E-15	7.30E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234321	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Beta	9.00E-14	2.14E-14	2.26E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234322	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Alpha	1.33E-14	8.38E-15	7.85E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234322	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Beta	6.19E-14	1.98E-14	2.43E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234323	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Alpha	1.34E-14	8.50E-15	7.97E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234323	P6WH LOADOUT	02/10/21	Gross Alpha/Beta	Gross Beta	4.78E-14	1.87E-14	2.47E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234324	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Alpha	3.70E-15	4.76E-15	7.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234324	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Beta	3.90E-14	1.65E-14	2.23E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234325	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Alpha	6.08E-15	5.89E-15	7.53E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234325	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Beta	3.03E-14	1.62E-14	2.33E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234326	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Alpha	5.16E-15	5.66E-15	7.82E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234326	P6WH LOADOUT	02/11/21	Gross Alpha/Beta	Gross Beta	2.21E-14	1.59E-14	2.42E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234327	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Alpha	3.01E-15	4.86E-15	8.20E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234327	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Beta	2.16E-14	1.65E-14	2.54E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234328	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Alpha	3.78E-15	4.87E-15	7.37E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234328	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Beta	2.38E-14	1.52E-14	2.28E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234329	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Alpha	5.87E-16	3.37E-15	8.01E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234329	P6WH LOADOUT	02/17/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.67E-14	2.48E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234330	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Alpha	8.91E-15	6.67E-15	7.14E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234330	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Beta	2.45E-14	1.49E-14	2.21E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234331	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Alpha	3.85E-15	4.96E-15	7.50E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234331	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Beta	1.83E-14	1.49E-14	2.32E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234332	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Alpha	-5.57E-16	2.30E-15	7.60E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234332	P6WH LOADOUT	02/18/21	Gross Alpha/Beta	Gross Beta	4.03E-14	1.73E-14	2.35E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234333	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Alpha	6.96E-15	6.10E-15	7.30E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234333	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Beta	3.87E-14	1.66E-14	2.26E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234334	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Alpha	1.09E-14	7.66E-15	7.82E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234334	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Beta	3.68E-14	1.74E-14	2.42E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234335	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Alpha	8.76E-15	7.06E-15	7.97E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234335	P6WH LOADOUT	02/22/21	Gross Alpha/Beta	Gross Beta	6.83E-14	2.06E-14	2.47E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234336	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Alpha	4.74E-15	5.19E-15	7.17E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234336	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Beta	1.89E-14	1.44E-14	2.22E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234337	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Alpha	-5.57E-16	2.30E-15	7.60E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234337	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Beta	1.48E-14	1.47E-14	2.35E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234338	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Alpha	3.87E-15	4.98E-15	7.53E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234338	P6WH LOADOUT	02/23/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.58E-14	2.33E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234339	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Alpha	5.71E-15	5.53E-15	7.08E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234339	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Beta	1.03E-14	1.33E-14	2.19E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234340	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Alpha	1.18E-15	3.99E-15	8.41E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234340	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Beta	2.59E-14	1.57E-14	2.32E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234341	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Alpha	3.57E-15	5.30E-15	8.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234341	P6WH LOADOUT	02/24/21	Gross Alpha/Beta	Gross Beta	2.76E-14	1.63E-14	2.40E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234342	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Alpha	5.19E-15	5.49E-15	7.63E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234342	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Beta	2.70E-14	1.46E-14	2.10E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234343	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Alpha	1.19E-15	4.01E-15	8.45E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234343	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Beta	8.31E-15	1.39E-14	2.33E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234344	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Alpha	4.75E-15	5.80E-15	8.69E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234344	P6WH LOADOUT	02/25/21	Gross Alpha/Beta	Gross Beta	3.47E-14	1.71E-14	2.40E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234345	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Alpha	5.78E-15	6.12E-15	8.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234345	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Beta	2.92E-14	1.62E-14	2.34E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234346	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Alpha	1.18E-15	3.99E-15	8.41E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234346	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Beta	3.89E-14	1.71E-14	2.32E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234347	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Alpha	5.40E-15	5.71E-15	7.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234347	P6WH LOADOUT	03/01/21	Gross Alpha/Beta	Gross Beta	1.72E-14	1.40E-14	2.18E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234348	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Alpha	3.70E-15	5.49E-15	9.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234348	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Beta	6.38E-14	2.04E-14	2.48E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234349	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Alpha	8.35E-15	7.17E-15	8.78E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234349	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Beta	5.66E-14	1.94E-14	2.42E-14	μCi/mL	=	101,100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234350	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Alpha	4.37E-15	5.34E-15	8.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234350	P6WH LOADOUT	03/02/21	Gross Alpha/Beta	Gross Beta	3.63E-14	1.62E-14	2.20E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234351	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Alpha	5.70E-15	6.03E-15	8.37E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234351 SLD234351	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Beta	3.80E-14	1.69E-14	2.31E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234351 SLD234352	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Alpha	7.20E-15	6.79E-15	8.82E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234352 SLD234352	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Beta	4.41E-14	1.82E-14	2.43E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234352 SLD234353	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Alpha	7.31E-15	6.28E-15	7.69E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234353 SLD234353	P6WH LOADOUT	03/03/21	Gross Alpha/Beta	Gross Beta	3.98E-14	1.60E-14	2.12E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234355 SLD234354	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Alpha	2.37E-15	4.70E-15	8.61E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234354	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Beta	4.77E-14	1.83E-14	2.37E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234354 SLD234355	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Alpha	6.89E-15	6.51E-15	8.45E-15	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234355 SLD234355	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Beta	3.91E-14	1.71E-14	2.33E-14	μCi/mL μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234355 SLD234356	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Alpha	2.17E-15	4.29E-15	7.86E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234356	P6WH LOADOUT	03/04/21	Gross Alpha/Beta	Gross Beta	2.17E-13 2.92E-14	4.29E-13 1.52E-14	2.17E-14	μCi/mL μCi/mL	UJ T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234350 SLD234357	P6WH LOADOUT	03/08/21	Gross Alpha/Beta	Gross Alpha	5.99E-15	5.66E-15	7.35E-15	μCi/mL μCi/mL	J UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234357 SLD234357	P6WH LOADOUT	03/08/21	Gross Alpha/Beta	Gross Beta	2.86E-14	1.44E-14	2.02E-14	μCi/mL μCi/mL	UJ I	T04, T03 T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234357 SLD234358	P6WH LOADOUT	03/08/21	Gross Alpha/Beta	Gross Alpha	2.80E-14 2.27E-15	4.49E-15	8.22E-14	μCi/mL μCi/mL	J UJ	T04, 120 T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234358 SLD234358	P6WH LOADOUT		*	·	4.63E-14		8.22E-13 2.26E-14		=	100	
SLD234358 SLD234359	P6WH LOADOUT P6WH LOADOUT	03/08/21	Gross Alpha/Beta	Gross Beta Gross Alpha	4.03E-14 8.07E-15	1.75E-14 6.93E-15	2.20E-14 8.49E-15	µCi/mL	– UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
		03/08/21	Gross Alpha/Beta	1				µCi/mL		104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234359	P6WH LOADOUT	03/08/21	Gross Alpha/Beta	Gross Beta	4.86E-14	1.81E-14	2.34E-14	μCi/mL	= T	T04 T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234360	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.90E-15	8.31E-15	μCi/mL	J T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234360	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Beta	2.77E-14	1.64E-14	2.42E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234361	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Alpha	2.46E-15	4.77E-15	8.68E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234361	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Beta	1.30E-14	1.55E-14	2.53E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234362	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Alpha	8.43E-15	6.65E-15	7.67E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234362	P6WH LOADOUT	03/11/21	Gross Alpha/Beta	Gross Beta	2.91E-14	1.55E-14	2.23E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234363	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Alpha	-1.11E-15	2.53E-15	8.94E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234363	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Beta	-7.96E-15	1.36E-14	2.60E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234364	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Alpha	1.15E-15	3.71E-15	7.77E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234364	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Beta	-2.64E-15	1.23E-14	2.26E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234365	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Alpha	2.40E-15	4.66E-15	8.47E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234365	P6WH LOADOUT	03/15/21	Gross Alpha/Beta	Gross Beta	4.89E-15	1.43E-14	2.47E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234366	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Alpha	-9.73E-16	2.21E-15	7.81E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234366	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Beta	2.09E-16	1.27E-14	2.27E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234367	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Alpha	2.39E-15	4.63E-15	8.43E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234367	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Beta	7.96E-15	1.45E-14	2.46E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234368	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Alpha	3.66E-15	5.35E-15	8.72E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234368	P6WH LOADOUT	03/16/21	Gross Alpha/Beta	Gross Beta	2.18E-14	1.65E-14	2.54E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234369	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Alpha	3.26E-15	4.77E-15	7.77E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234369	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Beta	4.09E-14	1.68E-14	2.26E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234370	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Alpha	5.75E-15	6.03E-15	8.31E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234370	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Beta	2.23E-14	1.59E-14	2.42E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234371	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Alpha	1.27E-15	4.10E-15	8.59E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234371	P6WH LOADOUT	03/17/21	Gross Alpha/Beta	Gross Beta	2.07E-14	1.62E-14	2.50E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234372	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Alpha	-1.10E-15	2.49E-15	8.81E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234372	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Beta	4.28E-15	1.47E-14	2.56E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234373	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Alpha	1.24E-15	4.01E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234373	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Beta	9.46E-15	1.46E-14	2.44E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234374	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Alpha	4.35E-15	5.27E-15	7.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234374	P6WH LOADOUT	03/18/21	Gross Alpha/Beta	Gross Beta	1.60E-14	1.44E-14	2.28E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234375	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Alpha	3.57E-15	5.22E-15	8.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234375	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Beta	4.79E-14	1.87E-14	2.48E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234376	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Alpha	5.69E-15	5.97E-15	8.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234376	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Beta	2.59E-14	1.61E-14	2.40E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234377	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Alpha	1.24E-15	3.61E-15	7.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234377	P6WH LOADOUT	03/22/21	Gross Alpha/Beta	Gross Beta	8.51E-15	1.32E-14	2.21E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234378	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Alpha	1.25E-15	3.63E-15	7.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234378	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Beta	1.90E-14	1.44E-14	2.22E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234379	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Alpha	7.12E-15	6.53E-15	8.26E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234379	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Beta	2.03E-14	1.59E-14	2.46E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234380	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Alpha	1.43E-15	4.14E-15	8.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234380	P6WH LOADOUT	03/23/21	Gross Alpha/Beta	Gross Beta	2.41E-14	1.66E-14	2.53E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234381	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Alpha	1.24E-15	3.61E-15	7.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234381	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Beta	3.65E-15	1.27E-14	2.21E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234382	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Alpha	-8.95E-16	2.35E-15	8.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234382	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Beta	-2.86E-15	1.31E-14	2.42E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234383	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Alpha	-9.39E-16	2.46E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234383	P6WH LOADOUT	03/24/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.57E-14	2.54E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234384	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Alpha	-1.89E-15	5.89E-16	7.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234384	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Beta	1.30E-14	1.40E-14	2.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234385	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Alpha	4.71E-15	5.53E-15	8.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234385	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Beta	1.53E-14	1.50E-14	2.40E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234386	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Alpha	2.45E-16	3.38E-15	8.45E-15	μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234386	P6WH LOADOUT	03/25/21	Gross Alpha/Beta	Gross Beta	2.00E-14	1.62E-14	2.51E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234387	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Alpha	3.80E-15	5.35E-15	8.54E-15	μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234387 SLD234387	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Beta	3.94E-14	1.82E-14	2.54E-15	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234387 SLD234388	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Alpha	-9.16E-16	2.40E-15	8.33E-15	μCi/mL μCi/mL	– UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
520234300	I UWII LUADUU I	03/27/21	Oross Aiplia/Deta	GIUSS Alplia	-9.10E-10	2.40E-13	0.330-13	μCI/IIIL	0J	100	

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234388	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Beta	2.60E-14	1.66E-14	2.48E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234389	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Alpha	2.23E-16	3.08E-15	7.71E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234389	P6WH LOADOUT	03/29/21	Gross Alpha/Beta	Gross Beta	2.84E-14	1.58E-14	2.29E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234390	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Alpha	-2.15E-15	6.71E-16	8.62E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234390	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Beta	2.44E-14	1.69E-14	2.56E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234391	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Alpha	1.40E-15	4.06E-15	8.33E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234391	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Beta	2.99E-14	1.70E-14	2.48E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234392	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Alpha	1.28E-15	3.72E-15	7.64E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234392	P6WH LOADOUT	03/31/21	Gross Alpha/Beta	Gross Beta	1.52E-14	1.43E-14	2.27E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234393	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Alpha	3.82E-15	5.37E-15	8.58E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234393	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Beta	2.43E-14	1.68E-14	2.55E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234394	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Alpha	4.92E-15	5.77E-15	8.41E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234394	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Beta	3.57E-14	1.77E-14	2.50E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234395	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Alpha	-8.55E-16	2.24E-15	7.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234395	P6WH LOADOUT	03/30/21	Gross Alpha/Beta	Gross Beta	-4.19E-15	1.24E-14	2.31E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234396	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Alpha	2.85E-15	5.29E-15	9.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234396	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Beta	1.47E-14	1.44E-14	2.30E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234397	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Alpha	5.41E-15	6.62E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234397	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Beta	1.14E-14	1.51E-14	2.50E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234398	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Alpha	6.73E-15	7.19E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234398	P6WH LOADOUT	04/01/21	Gross Alpha/Beta	Gross Beta	1.79E-14	1.62E-14	2.56E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234399	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Alpha	7.02E-16	4.29E-15	9.31E-15	μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234399	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Beta	1.73E-14	1.45E-14	2.27E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234400	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Alpha	3.03E-15	5.64E-15	1.01E-14	μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234400	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Beta	2.17E-14	1.59E-14	2.45E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234401	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Alpha	9.10E-15	7.95E-15	1.05E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234401 SLD234401	P6WH LOADOUT	04/05/21	Gross Alpha/Beta	Gross Beta	2.73E-14	1.71E-14	2.56E-14	μCi/mL	I I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234401 SLD234402	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Alpha	1.07E-14	8.02E-15	9.73E-15	μCi/mL μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234402 SLD234402	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Beta	2.53E-14	1.59E-14	2.37E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234402 SLD234403	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Alpha	7.80E-16	4.76E-15	1.03E-14	μCi/mL μCi/mL	J UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234403 SLD234403	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Beta	1.92E-14	1.61E-14	2.52E-14	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234403	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Alpha	6.79E-15	7.26E-15	1.06E-14	μCi/mL μCi/mL	UJ	T04, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234404 SLD234404	P6WH LOADOUT	04/06/21	Gross Alpha/Beta	Gross Beta	1.97E-14	1.65E-14	2.58E-14	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234404 SLD234405	P6WH LOADOUT	04/07/21	-		4.09E-15	5.97E-15	2.38E-14 9.87E-15	μCi/mL μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Alpha					UJ T		
SLD234405	P6WH LOADOUT	04/07/21	Gross Alpha/Beta	Gross Beta	2.57E-14	1.61E-14	2.40E-14	μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234406	P6WH LOADOUT	04/07/21	Gross Alpha/Beta	Gross Alpha	3.09E-15	5.75E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234406	P6WH LOADOUT	04/07/21	Gross Alpha/Beta	Gross Beta	2.28E-14	1.63E-14	2.50E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234407	P6WH LOADOUT	04/07/21	Gross Alpha/Beta	Gross Alpha	5.92E-15	6.33E-15	9.23E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234407	P6WH LOADOUT	04/07/21	Gross Alpha/Beta	Gross Beta	2.06E-14	1.47E-14	2.25E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234408	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Alpha	2.76E-15	5.14E-15	9.15E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234408	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Beta	6.53E-16	1.25E-14	2.23E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234409	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Alpha	1.87E-15	5.09E-15	9.91E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234409	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Beta	-4.46E-15	1.30E-14	2.42E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234410	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Alpha	3.05E-15	5.67E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234410	P6WH LOADOUT	04/08/21	Gross Alpha/Beta	Gross Beta	-3.10E-17	1.37E-14	2.46E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234411	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Alpha	-2.43E-15	2.23E-15	9.19E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234411	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Beta	1.57E-14	1.42E-14	2.24E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD234412	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Alpha	1.08E-14	8.17E-15	9.91E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234412	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Beta	1.92E-14	1.55E-14	2.42E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234413	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Alpha	7.62E-16	4.65E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234413	P6WH LOADOUT	04/12/21	Gross Alpha/Beta	Gross Beta	1.12E-14	1.49E-14	2.46E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234414	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Alpha	3.80E-15	5.54E-15	9.15E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234414	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Beta	3.38E-15	1.28E-14	2.23E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234415	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Alpha	1.80E-15	4.88E-15	9.52E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD234415	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Beta	8.47E-15	1.38E-14	2.32E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241216	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Alpha	3.54E-15	4.85E-15	7.63E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241216	P6WH LOADOUT	04/13/21	Gross Alpha/Beta	Gross Beta	1.65E-14	1.40E-14	2.20E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241217	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Alpha	6.40E-15	5.80E-15	7.22E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241217	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Beta	5.95E-15	1.22E-14	2.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241218	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Alpha	-7.65E-16	2.24E-15	7.66E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241218	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Beta	1.65E-14	1.41E-14	2.21E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241219	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Alpha	9.29E-15	7.14E-15	7.95E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241219	P6WH LOADOUT	04/14/21	Gross Alpha/Beta	Gross Beta	1.94E-14	1.49E-14	2.29E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241220	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Alpha	9.33E-15	7.17E-15	7.98E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241220	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Beta	1.04E-14	1.39E-14	2.30E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241221	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Alpha	2.53E-15	4.46E-15	7.84E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241221	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Beta	2.51E-14	1.53E-14	2.26E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241222	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Alpha	2.40E-15	4.23E-15	7.43E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241222	P6WH LOADOUT	04/15/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.35E-14	2.14E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241223	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Alpha	3.24E-16	3.19E-15	7.87E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241223	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Beta	1.92E-14	1.47E-14	2.27E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241224	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Alpha	2.39E-15	4.21E-15	7.40E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241224	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Beta	1.03E-14	1.30E-14	2.13E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241225	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Alpha	3.60E-15	4.94E-15	7.77E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241225	P6WH LOADOUT	04/19/21	Gross Alpha/Beta	Gross Beta	1.45E-14	1.40E-14	2.24E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241226	P6WH LOADOUT	04/26/21	Gross Alpha/Beta	Gross Alpha	4.64E-15	5.33E-15	7.66E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241226	P6WH LOADOUT	04/26/21	Gross Alpha/Beta	Gross Beta	4.57E-14	1.71E-14	2.21E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241227	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Alpha	1.15E-14	7.79E-15	7.91E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241227	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Beta	4.87E-14	1.78E-14	2.28E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241228	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Alpha	2.33E-15	4.11E-15	7.22E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241228	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Beta	3.00E-14	1.48E-14	2.08E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241229	P6WH LOADOUT	04/21/21	Gross Alpha/Beta	Gross Alpha	3.39E-15	4.64E-15	7.31E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241229	P6WH LOADOUT	04/21/21	Gross Alpha/Beta	Gross Beta	3.17E-14	1.51E-14	2.10E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241230	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Alpha	4.70E-15	5.41E-15	7.77E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241230	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Beta	3.08E-14	1.58E-14	2.24E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241231	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Alpha	3.31E-16	3.27E-15	8.06E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241231	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Beta	1.35E-14	1.44E-14	2.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241232	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Alpha	2.44E-15	4.29E-15	7.54E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241232	P6WH LOADOUT	04/22/21	Gross Alpha/Beta	Gross Beta	2.85E-14	1.52E-14	2.17E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241233	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Alpha	2.37E-15	4.18E-15	7.34E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241233	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Beta	4.44E-14	1.64E-14	2.11E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241234	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Alpha	3.69E-15	5.05E-15	7.95E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241234	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Beta	3.60E-14	1.66E-14	2.29E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241235	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Alpha	2.47E-15	4.34E-15	7.63E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241235	P6WH LOADOUT	04/20/21	Gross Alpha/Beta	Gross Beta	3.97E-14	1.64E-14	2.20E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241236	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Alpha	5.26E-15	6.74E-15	1.06E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241236	P6WH LOADOUT	04/27/21	Gross Alpha/Beta	Gross Beta	3.48E-14	1.70E-14	2.39E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241237	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Alpha	1.54E-15	4.80E-15	9.55E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241237	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Beta	3.06E-14	1.52E-14	2.15E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241238	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Alpha	1.64E-15	5.11E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241238	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Beta	3.62E-14	1.66E-14	2.28E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241239	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Alpha	1.21E-14	8.71E-15	1.04E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241239	P6WH LOADOUT	04/28/21	Gross Alpha/Beta	Gross Beta	2.43E-14	1.56E-14	2.34E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241240	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Alpha	-5.83E-16	3.82E-15	9.72E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241240	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Beta	3.39E-14	1.58E-14	2.18E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241241	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Alpha	-1.82E-15	3.46E-15	1.06E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241241	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Beta	2.56E-14	1.61E-14	2.39E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241242	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Alpha	5.18E-16	4.61E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241242	P6WH LOADOUT	04/29/21	Gross Alpha/Beta	Gross Beta	2.31E-14	1.53E-14	2.29E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241243	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Alpha	3.63E-15	5.62E-15	9.47E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241243	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.34E-14	2.13E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241244	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Alpha	1.66E-15	5.18E-15	1.03E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241244	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Beta	1.59E-14	1.46E-14	2.31E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241245	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Alpha	5.98E-15	6.64E-15	9.89E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241245	P6WH LOADOUT	05/03/21	Gross Alpha/Beta	Gross Beta	2.38E-14	1.49E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241246	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Alpha	6.58E-15	6.51E-15	9.20E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241246	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Beta	3.47E-14	1.52E-14	2.07E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241247	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Alpha	2.69E-15	5.44E-15	9.89E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241247	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Beta	1.95E-14	1.45E-14	2.22E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241248	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Alpha	9.11E-15	7.54E-15	9.72E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241248	P6WH LOADOUT	05/04/21	Gross Alpha/Beta	Gross Beta	3.67E-14	1.61E-14	2.18E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241249	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Alpha	2.61E-15	5.27E-15	9.59E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241249	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Beta	1.89E-14	1.41E-14	2.16E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241250	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Alpha	3.82E-15	5.92E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241250	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Beta	2.04E-14	1.47E-14	2.24E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241251	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Alpha	3.82E-15	5.92E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241251	P6WH LOADOUT	05/05/21	Gross Alpha/Beta	Gross Beta	1.39E-14	1.40E-14	2.24E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241252	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Alpha	4.73E-16	4.20E-15	9.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241252	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Beta	1.37E-14	1.31E-14	2.09E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241253	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Alpha	1.61E-15	5.02E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241253	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Beta	3.48E-14	1.62E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241254	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Alpha	1.61E-15	5.02E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241254	P6WH LOADOUT	05/06/21	Gross Alpha/Beta	Gross Beta	3.55E-14	1.63E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241255	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Alpha	4.69E-16	4.17E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241255	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Beta	2.22E-14	1.40E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241256	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Alpha	7.81E-16	4.40E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241256	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Beta	2.22E-14	1.25E-14	1.74E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241257	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Alpha	3.37E-15	5.80E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241257	P6WH LOADOUT	05/10/21	Gross Alpha/Beta	Gross Beta	1.30E-14	1.15E-14	1.79E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241258	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Alpha	7.31E-16	4.12E-15	9.22E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241258	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Beta	1.87E-14	1.14E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241259	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Alpha	2.02E-15	5.04E-15	9.80E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241259	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Beta	1.85E-14	1.19E-14	1.73E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241260	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Alpha	3.25E-15	5.60E-15	9.76E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241260	P6WH LOADOUT	05/11/21	Gross Alpha/Beta	Gross Beta	3.00E-14	1.34E-14	1.72E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241261	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Alpha	1.87E-15	4.66E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241261	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Beta	6.24E-15	9.56E-15	1.60E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241262	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Alpha	3.22E-15	5.55E-15	9.67E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241262	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Beta	9.54E-15	1.06E-14	1.71E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241263	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Alpha	2.04E-15	5.08E-15	9.89E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241263	P6WH LOADOUT	05/12/21	Gross Alpha/Beta	Gross Beta	2.75E-14	1.32E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241264	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Alpha	7.28E-16	4.10E-15	9.18E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241264	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Beta	7.00E-15	9.78E-15	1.62E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241265	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Alpha	-1.70E-15	2.60E-15	9.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241265	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Beta	1.25E-14	1.11E-14	1.72E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241266	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Alpha	7.91E-16	4.46E-15	9.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241266	P6WH LOADOUT	05/13/21	Gross Alpha/Beta	Gross Beta	2.70E-14	1.32E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241267	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Alpha	3.11E-15	5.36E-15	9.34E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241267	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Beta	4.06E-14	1.42E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241268	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Alpha	5.70E-15	6.58E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241268	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Beta	3.43E-14	1.38E-14	1.71E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241269	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Alpha	3.26E-15	5.62E-15	9.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241269	P6WH LOADOUT	05/17/21	Gross Alpha/Beta	Gross Beta	1.55E-14	1.16E-14	1.73E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241209	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Alpha	4.26E-15	5.81E-15	9.26E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241270	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Beta	2.30E-14	1.20E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241270	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Alpha	3.24E-15	5.57E-15	9.71E-15	μCi/mL	ŪJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241271	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Beta	4.73E-14	1.53E-14	1.71E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241271 SLD241272	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Alpha	2.10E-15	5.23E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241272 SLD241272	P6WH LOADOUT	05/18/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.27E-14	1.79E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241272 SLD241273	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Alpha	4.30E-15	5.86E-15	9.34E-15	μCi/mL	IJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241273	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Beta	2.39E-14	1.22E-14	1.65E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241275 SLD241274	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Alpha	5.91E-15	6.83E-15	1.01E-14	μCi/mL	IJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241274 SLD241274	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Beta	2.88E-14	1.35E-14	1.78E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241274 SLD241275	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Alpha	8.06E-16	4.54E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241275	P6WH LOADOUT	05/19/21	Gross Alpha/Beta	Gross Beta	3.13E-14	1.39E-14	1.79E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241275 SLD241276	P6WH LOADOUT	05/20/21	Gross Alpha/Beta	Gross Alpha	9.40E-17	3.25E-15	8.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241276	P6WH LOADOUT	05/20/21	Gross Alpha/Beta	Gross Beta	2.47E-14	1.57E-14	2.35E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241270 SLD241277	P6WH LOADOUT	05/20/21	Gross Alpha/Beta	Gross Alpha	6.63E-15	6.21E-15	8.02E-15	μCi/mL μCi/mL	J UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241277 SLD241277	P6WH LOADOUT	05/20/21	Gross Alpha/Beta	Gross Beta	1.44E-14	1.42E-14	2.27E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241277 SLD241278	P6WH LOADOUT	05/20/21	1		6.40E-15	6.00E-15	7.74E-15	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241278 SLD241278	P6WH LOADOUT P6WH LOADOUT	05/20/21	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	0.40E-13 1.18E-14	1.35E-14	2.19E-14	μCi/mL μCi/mL	UJ	T04, 105 T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241278 SLD241279	P6WH LOADOUT	05/24/21	Gross Alpha/Beta	Gross Alpha	2.26E-15	4.39E-15	2.19E-14 7.98E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241279 SLD241279	P6WH LOADOUT P6WH LOADOUT	05/24/21	*	<u>,</u>	2.26E-13 2.68E-14		2.26E-14		UJ T		Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Beta		1.55E-14		μCi/mL	J	T04, T20	
SLD241280	P6WH LOADOUT	05/24/21	Gross Alpha/Beta	Gross Alpha	4.49E-15	5.43E-15	8.09E-15	μCi/mL	UJ _	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241280	P6WH LOADOUT	05/24/21	Gross Alpha/Beta	Gross Beta	3.61E-14	1.66E-14	2.29E-14	μCi/mL	=	TOC	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241281	P6WH LOADOUT	05/24/21	Gross Alpha/Beta	Gross Alpha	5.33E-15	5.59E-15	7.71E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241281	P6WH LOADOUT	05/24/21	Gross Alpha/Beta	Gross Beta	3.43E-14	1.58E-14	2.18E-14	µCi/mL	=	T 07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241282	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Alpha	4.47E-15	5.41E-15	8.05E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241282	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Beta	2.48E-14	1.54E-14	2.28E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241283	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Alpha	1.18E-15	3.83E-15	8.02E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241283	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Beta	2.47E-14	1.53E-14	2.27E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241284	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Alpha	3.16E-15	4.63E-15	7.54E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241284	P6WH LOADOUT	05/25/21	Gross Alpha/Beta	Gross Beta	2.19E-14	1.43E-14	2.14E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241285	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Alpha	5.57E-15	5.84E-15	8.05E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241285	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Beta	2.11E-14	1.50E-14	2.28E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241286	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Alpha	2.22E-15	4.31E-15	7.84E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241286	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Beta	3.64E-14	1.62E-14	2.22E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241287	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Alpha	7.17E-15	6.12E-15	7.45E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241287	P6WH LOADOUT	05/26/21	Gross Alpha/Beta	Gross Beta	1.41E-14	1.33E-14	2.11E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241288	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Alpha	1.24E-15	4.01E-15	8.39E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241288	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Beta	2.74E-14	1.62E-14	2.38E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241289	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Alpha	-1.01E-15	2.30E-15	8.13E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241289	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Beta	1.91E-14	1.49E-14	2.30E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241290	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Alpha	1.13E-15	3.65E-15	7.64E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241290	P6WH LOADOUT	05/27/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.44E-14	2.17E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241291	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Alpha	4.55E-15	6.22E-15	1.00E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241291	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Beta	3.74E-14	1.68E-14	2.28E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241292	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Alpha	5.53E-15	6.43E-15	9.68E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241292	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Beta	3.03E-14	1.56E-14	2.21E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241293	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Alpha	4.18E-15	5.71E-15	9.18E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241293	P6WH LOADOUT	06/01/21	Gross Alpha/Beta	Gross Beta	5.66E-14	1.76E-14	2.09E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241294	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Alpha	6.75E-15	6.92E-15	9.82E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241294	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Beta	4.49E-14	1.73E-14	2.24E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241295	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Alpha	6.60E-15	6.76E-15	9.60E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241295	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Beta	4.24E-14	1.67E-14	2.19E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241296	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Alpha	5.16E-15	6.00E-15	9.03E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241296	P6WH LOADOUT	06/02/21	Gross Alpha/Beta	Gross Beta	6.79E-14	1.85E-14	2.06E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241297	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Alpha	8.52E-15	7.21E-15	9.26E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241297	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Beta	4.59E-14	1.67E-14	2.11E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241298	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Alpha	6.78E-15	6.95E-15	9.86E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241298	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Beta	5.11E-14	1.80E-14	2.25E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241299	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Alpha	5.69E-15	6.61E-15	9.95E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241299	P6WH LOADOUT	06/03/21	Gross Alpha/Beta	Gross Beta	5.91E-14	1.89E-14	2.27E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241300	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Alpha	3.77E-15	5.15E-15	8.29E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241300	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Beta	2.16E-14	1.29E-14	1.89E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241301	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Alpha	1.89E-15	4.47E-15	8.49E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241301	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Beta	2.02E-14	1.30E-14	1.94E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241302	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Alpha	-8.20E-17	3.49E-15	8.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241302	P6WH LOADOUT	06/07/21	Gross Alpha/Beta	Gross Beta	1.63E-14	1.26E-14	1.94E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241303	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Alpha	7.17E-15	6.62E-15	8.91E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241303	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Beta	2.19E-14	1.37E-14	2.03E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241304	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Alpha	-9.20E-17	3.91E-15	9.51E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241304	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Beta	1.97E-14	1.43E-14	2.17E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241305	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Alpha	5.32E-15	6.18E-15	9.30E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241305	P6WH LOADOUT	06/08/21	Gross Alpha/Beta	Gross Beta	1.15E-14	1.31E-14	2.12E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241306	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Alpha	5.44E-15	6.32E-15	9.51E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241306	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Beta	3.48E-14	1.59E-14	2.17E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241307	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Alpha	9.96E-16	4.41E-15	9.34E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241307	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Beta	3.71E-14	1.59E-14	2.13E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241308	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Alpha	8.20E-15	6.94E-15	8.91E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241308	P6WH LOADOUT	06/09/21	Gross Alpha/Beta	Gross Beta	4.14E-14	1.58E-14	2.03E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241309	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Alpha	-1.24E-15	3.33E-15	9.82E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241309	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Beta	5.48E-15	1.30E-14	2.24E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241310	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Alpha	5.36E-15	6.23E-15	9.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241310	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Beta	1.24E-14	1.33E-14	2.14E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241311	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Alpha	-4.37E-16	3.04E-15	8.32E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241311	P6WH LOADOUT	06/10/21	Gross Alpha/Beta	Gross Beta	1.15E-14	1.31E-14	2.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241312	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Alpha	8.09E-15	6.81E-15	8.46E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241312	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Beta	2.36E-14	1.46E-14	2.17E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241313	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Alpha	4.02E-15	5.54E-15	8.88E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241313	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Beta	2.11E-14	1.50E-14	2.28E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241314	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Alpha	7.34E-15	6.75E-15	8.84E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241314	P6WH LOADOUT	06/14/21	Gross Alpha/Beta	Gross Beta	4.35E-14	1.72E-14	2.27E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241315	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Alpha	4.61E-15	5.38E-15	7.98E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241315	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Beta	2.68E-14	1.43E-14	2.05E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241316	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Alpha	2.77E-15	4.85E-15	8.50E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241316	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Beta	2.23E-14	1.46E-14	2.18E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241317	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Alpha	4.87E-15	5.68E-15	8.42E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241317	P6WH LOADOUT	06/15/21	Gross Alpha/Beta	Gross Beta	2.14E-14	1.44E-14	2.16E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241318	P6WH LOADOUT	06/16/21	Gross Alpha/Beta	Gross Alpha	5.00E-15	5.83E-15	8.65E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241318	P6WH LOADOUT	06/16/21	Gross Alpha/Beta	Gross Beta	3.76E-14	1.63E-14	2.22E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241319	P6WH LOADOUT	06/16/21	Gross Alpha/Beta	Gross Alpha	5.09E-15	5.93E-15	8.80E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241319	P6WH LOADOUT	06/16/21	Gross Alpha/Beta	Gross Beta	3.75E-14	1.66E-14	2.26E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241320	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Alpha	1.92E-14	9.89E-15	8.65E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241320	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Beta	4.33E-14	1.69E-14	2.22E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241321	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Alpha	1.23E-14	8.04E-15	8.42E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241321	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Beta	4.70E-14	1.69E-14	2.16E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241322	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Alpha	1.30E-14	8.51E-15	8.92E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241322	P6WH LOADOUT	06/17/21	Gross Alpha/Beta	Gross Beta	4.17E-14	1.71E-14	2.29E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241323	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Alpha	1.95E-14	9.75E-15	8.32E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241323	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Beta	2.93E-14	1.50E-14	2.13E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241324	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Alpha	1.18E-14	8.12E-15	8.84E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241324	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Beta	3.70E-14	1.66E-14	2.27E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241325	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Alpha	1.09E-14	7.98E-15	9.05E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241325	P6WH LOADOUT	06/21/21	Gross Alpha/Beta	Gross Beta	3.71E-14	1.69E-14	2.32E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241326	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Alpha	6.09E-16	3.68E-15	8.28E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241326	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Beta	1.49E-14	1.35E-14	2.13E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241327	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Alpha	5.04E-15	5.88E-15	8.72E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241327	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Beta	2.00E-14	1.46E-14	2.24E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241328	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Alpha	2.84E-15	4.98E-15	8.72E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241328	P6WH LOADOUT	06/22/21	Gross Alpha/Beta	Gross Beta	1.71E-14	1.43E-14	2.24E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241329	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Alpha	7.28E-15	6.69E-15	8.76E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241329	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Beta	2.58E-14	1.53E-14	2.25E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241330	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Alpha	3.79E-15	5.24E-15	8.39E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241330	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Beta	3.09E-14	1.53E-14	2.15E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241331	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Alpha	3.17E-15	4.57E-15	7.40E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241331	P6WH LOADOUT	06/23/21	Gross Alpha/Beta	Gross Beta	1.28E-14	1.31E-14	2.09E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241332	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Alpha	4.58E-15	5.48E-15	8.11E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241332	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Beta	4.55E-14	1.76E-14	2.30E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241333	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Alpha	3.35E-15	4.83E-15	7.82E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241333	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Beta	3.31E-14	1.59E-14	2.21E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241334	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Alpha	6.26E-15	5.82E-15	7.46E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241334	P6WH LOADOUT	06/24/21	Gross Alpha/Beta	Gross Beta	2.74E-14	1.47E-14	2.11E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241335	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Alpha	1.36E-16	3.14E-15	7.96E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241335	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Beta	1.75E-14	1.45E-14	2.25E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241336	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Alpha	7.87E-15	6.68E-15	8.07E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241336	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Beta	2.22E-14	1.51E-14	2.28E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241337	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Alpha	5.35E-15	5.56E-15	7.62E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241337	P6WH LOADOUT	06/28/21	Gross Alpha/Beta	Gross Beta	3.43E-14	1.57E-14	2.16E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241338	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Alpha	6.26E-15	5.82E-15	7.46E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241338	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Beta	2.05E-14	1.40E-14	2.11E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241339	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Alpha	2.23E-15	4.23E-15	7.65E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241339	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Beta	2.25E-14	1.45E-14	2.17E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241340	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Alpha	3.44E-15	4.96E-15	8.03E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241340	P6WH LOADOUT	06/29/21	Gross Alpha/Beta	Gross Beta	2.21E-14	1.51E-14	2.27E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241341	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Alpha	1.25E-15	3.90E-15	8.11E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241341	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Beta	1.03E-14	1.39E-14	2.30E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241342	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Alpha	3.35E-15	4.83E-15	7.82E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241342	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Beta	2.95E-14	1.55E-14	2.21E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241343	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Alpha	8.44E-15	6.62E-15	7.59E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241343	P6WH LOADOUT	06/30/21	Gross Alpha/Beta	Gross Beta	2.44E-14	1.46E-14	2.15E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241344	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Alpha	1.93E-15	3.67E-15	6.62E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241344	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Beta	1.58E-14	1.22E-14	1.88E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241345	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Alpha	6.10E-15	5.17E-15	6.25E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241345	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Beta	9.70E-15	1.09E-14	1.77E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241346	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Alpha	1.94E-15	3.69E-15	6.67E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241346	P6WH LOADOUT	07/01/21	Gross Alpha/Beta	Gross Beta	7.89E-15	1.14E-14	1.89E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241347	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Alpha	2.73E-15	4.41E-15	7.52E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241347	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Beta	3.47E-14	1.19E-14	1.37E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241348	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Alpha	7.86E-15	6.44E-15	7.76E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241348	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Beta	2.58E-14	1.11E-14	1.42E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241349	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Alpha	2.73E-15	4.41E-15	7.52E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241349	P6WH LOADOUT	07/06/21	Gross Alpha/Beta	Gross Beta	3.93E-14	1.24E-14	1.37E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241350	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Alpha	7.14E-15	7.03E-15	9.49E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241350	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Beta	4.60E-14	1.53E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241351	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Alpha	5.42E-15	6.04E-15	8.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241351	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Beta	3.16E-14	1.28E-14	1.59E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241352	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Alpha	9.26E-16	4.12E-15	9.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241352	P6WH LOADOUT	07/07/21	Gross Alpha/Beta	Gross Beta	4.37E-14	1.45E-14	1.64E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241353	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Alpha	-2.64E-16	3.66E-15	9.75E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241353	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Beta	5.47E-14	1.65E-14	1.78E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241354	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Alpha	2.26E-15	5.10E-15	9.70E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241354	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Beta	3.82E-14	1.46E-14	1.77E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241355	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Alpha	1.53E-14	9.36E-15	9.20E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241355	P6WH LOADOUT	07/08/21	Gross Alpha/Beta	Gross Beta	4.60E-14	1.50E-14	1.68E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241356	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Alpha	3.47E-15	5.62E-15	9.57E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241356	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Beta	1.35E-14	1.14E-14	1.75E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241357	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Alpha	3.47E-15	5.62E-15	9.57E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241357	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Beta	5.67E-14	1.65E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241358	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Alpha	5.65E-15	6.30E-15	9.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241358	P6WH LOADOUT	07/12/21	Gross Alpha/Beta	Gross Beta	4.48E-14	1.47E-14	1.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241359	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Alpha	1.20E-14	8.58E-15	9.44E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241359	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Beta	3.14E-14	1.35E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241360	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Alpha	4.55E-15	5.94E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241360	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Beta	2.22E-14	1.22E-14	1.68E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241361	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Alpha	-2.41E-16	3.34E-15	8.89E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241361	P6WH LOADOUT	07/13/21	Gross Alpha/Beta	Gross Beta	2.82E-14	1.26E-14	1.62E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241362	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.00E-15	9.20E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241362	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Beta	3.90E-14	1.42E-14	1.68E-14	μCi/mL	=	101, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241362 SLD241363	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Alpha	5.93E-15	6.61E-15	9.53E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241363	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Beta	4.19E-14	1.48E-14	1.74E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241363 SLD241364	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Alpha	7.85E-15	6.99E-15	8.89E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241364	P6WH LOADOUT	07/14/21	Gross Alpha/Beta	Gross Beta	3.16E-14	1.30E-14	1.62E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241365	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Alpha	2.14E-14	1.12E-14	9.79E-15	μCi/mL	T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241365	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Beta	3.33E-14	1.41E-14	1.79E-14	μCi/mL μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241365 SLD241366	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Alpha	3.47E-15	5.62E-15	9.57E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241366	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Beta	2.23E-14	1.25E-14	9.37E-13 1.75E-14	μCi/mL μCi/mL	UJ I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241300 SLD241367	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Alpha	4.58E-15	6.26E-15	1.01E-14	μCi/mL μCi/mL	J UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241367 SLD241367	P6WH LOADOUT	07/15/21	Gross Alpha/Beta	Gross Beta	2.43E-15	1.20E-14	1.61E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241367 SLD241368	P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Alpha	2.43E-14 2.28E-15	5.39E-15	1.01E-14	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241368	P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Beta	2.28E-15 2.54E-14	1.23E-14	1.64E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241368 SLD241369	P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Alpha	2.34E-14 2.29E-15	5.42E-15	1.04E-14 1.03E-14	μCi/mL μCi/mL	– UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241369 SLD241369	P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Beta	2.29E-13 2.83E-14	1.27E-14	1.64E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241309 SLD241370	P6WH LOADOUT		*		2.83E-14 2.15E-15		9.66E-15	μCi/mL μCi/mL	– UJ	T06	
SLD241370 SLD241370	P6WH LOADOUT P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Alpha		5.09E-15			=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	07/19/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.20E-14	1.54E-14	μCi/mL		T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241371		07/20/21	Gross Alpha/Beta	Gross Alpha	4.85E-15	6.62E-15	1.07E-14	μCi/mL	UJ		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241371	P6WH LOADOUT	07/20/21	Gross Alpha/Beta	Gross Beta	2.28E-14	1.24E-14	1.70E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241372	P6WH LOADOUT	07/20/21	Gross Alpha/Beta	Gross Alpha	4.70E-15	6.42E-15	1.03E-14	μCi/mL	UJ _	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241372	P6WH LOADOUT	07/20/21	Gross Alpha/Beta	Gross Beta	3.98E-14	1.41E-14	1.65E-14	μCi/mL	=	T 07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241373	P6WH LOADOUT	07/20/21	Gross Alpha/Beta	Gross Alpha	3.38E-15	5.75E-15	9.98E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241373	P6WH LOADOUT	07/20/21	Gross Alpha/Beta	Gross Beta	4.46E-14	1.44E-14	1.59E-14	µCi/mL	=	T04 T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241374	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Alpha	8.56E-15	7.91E-15	1.07E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241374	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Beta	3.81E-14	1.43E-14	1.70E-14	µCi/mL	=	T 0 (Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241375	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Alpha	6.17E-15	7.17E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241375	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Beta	5.49E-14	1.63E-14	1.72E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241376	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Alpha	1.12E-15	4.97E-15	1.05E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241376	P6WH LOADOUT	07/21/21	Gross Alpha/Beta	Gross Beta	3.40E-14	1.36E-14	1.68E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241377	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Alpha	7.46E-15	7.64E-15	1.08E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241377	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Beta	4.55E-14	1.53E-14	1.73E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241378	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Alpha	6.09E-15	7.07E-15	1.07E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241378	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Beta	5.19E-14	1.58E-14	1.70E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241379	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Alpha	1.51E-14	9.43E-15	1.00E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241379	P6WH LOADOUT	07/22/21	Gross Alpha/Beta	Gross Beta	6.81E-14	1.70E-14	1.60E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241380	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Alpha	1.19E-14	8.71E-15	1.03E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241380	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Beta	3.19E-14	1.32E-14	1.64E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241381	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Alpha	1.08E-14	8.44E-15	1.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241381	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Beta	4.49E-14	1.48E-14	1.66E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241382	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Alpha	-9.50E-17	4.04E-15	9.82E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241382	P6WH LOADOUT	07/26/21	Gross Alpha/Beta	Gross Beta	4.59E-14	1.44E-14	1.57E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241383	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Alpha	4.47E-15	6.10E-15	9.82E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241383	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Beta	5.06E-14	1.49E-14	1.57E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241384	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Alpha	7.13E-15	7.31E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241384	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Beta	4.70E-14	1.50E-14	1.66E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241385	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Alpha	7.29E-15	7.47E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241385	P6WH LOADOUT	07/27/21	Gross Alpha/Beta	Gross Beta	3.72E-14	1.41E-14	1.69E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241386	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Alpha	6.78E-15	6.94E-15	9.86E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241386	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Beta	5.28E-14	1.52E-14	1.58E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241387	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Alpha	1.34E-14	8.59E-15	8.31E-15	μCi/mL	T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241387 SLD241387	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Beta	3.53E-14	1.35E-14	1.63E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241387	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.79E-15	8.60E-15	μCi/mL	T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241388	P6WH LOADOUT	07/28/21	Gross Alpha/Beta	Gross Beta	4.01E-14	1.44E-14	1.69E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241389	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Alpha	4.24E-15	5.74E-15	8.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241389 SLD241389	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Beta	5.15E-14	1.61E-14	1.76E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241389 SLD241390	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Alpha	1.38E-14	8.86E-15	8.56E-15	μCi/mL μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241390 SLD241390	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Beta	7.29E-14	1.79E-14	1.68E-14	μCi/mL μCi/mL]	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241390 SLD241391	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Alpha	6.06E-15	6.06E-15	8.00E-14	μCi/mL μCi/mL	U -		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241391 SLD241391	P6WH LOADOUT	07/29/21	Gross Alpha/Beta	Gross Beta	6.01E-14	1.59E-14	1.57E-14	μCi/mL μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241391 SLD241392	P6WH LOADOUT	08/02/21	Gross Alpha/Beta	Gross Alpha	8.17E-15	6.74E-15	7.84E-15	μCi/mL μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241392 SLD241392	P6WH LOADOUT	08/02/21	Gross Alpha/Beta	Gross Beta	2.15E-14	1.13E-14	1.54E-13	μCi/mL μCi/mL	J	T04, T20 T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241392 SLD241393	P6WH LOADOUT	08/02/21	Gross Alpha/Beta	Gross Alpha	2.13E-14 2.77E-15	4.79E-15	8.34E-14	μCi/mL μCi/mL	J UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241393 SLD241393				,				μCi/mL μCi/mL	=	100	
	P6WH LOADOUT P6WH LOADOUT	08/02/21	Gross Alpha/Beta	Gross Beta	2.64E-14	1.25E-14 6.01E-15	1.64E-14	•	– UJ	Τ06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241394		08/02/21	Gross Alpha/Beta	Gross Alpha	5.27E-15		8.56E-15	µCi/mL	UJ T	T06	
SLD241394	P6WH LOADOUT	08/02/21	Gross Alpha/Beta	Gross Beta	2.21E-14	1.22E-14	1.68E-14	µCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241395	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Alpha	1.50E-15	3.94E-15	7.91E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241395	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Beta	8.46E-15	9.61E-15	1.55E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241396	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Alpha	5.01E-15	5.71E-15	8.14E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241396	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Beta	2.57E-14	1.21E-14	1.60E-14	µCi/mL	=	T07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241397	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Alpha	4.02E-16	3.47E-15	8.49E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241397	P6WH LOADOUT	08/03/21	Gross Alpha/Beta	Gross Beta	2.12E-14	1.20E-14	1.67E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241398	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Alpha	1.42E-14	8.70E-15	8.10E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241398	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Beta	2.63E-14	1.22E-14	1.59E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241399	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Alpha	6.46E-15	6.46E-15	8.53E-15	µCi/mL	U		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241399	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Beta	2.98E-14	1.31E-14	1.67E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241400	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Alpha	4.24E-15	5.74E-15	8.96E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241400	P6WH LOADOUT	08/04/21	Gross Alpha/Beta	Gross Beta	2.98E-14	1.36E-14	1.76E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241401	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Alpha	9.08E-15	7.49E-15	8.72E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241401	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Beta	3.99E-14	1.45E-14	1.71E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241402	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Alpha	2.85E-15	4.93E-15	8.60E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241402	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Beta	8.33E-14	1.90E-14	1.69E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241403	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Alpha	9.59E-15	7.34E-15	8.10E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241403	P6WH LOADOUT	08/05/21	Gross Alpha/Beta	Gross Beta	3.51E-14	1.32E-14	1.59E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241404	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Alpha	4.12E-15	4.93E-15	7.29E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241404	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Beta	1.64E-16	8.46E-15	1.57E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241405	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Alpha	1.33E-16	3.06E-15	7.76E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241405	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Beta	2.53E-14	1.25E-14	1.67E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241406	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Alpha	6.65E-15	6.19E-15	7.93E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241406	P6WH LOADOUT	08/09/21	Gross Alpha/Beta	Gross Beta	1.52E-14	1.14E-14	1.70E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241407	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Alpha	3.25E-15	4.69E-15	7.60E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241407	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Beta	2.48E-14	1.22E-14	1.63E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241408	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Alpha	1.33E-14	8.28E-15	8.00E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241408	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Beta	1.10E-14	1.09E-14	1.72E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241409	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Alpha	9.18E-15	7.21E-15	8.25E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241409	P6WH LOADOUT	08/10/21	Gross Alpha/Beta	Gross Beta	1.65E-14	1.19E-14	1.77E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241410	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Alpha	4.12E-15	4.93E-15	7.29E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241410	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Beta	2.64E-14	1.20E-14	1.57E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241411	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Alpha	1.60E-14	8.83E-15	7.73E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241411	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Beta	3.01E-14	1.30E-14	1.66E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241412	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Alpha	1.11E-14	7.69E-15	8.03E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241412	P6WH LOADOUT	08/11/21	Gross Alpha/Beta	Gross Beta	3.63E-14	1.41E-14	1.73E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241413	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Alpha	1.18E-14	7.70E-15	7.73E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241413	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.26E-14	1.66E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241414	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Alpha	6.19E-15	5.76E-15	7.38E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241414	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Beta	2.61E-14	1.21E-14	1.59E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241415	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Alpha	3.44E-15	4.96E-15	8.03E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241415	P6WH LOADOUT	08/12/21	Gross Alpha/Beta	Gross Beta	2.55E-14	1.28E-14	1.73E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241416	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Alpha	9.00E-15	6.60E-15	7.21E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241416	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Beta	3.84E-14	1.33E-14	1.55E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241417	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Alpha	5.35E-15	5.57E-15	7.63E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241417	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Beta	3.04E-14	1.29E-14	1.64E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241418	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Alpha	6.62E-15	6.16E-15	7.89E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241418	P6WH LOADOUT	08/16/21	Gross Alpha/Beta	Gross Beta	4.42E-14	1.48E-14	1.70E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241419	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Alpha	6.19E-15	5.76E-15	7.38E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241419	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Beta	3.20E-14	1.28E-14	1.59E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241420	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Alpha	8.86E-15	6.96E-15	7.96E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241420	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Beta	3.81E-14	1.42E-14	1.71E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241421	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Alpha	4.64E-15	5.56E-15	8.22E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241421	P6WH LOADOUT	08/17/21	Gross Alpha/Beta	Gross Beta	4.89E-14	1.58E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241422	P6WH LOADOUT	08/18/21	Gross Alpha/Beta	Gross Alpha	1.33E-14	7.94E-15	7.41E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241422	P6WH LOADOUT	08/18/21	Gross Alpha/Beta	Gross Beta	5.75E-14	1.57E-14	1.59E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241423	P6WH LOADOUT	08/18/21	Gross Alpha/Beta	Gross Alpha	9.95E-15	7.30E-15	7.96E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

SLD21423 PWHLOADOUT 08/3821 Gross Appla-Part 50/0614 1.72/1-16 4.72/1-16	vent Name	Sampling Event	Validation Reason Code	VQ	Units	DL	Measurement Error	Analytical Result	Analyte Name	Method Type	Sample Collection Date	Station Name	Sample Name
Std22442 PWH LOADOLT 08/1921 Goos Alpha Orgon Long 1/34L-14 2/21L-14 L/27L-14 U 106 Pland WH LOADOUT (General Aces) StD24425 PWH LOADOLT 08/1921 Goos Alpha AO2E-15 6.22E-15 1.05E-14 L/27L-14	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation		=	µCi/mL	1.71E-14	1.62E-14	5.60E-14	Gross Beta	Gross Alpha/Beta	08/18/21	P6WH LOADOUT	SLD241423
StD241425 POWH LOADOUT 08/19/21 Gross Aplan Annu 40/81-15 C. 6278-15 1.085-14 pC/mil. U. PTMC Phmt WH LOADOUT OR(19/21) Gross Aplan Annu SLD241426 POWH LOADOUT 08/19/21 Gross Aplan Annu Gross Aplan Annu SA32-15 1.081-14 µCrmL U. T06 Phmt WH LOADOUT 08/19/21 Gross Aplan Annu SA37E-14 1.551-14 µCrmL U. T06 Phmt WH LOADOUT 08/19/21 Gross Aplan Annu SA37E-14 1.551-14 µCrmL U. T06 Phmt WH LOADOUT 08/19/21 Gross Aplan Annu Z-37E-14 1.406-14 2.406-14 µCrmL U. T06 Phmt WH LOADOUT 08/2321 Gross Aplan Annu Z-37E-14 1.406-14 µCrmL µCrmL U. T06 Phmt WH LOADOUT 08/2321 Gross Aplan Annu Z-37E-14 1.406-14 µCrmL µCrmL U. T06 Phmt WH LOADOUT 08/2321 Gross Aplan Annu Z-37E-14 1.406-14 µCrmL µCrmL U. T06 Phmt WH LOADOUT 0	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	1.05E-14	4.97E-15	7.73E-16	Gross Alpha	Gross Alpha/Beta	08/18/21	P6WH LOADOUT	SLD241424
SLD241425 PfWII LOADOUT 08/19/21 Gross Alpha Rea 2372:14 1.53:14 2.20:14 pCrmL 10 The Plant 6WI LOADOUT (Gross Alpha Rea SLD241426 P6WII LOADOUT 08/19/21 Gross Alpha Rea Gross Alpha 12 5.53:14 1.53:14 2.21:14 pCrmL 10 The Plant 6WI LOADOUT 08/19/21 Gross Alpha 2 Gross Alpha 2 pCrmL 10 The Plant 6WI LOADOUT 08/19/21 Gross Alpha 2 Gross Alpha 2 pCrmL 10 The Plant 6WI LOADOUT 08/19/21 Gross Alpha 2 Gross Alpha 2 Gross Alpha 2 Gross Alpha 2 PGWI LOADOUT 08/27/21 Gross Alpha 2 Gross A	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	2.21E-14	1.34E-14	9.68E-15	Gross Beta	Gross Alpha/Beta	08/18/21	P6WH LOADOUT	SLD241424
StD241426 P6WH10ADOIT 081921 Gross AlphaBeta Gross Alpha 1.857 4.217.14. LCTimL TO Plant fWH10ADOIT Gross AlphaBeta Gross AlphaBeta 2.337.14 1.557.14. 2.217.14. LCTimL TO Plant fWH10ADOIT Gross AlphaBeta Gross AlphaBeta 2.337.15 5.407.15 9.737.15 LCTimL U TO6 Plant fWH10ADOIT Gross AlphaBeta Gross AlphaBeta 2.337.15 1.307.16 Plant fWH10ADOIT Offerent Asaph SLD241428 P6WH110ADOUT 082321 Gross AlphaBeta Gross Alpha 7.137.15 1.037.14 U TO4, TO Plant fWH10ADOUT Plant fWH10ADOUT 082321 Gross AlphaBeta Gross Alpha 7.137.15 1.037.14 U TO4, TO Plant fWH10ADOUT 082321 Gross AlphaBeta Gross AlphaBeta Gross AlphaBeta 1.037.14 1.011.14 1.011.14 2.017.14 MCTimL U Plant fWH10ADOUT 082321 Gross AlphaBeta Gross AlphaBeta Gross AlphaBeta 1.037.14 1.037.14 1.037.14 1.037.14 1.037.14 1.01	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	1.05E-14	6.22E-15	4.03E-15	Gross Alpha	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241425
StD24426 P6WILL0ADOUT 08/19/21 Gross Alpha/Beu Gross Alpha/Beu 273E-14 153E-14 127L 174 720 Phain 6WILL0ADOUT Gross Alpha/Beu 273E-15 153E-14 127L 112 127L	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T20	J	µCi/mL	2.20E-14	1.53E-14	2.87E-14	Gross Beta	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241425
StD241427 P0WH LOADOUT 08/19/21 Gross Alpha/Bea Gross Alpha 2.72:1-5 5.40:1-5 9.72:1-5 µCVanL U T06 Plant 6WH LOADOUT Gross Alpha/Bea Gross Alpha Gross Alpha Alpha Alpha-1 J. TTM-120 Plant 6WH LOADOUT Gross Alpha/Bea Gross Alpha	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	1.05E-14	5.43E-15	1.86E-15	Gross Alpha	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241426
S1D241427 P0WH L0ADOUT 08/19/21 Gross Alpha/Bea Gross Alpha 713E-15 713E-15 103E-14 p2/14 P1/14 P1/14 <td>eneral Area)-Perimeter A</td> <td>Plant 6WH LOADOUT (Generation</td> <td>T04, T20</td> <td>J</td> <td>µCi/mL</td> <td>2.21E-14</td> <td>1.55E-14</td> <td>3.03E-14</td> <td>Gross Beta</td> <td>Gross Alpha/Beta</td> <td>08/19/21</td> <td>P6WH LOADOUT</td> <td>SLD241426</td>	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T20	J	µCi/mL	2.21E-14	1.55E-14	3.03E-14	Gross Beta	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241426
StD21428 PeWH LOADOUT 982321 Gross Alpha/Bath Gros	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	9.73E-15	5.40E-15	2.73E-15	Gross Alpha	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241427
S1D241428 P6WH LOADOUT 08/321 Gross AphpuReta Gross Reta 1.318-14 1.218-14 pC/min. UJ T04, T05 Plant 6WH LOADOUT 08/321 S1D241439 P6WH LOADOUT 08/3221 Gross AphpuReta Gross AphpuRet	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T20	J	µCi/mL	2.04E-14	1.40E-14	2.47E-14	Gross Beta	Gross Alpha/Beta	08/19/21	P6WH LOADOUT	SLD241427
St.D214129 P6WH LOADOUT 08/321 Gross Alpha/Beta Gro	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T05	UJ	µCi/mL	1.03E-14	7.13E-15	7.13E-15	Gross Alpha	Gross Alpha/Beta	08/23/21	P6WH LOADOUT	SLD241428
StD241429 P6WH LOADOUT 082321 Gross Alpha/Bea Gross Alpha 3.15F-14 L.23F-14 µCriml J T T04, T20 Plant 6WH LOADOUT SLD241430 P6WH LOADOUT 082321 Gross Alpha/Bea Gross Alpha 3.63F-14 1.76F-14 µCriml = Plant 6WH LOADOUT Gross Alpha/Bea SLD241431 P6WH LOADOUT 082421 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Reta Gross Alpha/Reta Gross Alpha/Reta To3F-14 1.33F-14 µCriml = Plant 6WH LOADOUT (Gross Alpha/Reta Gross Alpha	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T05	UJ	µCi/mL	2.15E-14	1.41E-14	1.98E-14	Gross Beta	Gross Alpha/Beta	08/23/21	P6WH LOADOUT	SLD241428
StD241430 P6WH LOADOUT 0982321 Gross Alpha/Beta Gross Alpha 452E-15 6.98E-15 1.18E-14 µC/mL U T06 Plant 6WH LOADOUT Gross Alpha/Beta SLD241431 P6WH LOADOUT 082321 Gross Alpha/Beta Gross Alpha 1.23E-14 9.02E-15 1.11E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (Gross Alpha/Beta Gross Alpha 1.23E-14 9.02E-15 1.11E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (Gross Alpha/Beta Gross Alpha 7.67E-15 6.67E-15 9.67E-15 9.	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	1.10E-14	6.51E-15	4.21E-15	Gross Alpha	Gross Alpha/Beta	08/23/21	P6WH LOADOUT	SLD241429
SLD241430 P6WH LOADOUT 08/23/21 Gross Alpha/Beta Gross Alpha 2.63E4 1.76E-14 2.47E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241431 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.23E-14 9.02E-15 1.11E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241432 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 7.57E-15 6.97E-15 9.61E-15 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241432 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 8.87E-15 1.03E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 1.76E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/22/21 Gross Alpha/Beta Gross Alpha 1.35E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241434 P6WH LOADOUT 08/25/21 <t< td=""><td>eneral Area)-Perimeter A</td><td>Plant 6WH LOADOUT (Generation</td><td>T04, T20</td><td>J</td><td>µCi/mL</td><td>2.30E-14</td><td>1.62E-14</td><td>3.15E-14</td><td>Gross Beta</td><td>-</td><td>08/23/21</td><td>P6WH LOADOUT</td><td>SLD241429</td></t<>	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T20	J	µCi/mL	2.30E-14	1.62E-14	3.15E-14	Gross Beta	-	08/23/21	P6WH LOADOUT	SLD241429
SLD241430 P6WH LOADOUT 08/23/21 Gross Alpha/Beta Gross Alpha 2.63E4 1.76E-14 2.47E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241431 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.23E-14 9.02E-15 1.11E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241432 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 7.57E-15 6.97E-15 9.61E-15 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241432 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 8.87E-15 1.03E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 1.76E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/22/21 Gross Alpha/Beta Gross Alpha 1.35E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241434 P6WH LOADOUT 08/25/21 <t< td=""><td>eneral Area)-Perimeter A</td><td>Plant 6WH LOADOUT (Generation</td><td>T06</td><td>UJ</td><td>µCi/mL</td><td>1.18E-14</td><td>6.99E-15</td><td>4.52E-15</td><td>Gross Alpha</td><td>Gross Alpha/Beta</td><td>08/23/21</td><td>P6WH LOADOUT</td><td>SLD241430</td></t<>	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ	µCi/mL	1.18E-14	6.99E-15	4.52E-15	Gross Alpha	Gross Alpha/Beta	08/23/21	P6WH LOADOUT	SLD241430
SLD241431P6WH LOADOUT08/24/21Gross Alpha/BetaGross Beta5.07E-141.83E-142.33E-14 μ CimL=Plant 6WH LOADOUT General Area, PSLD241432P6WH LOADOUT08/24/21Gross Alpha/BetaGross NetaAsbjta7.67E-156.01E-15 μ CimL=Plant 6WH LOADOUT General Area, PSLD241432P6WH LOADOUT08/24/21Gross Alpha/BetaGross Neta1.35E-148.87E-151.03E-14 μ CimLJT04, T20Plant 6WH LOADOUT General Area, PSLD241433P6WH LOADOUT08/24/21Gross Alpha/BetaGross Alpha3.22E-156.38E-151.15E-14 μ CimLJT04, T20Plant 6WH LOADOUT General Area, PSLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Reta4.00E-141.77E-142.15E-14 μ CimLUJT06Plant 6WH LOADOUT General Area, PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Reta4.00E-141.77E-142.41E-14 μ CimL=Plant 6WH LOADOUT General Area, PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-159.81E-159.1E-14 μ CimL=Plant 6WH LOADOUT General Area, PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha4.05E-141.05E-14 μ CimL=Plant 6WH LOADOUT General Area, PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Reta4.62E-141.05E-14 μ CimL=Plant 6WH LOADO	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation		=	µCi/mL	2.47E-14	1.76E-14	3.63E-14	Gross Beta	Gross Alpha/Beta	08/23/21	P6WH LOADOUT	SLD241430
SLD241432 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 7.67L-15 6.97L-15 9.61E-15 µC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Blata 4.45E-14 1.57E-14 2.01E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-F SLD241433 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 1.25E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-F SLD241434 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 3.22E-15 6.38E-15 1.15E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-F SLD241435 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 6.81E-15 6.81E-15 µC/mL U T04, T20 Plant 6WH LOADOUT (General Area)-F SLD241435 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T20	J	µCi/mL	1.11E-14	9.02E-15	1.23E-14	Gross Alpha	Gross Alpha/Beta	08/24/21	P6WH LOADOUT	SLD241431
SLD241432P6WH LOADOUT08/24/21Gross Alpha/BetaGross Beta4.45E-141.59E-142.01E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241433P6WH LOADOUT08/24/21Gross Alpha/BetaGross Alpha1.35E-148.87E-151.03E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241434P6WH LOADOUT08/24/21Gross Alpha/BetaGross Alpha5.22E-141.79E-142.15E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha3.22E-156.38E-151.15E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81L-156.81L-159.81E-15 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.60E-141.76E-141.63E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ C/mL=Plant 6W H LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.32E-141.70E-142.19E-14 μ C/mL=Plant 6W H LOAD	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation		=	µCi/mL	2.33E-14	1.83E-14	5.07E-14	Gross Beta	*	08/24/21	P6WH LOADOUT	SLD241431
SLD241432P6WH LOADOUT08/24/21Gross Alpha/BetaGross Beta4.45E-141.59E-142.01E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241433P6WH LOADOUT08/24/21Gross Alpha/BetaGross Alpha1.35E-148.87E-151.03E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241434P6WH LOADOUT08/24/21Gross Alpha/BetaGross Alpha5.22E-141.79E-142.15E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha3.22E-156.38E-151.15E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81L-156.81L-159.81E-15 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.60E-141.76E-141.63E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ C/mL=Plant 6W H LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.32E-141.70E-142.19E-14 μ C/mL=Plant 6W H LOAD	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T04, T05	UJ	µCi/mL	9.61E-15	6.97E-15	7.67E-15	Gross Alpha	Gross Alpha/Beta	08/24/21	P6WH LOADOUT	SLD241432
SLD241433 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 1.35E-14 8.87E-15 1.03E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-T SLD241434 P6WH LOADOUT 08/24/21 Gross Alpha/Beta Gross Alpha 5.72E-14 1.79E-14 2.18E-14 µC/mL = Plant 6WH LOADOUT (General Area)-T SLD241434 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 6.38E-15 1.15E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241435 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 6.81E-15 9.81E-15 9.81E-15 µC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-F SLD241435 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 1.05E-14 8.18E-15 1.05E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F SLD241436 P6WH LOADOUT 08/25/21 Gross Alpha/Beta Gross Alpha 1.05E-14 8.18E-15 1.05E-14 µC/mL = Plant 6WH LOADOUT (General Area)-F </td <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>=</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>÷</td> <td></td> <td></td> <td></td>		· · · · · · · · · · · · · · · · · · ·		=					*	÷			
SLD241433P6WH LOADOUT08/24/21Gross Alpha/BetaGross Beta5.72E-141.79E-142.15E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha3.22F-156.38E-151.15F-14 μ Ci/mLUJT06Plant 6W LOADOUT (General Area)-PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-156.81E-159.81E-15 μ Ci/mLUJT04, T05Plant 6W LOADOUT (General Area)-PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.67E-141.63E-142.05E-14 μ Ci/mL=Plant 6W LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.67E-141.63E-142.05E-14 μ Ci/mL=Plant 6W LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ Ci/mL=Plant 6W LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6W LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6W LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-15<	/		T04, T20	J						1			
SLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha3.22E-156.38E-151.15E-14 μ C/mLUJT06Plant 6WH LOADOUT (General Area)-FSLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-152.41E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-156.81E-159.81E-15 μ C/mLUT04, T05Plant 6WH LOADOUT (General Area)-FSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-141.63E-142.05E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.33E-141.77E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.33E-141.77E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta6.04E-141.77E-142.19E-14 μ C/mL=Plant 6WH LOADOUT (General Area)-FSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta6.04E-141.77E-142.07E-14 μ C/mLUT06	/		,	=					1	÷			
SLD241434P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.00E-141.77E-142.41E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-156.81E-159.81E-15 μ Ci/mLUT04, T05Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-14 μ Ci/mL1T04, T05Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mL1T04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mL1T04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mL1T04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.38E-		· · · · · · · · · · · · · · · · · · ·	T06	UJ						1			
SLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha6.81E-156.81E-15 μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.67E-141.63E-142.05E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.33E-141.77E-142.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151		· · · · · · · · · · · · · · · · · · ·							-	·			
SLD241435P6WH LOADOUT08/25/21Gross Alpha/BetaGross AlphaGross Beta4.67E-141.63E-142.05E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.09E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.09E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.09E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross A	/	``````````````````````````````````````	T04, T05	UJ						÷			
SLD241436P6WH LOADOUT $08/25/21$ Gross Alpha/BetaGross Alpha $1.05E-14$ $8.18E-15$ $1.05E-14$ μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241436P6WH LOADOUT $08/25/21$ Gross Alpha/BetaGross Alpha $1.05E-14$ $2.19E-14$ μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $1.05E-14$ $8.18E-15$ $1.05E-14$ μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $4.82E-15$ $6.21E-15$ $9.8PE-15$ μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $4.82E-15$ $6.21E-15$ $9.8PE-15$ U UT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $5.80E-15$ $7.48E-15$ $1.19E-14$ μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $5.80E-15$ $7.48E-15$ $1.19E-14$ μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Beta $4.38E-14$ $1.85E-14$ $2.49E-14$ μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT $08/30/21$		· · · · · · · · · · · · · · · · · · ·		=					*	1		P6WH LOADOUT	SLD241435
SLD241436P6WH LOADOUT08/25/21Gross Alpha/BetaGross Beta4.62E-141.70E-142.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-FSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-FSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mL=Plant 6WH LOADOUT (General Area)-FSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-FSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-FSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-FSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta4.38E-141.85E-142.49E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-FSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLUT06Plant 6WH LOADOUT (General Area)-FSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-1	/		T04, T20	J					Gross Alpha				
SLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha1.05E-148.18E-151.05E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241437P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta5.33E-141.77E-142.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Seta6.04E-141.77E-142.07E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-14 <td>/</td> <td></td> <td>,</td> <td>=</td> <td></td> <td></td> <td></td> <td></td> <td><u>^</u></td> <td>1</td> <td></td> <td></td> <td></td>	/		,	=					<u>^</u>	1			
SLD241437P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Beta $5.33E-14$ $1.77E-14$ $2.19E-14$ μ Ci/mL $=$ Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $4.82E-15$ $6.21E-15$ $9.89E-15$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Beta $6.04E-14$ $1.77E-14$ $2.07E-14$ μ Ci/mL $=$ Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Alpha $5.80E-15$ $7.48E-15$ $1.19E-14$ μ Ci/mL $=$ Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT $08/26/21$ Gross Alpha/BetaGross Beta $4.38E-14$ $1.85E-14$ $2.49E-14$ μ Ci/mL $=$ Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Alpha $7.37E-16$ $4.74E-15$ $1.01E-14$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Beta $2.69E-14$ $1.46E-14$ $2.11E-14$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Beta $2.69E-14$ $1.46E-14$ $2.11E-14$ μ Ci/mLUJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT $08/30/21$ <td< td=""><td>,</td><td></td><td>T04, T20</td><td>J</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>	,		T04, T20	J						1			
SLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha4.82E-156.21E-159.89E-15 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta6.04E-141.77E-142.07E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta4.38E-141.85E-142.49E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.38E-157.38E-151.06E-14 μ Ci/mLUJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha <td< td=""><td>/</td><td></td><td>,</td><td>=</td><td></td><td></td><td></td><td></td><td><u>^</u></td><td>1</td><td></td><td></td><td></td></td<>	/		,	=					<u>^</u>	1			
SLD241438P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta6.04E-141.77E-142.07E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta4.38E-141.85E-142.49E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14 μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha <td>/</td> <td>``````````````````````````````````````</td> <td>T06</td> <td>UJ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	/	``````````````````````````````````````	T06	UJ						1			
SLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Alpha5.80E-157.48E-151.19E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta4.38E-141.85E-142.49E-14µCi/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.38E-157.38E-151.06E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta	· · · · · · · · · · · · · · · · · · ·								1	·			
SLD241439P6WH LOADOUT08/26/21Gross Alpha/BetaGross Beta4.38E-141.85E-142.49E-14 μ Ci/mL=Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14 μ Ci/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.38E-157.38E-151.06E-14 μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14 μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14 μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/30/21Gross Alpha/Beta <td< td=""><td></td><td></td><td>T06</td><td>UJ</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			T06	UJ						-			
SLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.37E-164.74E-151.01E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.38E-157.38E-151.06E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/Beta <td< td=""><td>/</td><td></td><td></td><td>=</td><td>uCi/mL</td><td></td><td></td><td></td><td>*</td><td>1</td><td></td><td></td><td></td></td<>	/			=	uCi/mL				*	1			
SLD241440P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.69E-141.46E-142.11E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha7.38E-157.38E-151.06E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-P	eneral Area)-Perimeter A	Plant 6WH LOADOUT (Generation	T06	UJ						1			
SLD241441P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Alpha $7.38E-15$ $7.38E-15$ $1.06E-14$ μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241441P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Beta $1.98E-14$ $1.46E-14$ $2.23E-14$ μ Ci/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Alpha $5.42E-15$ $6.99E-15$ $1.11E-14$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT $08/30/21$ Gross Alpha/BetaGross Beta $2.45E-14$ $1.56E-14$ $2.33E-14$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT $08/31/21$ Gross Alpha/BetaGross Alpha $4.70E-15$ $6.06E-15$ $9.65E-15$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT $08/31/21$ Gross Alpha/BetaGross Alpha $4.70E-15$ $6.06E-15$ $9.65E-15$ μ Ci/mLUJT06Plant 6WH LOADOUT (General Area)-P	/	\ \		J					-	1			
SLD241441P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta1.98E-141.46E-142.23E-14µCi/mLUJT04, T05Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-P		<u>`</u>		UJ						*			
SLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Alpha5.42E-156.99E-151.11E-14µCi/mLUJT06Plant 6WH LOADOUT (General Area)-PSLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-P	,								1	1			
SLD241442P6WH LOADOUT08/30/21Gross Alpha/BetaGross Beta2.45E-141.56E-142.33E-14µCi/mLJT04, T20Plant 6WH LOADOUT (General Area)-PSLD241443P6WH LOADOUT08/31/21Gross Alpha/BetaGross Alpha4.70E-156.06E-159.65E-15µCi/mLUJT06Plant 6WH LOADOUT (General Area)-P	,									1			
SLD241443 P6WH LOADOUT 08/31/21 Gross Alpha/Beta Gross Alpha 4.70E-15 6.06E-15 9.65E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-P	/			J					1	1			
		· · · · · · · · · · · · · · · · · · ·		UJ						*			
	,								*	1			
SLD241444 P6WH LOADOUT 08/31/21 Gross Alpha/Beta Gross Alpha 9.28E-16 3.73E-15 8.07E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-P	,									*			
SLD241444 P6WH LOADOUT 08/31/21 Gross Alpha/Beta Gross Beta 1.47E-14 1.36E-14 2.14E-14 µCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-P									*	1			
SLD241445 P6WH LOADOUT 08/31/21 Gross Alpha/Beta Gross Alpha -1.22E-15 2.27E-15 8.25E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-P	/									1			
SLD241445 P6WH LOADOUT 08/31/21 Gross Alpha/Beta Gross Beta 7.02E-15 1.30E-14 2.19E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-P	,								*	1			
SLD241446 P6WH LOADOUT 09/01/21 Gross Alpha/Beta Gross Alpha 4.98E-15 5.45E-15 7.76E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-P	,									1			
SLD241446 P6WH LOADOUT 09/01/21 Gross Alpha/Beta Gross Beta 2.86E-14 1.46E-14 2.06E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-P	,			J					<u>^</u>	1			

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD241447	P6WH LOADOUT	09/01/21	Gross Alpha/Beta	Gross Alpha	9.49E-16	3.81E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241447	P6WH LOADOUT	09/01/21	Gross Alpha/Beta	Gross Beta	4.79E-14	1.73E-14	2.19E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241448	P6WH LOADOUT	09/01/21	Gross Alpha/Beta	Gross Alpha	6.46E-15	6.27E-15	8.36E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241448	P6WH LOADOUT	09/01/21	Gross Alpha/Beta	Gross Beta	3.67E-14	1.64E-14	2.22E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241449	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Alpha	2.09E-15	4.51E-15	8.47E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241449	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Beta	3.19E-14	1.60E-14	2.25E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241450	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Alpha	1.18E-14	7.87E-15	8.21E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241450	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Beta	3.89E-14	1.64E-14	2.18E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241451	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Alpha	5.78E-15	5.61E-15	7.48E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241451	P6WH LOADOUT	09/02/21	Gross Alpha/Beta	Gross Beta	2.02E-14	1.33E-14	1.99E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241452	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Alpha	1.06E-14	7.52E-15	8.17E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241452	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Beta	6.12E-14	1.85E-14	2.17E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241453	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.20E-15	7.82E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241453	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Beta	5.16E-14	1.71E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241454	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Alpha	1.18E-14	7.53E-15	7.57E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241454	P6WH LOADOUT	09/07/21	Gross Alpha/Beta	Gross Beta	4.66E-14	1.62E-14	2.01E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241455	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Alpha	6.26E-15	6.08E-15	8.10E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241455	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Beta	2.19E-14	1.44E-14	2.15E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241456	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Alpha	7.11E-15	6.26E-15	7.86E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241456	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Beta	2.55E-14	1.44E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241457	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Alpha	6.02E-15	5.85E-15	7.79E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241457	P6WH LOADOUT	09/08/21	Gross Alpha/Beta	Gross Beta	2.73E-14	1.45E-14	2.07E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241458	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Alpha	5.31E-15	5.82E-15	8.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241458	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Beta	9.25E-15	1.33E-14	2.20E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241459	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Alpha	1.55E-14	9.02E-15	8.47E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241459	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Beta	2.07E-14	1.48E-14	2.25E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241460	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Alpha	-1.09E-15	2.03E-15	7.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241460	P6WH LOADOUT	09/09/21	Gross Alpha/Beta	Gross Beta	2.13E-14	1.33E-14	1.96E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241461	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Alpha	4.79E-15	5.25E-15	7.48E-15	μCi/mL	IJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241461	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Beta	3.35E-14	1.47E-14	1.99E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241461 SLD241462	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Alpha	6.15E-15	5.98E-15	7.96E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241462	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Beta	3.56E-14	1.56E-14	2.12E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241462 SLD241463	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Alpha	7.36E-15	6.48E-15	8.14E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD241463	P6WH LOADOUT	09/13/21	Gross Alpha/Beta	Gross Beta	2.42E-14	1.47E-14	2.16E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247763	P6WH LOADOUT	09/14/21	Gross Alpha/Beta	Gross Alpha	-1.50E-15	2.93E-15	8.98E-15	μCi/mL	IJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247763	P6WH LOADOUT	09/14/21	Gross Alpha/Beta	Gross Beta	2.16E-14	1.36E-14	2.03E-14	μCi/mL	I I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247764	P6WH LOADOUT	09/14/21	Gross Alpha/Beta	Gross Alpha	-5.38E-16	3.82E-15	9.68E-15	μCi/mL	IJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247764	P6WH LOADOUT	09/14/21	Gross Alpha/Beta	Gross Beta	1.84E-14	1.42E-14	2.19E-14	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247765	P6WH LOADOUT	09/14/21	Gross Alpha/Beta	Gross Alpha	-3.92E-15	9.06E-16	1.01E-14	μCi/mL μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247765	P6WH LOADOUT	09/15/21	Gross Alpha/Beta	Gross Beta	1.70E-14	1.45E-14	2.27E-14	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247766	P6WH LOADOUT	09/15/21	Gross Alpha/Beta	Gross Alpha	8.15E-15	7.28E-15	9.76E-15	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247766	P6WH LOADOUT	09/15/21	Gross Alpha/Beta	Gross Alpha Gross Beta	3.98E-14	1.65E-14	9.70E-13 2.20E-14	μCi/mL μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247766 SLD247767	P6WH LOADOUT	09/15/21	Gross Alpha/Beta	Gross Alpha	6.60E-15	6.49E-15	9.12E-15	μCi/mL μCi/mL	– UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247767 SLD247767	P6WH LOADOUT	09/15/21	-	· · · · ·	0.60E-13 3.59E-14				=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247767 SLD247768			Gross Alpha/Beta	Gross Beta		1.53E-14	2.06E-14	μCi/mL		T06	
	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Alpha	5.02E-15	6.38E-15	1.00E-14	μCi/mL	UJ	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247768	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Beta	3.29E-14	1.61E-14	2.26E-14	µCi/mL	=	TOC	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247769	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Alpha	5.90E-15	6.50E-15	9.64E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247769	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Beta	3.72E-14	1.61E-14	2.18E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247770	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Alpha	2.39E-14	1.07E-14	9.12E-15	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247770	P6WH LOADOUT	09/16/21	Gross Alpha/Beta	Gross Beta	2.66E-14	1.43E-14	2.06E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247771	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Alpha	9.93E-15	7.61E-15	9.39E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247771	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Beta	2.60E-14	1.46E-14	2.12E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247772	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Alpha	9.44E-15	7.77E-15	9.98E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247772	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Beta	1.61E-14	1.43E-14	2.25E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247773	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Alpha	2.80E-15	5.56E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247773	P6WH LOADOUT	09/20/21	Gross Alpha/Beta	Gross Beta	7.48E-15	1.35E-14	2.27E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247774	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.81E-15	9.64E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247774	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Beta	1.76E-14	1.40E-14	2.18E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247775	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Alpha	7.12E-15	7.00E-15	9.85E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247775	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Beta	4.23E-14	1.68E-14	2.22E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247776	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Alpha	5.14E-16	4.18E-15	9.24E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247776	P6WH LOADOUT	09/21/21	Gross Alpha/Beta	Gross Beta	4.77E-14	1.66E-14	2.09E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247777	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Alpha	3.75E-15	5.74E-15	9.64E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247777	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Beta	2.74E-14	1.51E-14	2.18E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247778	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Alpha	3.74E-15	5.71E-15	9.59E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247778	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Beta	2.10E-14	1.43E-14	2.17E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247779	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Alpha	9.37E-15	7.19E-15	8.87E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247779	P6WH LOADOUT	09/22/21	Gross Alpha/Beta	Gross Beta	2.20E-14	1.35E-14	2.00E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247780	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Alpha	3.94E-15	6.03E-15	1.01E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247780	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Beta	2.22E-14	1.51E-14	2.28E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247781	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Alpha	5.65E-15	6.23E-15	9.24E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247781	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Beta	2.90E-14	1.47E-14	2.09E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247782	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Alpha	2.72E-15	5.39E-15	9.76E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247782	P6WH LOADOUT	09/23/21	Gross Alpha/Beta	Gross Beta	2.35E-14	1.48E-14	2.20E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247783	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Alpha	-2.07E-16	2.88E-15	7.65E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247783	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Beta	4.22E-14	1.39E-14	1.57E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247784	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Alpha	2.92E-15	4.72E-15	8.04E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247784	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Beta	4.98E-14	1.52E-14	1.65E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247785	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Alpha	4.10E-15	5.34E-15	8.32E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247785	P6WH LOADOUT	09/27/21	Gross Alpha/Beta	Gross Beta	4.51E-14	1.50E-14	1.71E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247786	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Alpha	8.81E-15	6.71E-15	7.71E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247786	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Beta	3.92E-14	1.36E-14	1.58E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247787	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Alpha	1.94E-15	4.38E-15	8.32E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247787	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Beta	6.15E-14	1.68E-14	1.71E-14	µCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247788	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Alpha	3.00E-15	4.86E-15	8.28E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247788	P6WH LOADOUT	09/28/21	Gross Alpha/Beta	Gross Beta	4.49E-14	1.49E-14	1.70E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247789	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Alpha	4.92E-15	5.48E-15	7.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247789	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Beta	2.87E-14	1.26E-14	1.62E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247790	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Alpha	3.99E-15	5.21E-15	8.11E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247790	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Beta	5.02E-14	1.53E-14	1.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247791	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Alpha	5.76E-15	5.67E-15	7.65E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247791	P6WH LOADOUT	09/29/21	Gross Alpha/Beta	Gross Beta	6.11E-14	1.59E-14	1.57E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247792	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Alpha	4.23E-15	5.51E-15	8.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247792	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Beta	2.75E-14	1.32E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247793	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Alpha	8.59E-16	3.82E-15	8.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247793	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Beta	3.39E-14	1.38E-14	1.72E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247794	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Alpha	8.55E-15	2.13E-15	2.02E-15	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247794	P6WH LOADOUT	09/30/21	Gross Alpha/Beta	Gross Beta	4.29E-14	5.43E-15	5.16E-15	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247795	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Alpha	9.47E-15	7.54E-15	9.39E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247795	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Beta	4.30E-14	1.67E-14	2.20E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247796	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Alpha	9.47E-15	7.54E-15	9.39E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247796	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Beta	3.60E-14	1.60E-14	2.20E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247797	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Alpha	1.81E-15	4.58E-15	8.81E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247797	P6WH LOADOUT	10/04/21	Gross Alpha/Beta	Gross Beta	2.26E-14	1.39E-14	2.06E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247798	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Alpha	8.54E-15	7.34E-15	9.56E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247798	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Beta	2.67E-14	1.53E-14	2.24E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247799	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Alpha	7.31E-15	6.88E-15	9.39E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247799	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Beta	4.58E-14	1.70E-14	2.20E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247800	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Alpha	1.81E-15	4.58E-15	8.81E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247800	P6WH LOADOUT	10/05/21	Gross Alpha/Beta	Gross Beta	3.84E-14	1.55E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247801	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Alpha	7.54E-15	7.09E-15	9.68E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247801	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Beta	5.02E-14	1.78E-14	2.27E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247802	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Alpha	1.26E-14	8.40E-15	9.35E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247802	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Beta	3.38E-14	1.58E-14	2.19E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247803	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Alpha	8.96E-15	7.13E-15	8.89E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247803	P6WH LOADOUT	10/06/21	Gross Alpha/Beta	Gross Beta	3.54E-14	1.53E-14	2.08E-14	μCi/mL	=	10.,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247804	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Alpha	8.39E-15	7.21E-15	9.39E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247804	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Beta	2.48E-14	1.49E-14	2.20E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247805	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Alpha	9.30E-15	7.41E-15	9.23E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247805	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Beta	2.64E-14	1.49E-14	2.16E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247806	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Alpha	5.78E-15	6.05E-15	8.71E-15	μCi/mL	IJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247806	P6WH LOADOUT	10/07/21	Gross Alpha/Beta	Gross Beta	2.36E-14	1.39E-14	2.04E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247807	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Alpha	1.19E-14	8.32E-15	9.60E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247807 SLD247807	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Beta	5.04E-14	1.77E-14	2.25E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247808	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Alpha	1.27E-14	8.43E-15	9.39E-15	μCi/mL	T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247808	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Beta	5.99E-14	1.84E-14	2.20E-14	μCi/mL	=	101, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247809	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Alpha	6.03E-15	6.31E-15	9.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247809	P6WH LOADOUT	10/11/21	Gross Alpha/Beta	Gross Beta	5.31E-14	1.73E-14	2.12E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247810	P6WH LOADOUT	10/12/21	Gross Alpha/Beta	Gross Alpha	4.12E-15	5.81E-15	9.47E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247810	P6WH LOADOUT	10/12/21	Gross Alpha/Beta	Gross Beta	7.38E-14	1.98E-14	2.22E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247810 SLD247811	P6WH LOADOUT	10/12/21	Gross Alpha/Beta	Gross Alpha	1.73E-14	9.68E-15	9.56E-15	μCi/mL	T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247811 SLD247811	P6WH LOADOUT	10/12/21	Gross Alpha/Beta	Gross Beta	6.38E-14	1.90E-14	2.24E-14	μCi/mL μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247811 SLD247812	P6WH LOADOUT	10/12/21	Gross Alpha/Beta	Gross Alpha	1.19E-14	7.88E-15	8.78E-15	μCi/mL μCi/mL	 T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247812 SLD247812	P6WH LOADOUT	10/13/21	Gross Alpha/Beta	Gross Alpha Gross Beta	4.87E-14	1.65E-14	2.05E-14	μCi/mL μCi/mL	J =	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247812 SLD247813	P6WH LOADOUT	10/13/21	Gross Alpha/Beta	Gross Alpha	4.87E-14 8.54E-15	7.34E-15	2.03E-14 9.56E-15	μCi/mL μCi/mL	– UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247813 SLD247813	P6WH LOADOUT	10/13/21	Gross Alpha/Beta	Gross Alpha Gross Beta	4.38E-14	1.70E-14	9.36E-13 2.24E-14	μCi/mL μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247813 SLD247814	P6WH LOADOUT P6WH LOADOUT		*						- T	T04 T20	
		10/13/21	Gross Alpha/Beta	Gross Alpha	1.58E-14	9.17E-15	9.31E-15	μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247814	P6WH LOADOUT	10/13/21	Gross Alpha/Beta	Gross Beta	4.82E-14	1.71E-14	2.18E-14	µCi/mL	= T	T04 T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247815	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Alpha	1.12E-14	7.71E-15	8.73E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247815	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Beta	2.59E-14	1.43E-14	2.07E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247816	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Alpha	7.69E-15	7.06E-15	9.47E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247816	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Beta	1.66E-14	1.43E-14	2.25E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247817	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Alpha	-2.19E-15	2.28E-15	9.18E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247817	P6WH LOADOUT	10/14/21	Gross Alpha/Beta	Gross Beta	5.59E-15	1.27E-14	2.18E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247818	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Alpha	5.46E-15	6.29E-15	9.42E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247818	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Beta	3.80E-14	1.65E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247819	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Alpha	1.07E-14	7.84E-15	9.22E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247819	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Beta	4.98E-14	1.74E-14	2.19E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247820	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Alpha	4.99E-15	5.75E-15	8.62E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247820	P6WH LOADOUT	10/18/21	Gross Alpha/Beta	Gross Beta	4.33E-14	1.59E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247821	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Alpha	9.77E-15	7.63E-15	9.34E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247821	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Beta	3.20E-14	1.58E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247822	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Alpha	4.28E-15	5.78E-15	9.26E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247822	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Beta	4.44E-14	1.69E-14	2.20E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247823	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Alpha	8.25E-15	6.94E-15	8.87E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247823	P6WH LOADOUT	10/19/21	Gross Alpha/Beta	Gross Beta	4.59E-14	1.65E-14	2.11E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247824	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Alpha	7.83E-15	7.19E-15	9.64E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247824	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Beta	2.93E-14	1.59E-14	2.29E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247825	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Alpha	1.10E-14	8.05E-15	9.47E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247825	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Beta	4.32E-14	1.71E-14	2.25E-14	μCi/mL	=	101,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247826	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.84E-15	8.87E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247826	P6WH LOADOUT	10/20/21	Gross Alpha/Beta	Gross Beta	6.68E-14	1.85E-14	2.11E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247827	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Alpha	3.52E-15	5.90E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247827 SLD247827	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Beta	1.09E-14	1.47E-14	2.42E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247828	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Alpha	2.25E-15	5.19E-15	9.82E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247828	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Beta	1.57E-14	1.47E-14	2.33E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247828 SLD247829	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Alpha	5.34E-15	6.15E-15	9.22E-15	μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247829 SLD247829	P6WH LOADOUT	10/21/21	Gross Alpha/Beta	Gross Beta	2.03E-14	1.44E-14	2.19E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247829 SLD247830	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Alpha	5.39E-15	6.21E-15	9.30E-15	μCi/mL μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247830 SLD247830	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Beta	1.06E-14	1.35E-14	9.30E-13 2.21E-14	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247830 SLD247831	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Alpha	3.24E-15	5.43E-15	9.38E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247831 SLD247831	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Beta	2.43E-14	1.50E-14	2.23E-14	μCi/mL μCi/mL	UJ I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247831 SLD247832	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Alpha	4.07E-15	5.50E-14	8.80E-15	μCi/mL μCi/mL	UJ	T04, 120 T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247832 SLD247832	P6WH LOADOUT	10/25/21	Gross Alpha/Beta	Gross Beta	9.37E-15	1.27E-14	2.09E-13	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247832 SLD247833	P6WH LOADOUT	10/23/21	*		9.37E-13 5.53E-15	6.37E-15	2.09E-14 9.55E-15		UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Alpha				µCi/mL			× /
SLD247833	P6WH LOADOUT	10/26/21	Gross Alpha/Beta	Gross Beta	9.45E-15	1.37E-14	2.27E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247834	P6WH LOADOUT	10/26/21	Gross Alpha/Beta	Gross Alpha	7.40E-15	6.79E-15	9.10E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247834	P6WH LOADOUT	10/26/21	Gross Alpha/Beta	Gross Beta	1.87E-14	1.41E-14	2.16E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247835	P6WH LOADOUT	10/26/21	Gross Alpha/Beta	Gross Alpha	2.70E-15	4.95E-15	8.79E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247835	P6WH LOADOUT	10/26/21	Gross Alpha/Beta	Gross Beta	1.16E-14	1.24E-14	1.99E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247836	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Alpha	6.93E-16	3.98E-15	8.61E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247836	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Beta	9.40E-15	1.19E-14	1.95E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247837	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Alpha	7.16E-15	6.82E-15	9.39E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247837	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Beta	2.90E-14	1.50E-14	2.13E-14	µCi/mL	J 	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247838	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Alpha	4.08E-15	5.89E-15	9.68E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247838	P6WH LOADOUT	10/27/21	Gross Alpha/Beta	Gross Beta	2.92E-14	1.54E-14	2.20E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247839	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Alpha	4.31E-15	6.22E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247839	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Beta	2.03E-14	1.51E-14	2.32E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247840	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Alpha	9.89E-15	7.95E-15	9.99E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247840	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Beta	3.46E-14	1.64E-14	2.27E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247841	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Alpha	1.44E-14	8.76E-15	9.23E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247841	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Beta	3.20E-14	1.51E-14	2.10E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247842	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Alpha	9.58E-15	7.70E-15	9.68E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247842	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Beta	3.57E-14	1.61E-14	2.20E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247843	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Alpha	9.76E-15	7.84E-15	9.86E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247843	P6WH LOADOUT	11/01/21	Gross Alpha/Beta	Gross Beta	3.05E-14	1.58E-14	2.24E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247844	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Alpha	5.84E-15	6.20E-15	9.00E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247844	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Beta	2.65E-14	1.42E-14	2.04E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247845	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Alpha	3.98E-15	5.74E-15	9.43E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247845	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Beta	3.06E-14	1.52E-14	2.14E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247846	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Alpha	1.05E-14	7.88E-15	9.51E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247846	P6WH LOADOUT	11/02/21	Gross Alpha/Beta	Gross Beta	2.24E-14	1.45E-14	2.16E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247847	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Alpha	3.04E-15	5.56E-15	9.86E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247847	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Beta	2.61E-14	1.53E-14	2.24E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247848	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Alpha	7.42E-15	7.06E-15	9.73E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247848	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Beta	5.53E-14	1.81E-14	2.21E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247849	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Alpha	7.86E-15	6.83E-15	8.97E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247849	P6WH LOADOUT	11/03/21	Gross Alpha/Beta	Gross Beta	4.76E-14	1.63E-14	2.04E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247850	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Alpha	5.45E-15	6.62E-15	1.02E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247850	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Beta	4.35E-14	1.75E-14	2.31E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247851	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Alpha	8.37E-15	7.28E-15	9.56E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247851	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Beta	3.45E-14	1.58E-14	2.17E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247852	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Alpha	1.08E-14	8.09E-15	9.77E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247852	P6WH LOADOUT	11/04/21	Gross Alpha/Beta	Gross Beta	4.97E-14	1.76E-14	2.22E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247853	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Alpha	1.91E-14	1.03E-14	1.00E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247853	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Beta	7.27E-14	2.02E-14	2.28E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247854	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Alpha	8.34E-15	7.25E-15	9.51E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247854	P6WH LOADOUT	10/28/21	Gross Alpha/Beta	Gross Beta	3.93E-14	1.62E-14	2.16E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247855	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Alpha	7.34E-15	6.46E-15	8.11E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247855	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Beta	4.68E-14	1.50E-14	1.66E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247856	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Alpha	1.10E-14	7.80E-15	8.47E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247856	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Beta	5.84E-14	1.67E-14	1.74E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247857	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Alpha	8.37E-15	6.78E-15	8.07E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247857	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Beta	5.78E-14	1.61E-14	1.66E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247858	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Alpha	7.91E-15	6.97E-15	8.75E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247858	P6WH LOADOUT	11/09/21	Gross Alpha/Beta	Gross Beta	4.75E-14	1.58E-14	1.79E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247859	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Alpha	3.23E-15	5.08E-15	8.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247859	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Beta	5.01E-14	1.59E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247860	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Alpha	6.56E-15	6.37E-15	8.49E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247860	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Beta	5.85E-14	1.67E-14	1.74E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247861	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Alpha	7.21E-15	6.35E-15	7.97E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247861	P6WH LOADOUT	11/10/21	Gross Alpha/Beta	Gross Beta	7.01E-14	1.73E-14	1.64E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247862	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Alpha	6.61E-15	6.42E-15	8.55E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247862	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Beta	1.46E-14	1.16E-14	1.75E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247863	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Alpha	-1.37E-16	3.18E-15	8.36E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247863	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Beta	2.44E-14	1.26E-14	1.72E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247864	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Alpha	9.06E-16	3.64E-15	7.87E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247864	P6WH LOADOUT	11/15/21	Gross Alpha/Beta	Gross Beta	1.62E-14	1.10E-14	1.62E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247865	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Alpha	5.61E-15	6.14E-15	8.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247865	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Beta	4.52E-14	1.56E-14	1.79E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247866	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Alpha	-1.40E-16	3.24E-15	8.51E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247866	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Beta	5.13E-14	1.60E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247867	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Alpha	1.05E-14	7.40E-15	8.04E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247867	P6WH LOADOUT	11/16/21	Gross Alpha/Beta	Gross Beta	4.50E-14	1.47E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247868	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Alpha	-1.31E-16	3.02E-15	7.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247868	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Beta	8.09E-15	9.97E-15	1.63E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247869	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Alpha	1.01E-14	7.63E-15	8.67E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247869	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Beta	4.70E-14	1.57E-14	1.78E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247870	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Alpha	-1.41E-16	3.27E-15	8.59E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247870	P6WH LOADOUT	11/17/21	Gross Alpha/Beta	Gross Beta	3.84E-14	1.46E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247871	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Alpha	2.04E-15	4.39E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247871	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Beta	2.20E-14	1.22E-14	1.69E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247872	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Alpha	-1.29E-16	2.98E-15	7.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247872	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Beta	1.41E-14	1.07E-14	1.61E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247873	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Alpha	-1.39E-16	3.22E-15	8.47E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247873	P6WH LOADOUT	11/18/21	Gross Alpha/Beta	Gross Beta	1.16E-14	1.11E-14	1.74E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247874	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Alpha	6.61E-15	6.42E-15	8.55E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247874	P6WH LOADOUT	11/08/21	Gross Alpha/Beta	Gross Beta	4.05E-14	1.48E-14	1.75E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247875	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Alpha	-1.81E-16	5.87E-15	1.27E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247875	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Beta	1.25E-14	1.40E-14	2.27E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247876	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Alpha	-1.24E-15	5.31E-15	1.24E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247876	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Beta	1.84E-14	1.43E-14	2.21E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247870 SLD247877	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Alpha	1.84E-14 1.85E-15	6.17E-15	1.18E-14	μCi/mL μCi/mL	UJ	T04, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247877	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Beta	2.41E-14	1.43E-14	2.11E-14	μCi/mL μCi/mL	UJ I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247877	P6WH LOADOUT	11/22/21	Gross Alpha/Beta	Gross Alpha	-1.79E-16	5.82E-15	1.26E-14	μCi/mL μCi/mL	J UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247878	P6WH LOADOUT	11/23/21	Gross Alpha/Beta	Gross Beta	1.31E-14	1.39E-14	2.25E-14	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247878	P6WH LOADOUT	11/23/21	Gross Alpha/Beta	Gross Alpha	8.35E-16	5.78E-15	1.17E-14	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247879 SLD247879	P6WH LOADOUT	11/23/21	Gross Alpha/Beta	Gross Beta	2.98E-14	1.48E-14	2.09E-14	μCi/mL μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247879 SLD247880	P6WH LOADOUT	11/23/21	Gross Alpha/Beta	Gross Alpha	-2.46E-15	5.23E-15	1.33E-14	μCi/mL μCi/mL	– UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247880 SLD247880	P6WH LOADOUT	11/23/21	<u>.</u>	·	1.23E-14		2.37E-14			T06	
			Gross Alpha/Beta	Gross Beta		1.45E-14		µCi/mL	UJ		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247881	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Alpha	1.91E-15	6.35E-15	1.22E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247881	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Beta	2.89E-14	1.51E-14	2.17E-14	μCi/mL	J	T04, T20	
SLD247882	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Alpha	-2.03E-16	6.59E-15	1.43E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247882	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Beta	3.55E-14	1.79E-14	2.55E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247883	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Alpha	8.97E-16	6.20E-15	1.26E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247883	P6WH LOADOUT	11/24/21	Gross Alpha/Beta	Gross Beta	4.33E-14	1.70E-14	2.25E-14	µCi/mL	=	T 07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247884	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Alpha	-3.58E-15	4.70E-15	1.32E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247884	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Beta	3.00E-14	1.63E-14	2.36E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247885	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Alpha	-2.40E-15	5.09E-15	1.29E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247885	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Beta	1.34E-14	1.43E-14	2.31E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247886	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Alpha	-2.25E-15	4.77E-15	1.21E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247886	P6WH LOADOUT	11/29/21	Gross Alpha/Beta	Gross Beta	1.80E-14	1.40E-14	2.16E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247887	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Alpha	2.07E-15	6.90E-15	1.32E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247887	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Beta	2.92E-14	1.62E-14	2.36E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247888	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Alpha	9.21E-16	6.37E-15	1.29E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247888	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Beta	5.38E-14	1.83E-14	2.31E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247889	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Alpha	6.99E-15	7.76E-15	1.20E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247889	P6WH LOADOUT	11/30/21	Gross Alpha/Beta	Gross Beta	5.64E-14	1.76E-14	2.14E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247890	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Alpha	9.68E-15	8.88E-15	1.28E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247890	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Beta	6.69E-14	1.95E-14	2.29E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247891	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Alpha	5.23E-15	7.60E-15	1.27E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247891	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Beta	6.11E-14	1.87E-14	2.26E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247892	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Alpha	2.83E-15	6.41E-15	1.17E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247892	P6WH LOADOUT	12/01/21	Gross Alpha/Beta	Gross Beta	6.42E-14	1.80E-14	2.08E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247893	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Alpha	-1.84E-16	5.97E-15	1.29E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247893	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Beta	3.29E-14	1.63E-14	2.31E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247894	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Alpha	1.97E-15	6.57E-15	1.26E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247894	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Beta	3.83E-14	1.65E-14	2.25E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247895	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Alpha	8.47E-15	6.74E-15	8.16E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247895	P6WH LOADOUT	12/02/21	Gross Alpha/Beta	Gross Beta	1.90E-14	1.32E-14	1.99E-14	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247896	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Alpha	4.49E-16	3.80E-15	8.73E-15	uCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247896	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Beta	6.47E-15	1.26E-14	2.13E-14	uCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247897	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Alpha	6.46E-15	6.10E-15	8.16E-15	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247897	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Beta	1.77E-14	1.30E-14	1.99E-14	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247898	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Alpha	7.10E-15	6.70E-15	8.97E-15	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247898	P6WH LOADOUT	12/06/21	Gross Alpha/Beta	Gross Beta	1.23E-14	1.35E-14	2.19E-14	uCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247899	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Alpha	1.26E-14	7.95E-15	8.23E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247899	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Beta	3.09E-14	1.45E-14	2.01E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247900	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Alpha	1.04E-14	7.71E-15	8.93E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247900	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Beta	2.15E-14	1.45E-14	2.18E-14	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247901	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Alpha	6.88E-15	6.50E-15	8.69E-15	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247901	P6WH LOADOUT	12/07/21	Gross Alpha/Beta	Gross Beta	2.44E-14	1.45E-14	2.12E-14	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247902	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Alpha	1.63E-14	9.06E-15	8.54E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247902	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Beta	3.55E-14	1.54E-14	2.08E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247903	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Alpha	7.35E-15	6.32E-15	8.03E-15	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247903	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Beta	3.02E-14	1.41E-14	1.96E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247904	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Alpha	6.77E-15	6.39E-15	8.54E-15	uCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247904	P6WH LOADOUT	12/08/21	Gross Alpha/Beta	Gross Beta	4.84E-14	1.67E-14	2.08E-14	uCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247905	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Alpha	4.38E-15	5.29E-15	8.03E-15	uCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247905	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Beta	4.55E-14	1.57E-14	1.96E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247906	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Alpha	2.19E-14	1.05E-14	8.69E-15	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247906	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Beta	4.09E-14	1.62E-14	2.12E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247907	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Alpha	1.51E-14	8.76E-15	8.51E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247907	P6WH LOADOUT	12/09/21	Gross Alpha/Beta	Gross Beta	4.62E-14	1.64E-14	2.08E-14	uCi/mL	=	· ·,·	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247908	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Alpha	8.91E-15	7.09E-15	8.58E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247908	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Beta	4.31E-14	1.62E-14	2.09E-14	uCi/mL	=	· ·,·	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247909	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Alpha	8.34E-15	6.63E-15	8.03E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247909	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Beta	1.42E-14	1.25E-14	1.96E-14	uCi/mL	IJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247910	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Alpha	6.97E-14	1.85E-14	8.77E-15	uCi/mL	=	101, 100	Plant 6WH LOADOUT (General Area)-Perimeter Air
52024/910	I UWII LOADOUI	12/13/21	Gross Alpha/Deta	Oross Aiplia	0.7712-14	1.051-14	0.7712-13	uCI/IIIL	_		

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247910	P6WH LOADOUT	12/13/21	Gross Alpha/Beta	Gross Beta	2.11E-13	3.13E-14	2.14E-14	uCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247911	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Alpha	8.58E-15	6.83E-15	8.26E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247911	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Beta	3.63E-14	1.51E-14	2.02E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247912	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Alpha	1.15E-14	8.02E-15	8.93E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247912	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Beta	4.84E-14	1.72E-14	2.18E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247913	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Alpha	1.45E-14	8.72E-15	8.73E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247913	P6WH LOADOUT	12/14/21	Gross Alpha/Beta	Gross Beta	2.87E-14	1.50E-14	2.13E-14	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247914	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Alpha	1.49E-14	8.95E-15	8.97E-15	uCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247914	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Beta	4.58E-14	1.70E-14	2.19E-14	uCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247915	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Alpha	2.62E-15	4.52E-15	7.88E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247915	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Beta	3.63E-14	1.52E-14	2.03E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247916	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Alpha	7.25E-15	6.63E-15	8.63E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247916	P6WH LOADOUT	12/15/21	Gross Alpha/Beta	Gross Beta	3.01E-14	1.57E-14	2.23E-14	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247917	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Alpha	1.71E-14	8.77E-15	7.63E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247917	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Beta	5.41E-14	1.66E-14	1.97E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247918	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Alpha	1.17E-14	7.59E-15	7.91E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247918	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Beta	5.82E-14	1.75E-14	2.04E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247919	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Alpha	1.22E-14	7.95E-15	8.29E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247919	P6WH LOADOUT	12/16/21	Gross Alpha/Beta	Gross Beta	4.74E-14	1.70E-14	2.14E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247920	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Alpha	3.54E-15	4.83E-15	7.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247920	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Beta	5.12E-14	1.65E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247921	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Alpha	1.60E-14	8.81E-15	8.08E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247921	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Beta	4.90E-14	1.68E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247922	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Alpha	8.13E-15	6.80E-15	8.40E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247922	P6WH LOADOUT	12/20/21	Gross Alpha/Beta	Gross Beta	5.02E-14	1.74E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247923	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Alpha	1.53E-16	8.70E-17	8.30E-17	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247923	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Beta	1.11E-15	2.29E-16	2.13E-16	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247924	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Alpha	2.26E-14	1.04E-14	8.22E-15	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247924	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Beta	9.00E-14	2.09E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247925	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Alpha	1.40E-14	8.01E-15	7.57E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247925	P6WH LOADOUT	12/21/21	Gross Alpha/Beta	Gross Beta	6.54E-14	1.76E-14	1.95E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247926	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Alpha	3.52E-15	4.81E-15	7.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247926	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Beta	6.09E-14	1.73E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247927	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Alpha	6.44E-15	5.88E-15	7.66E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247927	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Beta	3.20E-14	1.45E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247928	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Alpha	7.41E-15	6.20E-15	7.66E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247928	P6WH LOADOUT	12/22/21	Gross Alpha/Beta	Gross Beta	3.79E-14	1.51E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247929	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Alpha	1.02E-14	6.99E-15	7.57E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247929	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Beta	8.81E-14	1.97E-14	1.95E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247930	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Alpha	7.07E-15	5.92E-15	7.30E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247930	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Beta	6.94E-14	1.76E-14	1.88E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247931	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Alpha	1.35E-14	7.99E-15	7.78E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247931	P6WH LOADOUT	12/23/21	Gross Alpha/Beta	Gross Beta	6.92E-14	1.83E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247932	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Alpha	1.52E-14	9.02E-15	8.79E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247932	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Beta	5.86E-14	1.88E-14	2.27E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247933	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Alpha	1.16E-14	7.94E-15	8.59E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247933	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Beta	4.99E-14	1.77E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD247934	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Alpha	9.78E-15	7.11E-15	8.01E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247934	P6WH LOADOUT	12/29/21	Gross Alpha/Beta	Gross Beta	5.61E-14	1.74E-14	2.07E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247935	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Alpha	1.07E-14	8.08E-15	9.23E-15	µCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247935	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Beta	6.32E-14	1.86E-14	2.02E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247936	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Alpha	6.10E-15	6.74E-15	9.65E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247936	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Beta	4.54E-14	1.72E-14	2.12E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247937	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Alpha	1.12E-15	4.73E-15	1.03E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247937	P6WH LOADOUT	12/27/21	Gross Alpha/Beta	Gross Beta	6.16E-14	1.97E-14	2.25E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247938	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Alpha	1.02E-15	4.29E-15	9.32E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247938	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Beta	1.98E-14	1.38E-14	2.04E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247939	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Alpha	3.34E-15	5.32E-15	9.01E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247939	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Beta	1.30E-14	1.25E-14	1.98E-14	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247940	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Alpha	5.29E-15	5.85E-15	8.38E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247940	P6WH LOADOUT	12/28/21	Gross Alpha/Beta	Gross Beta	9.17E-15	1.13E-14	1.84E-14	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247941	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Alpha	7.23E-15	6.40E-15	8.09E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247941	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Beta	4.36E-14	1.50E-14	1.78E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247942	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Alpha	5.49E-15	6.06E-15	8.68E-15	µCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247942	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Beta	4.83E-14	1.63E-14	1.90E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247943	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Alpha	6.84E-15	6.69E-15	8.97E-15	µCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD247943	P6WH LOADOUT	12/30/21	Gross Alpha/Beta	Gross Beta	3.76E-14	1.54E-14	1.97E-14	µCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

VQs:

= - Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Codes:

F01 - Sample data were qualified as a result of the method blank.

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T05 - Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.

T06 - Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS242933	BA-1	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
HIS253442	BA-1	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242925	DA-3	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253456	DA-3	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242926	DA-7	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253457	DA-7	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242927	DA-8	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253458	DA-8	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242927-1	DA-8dup	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253458-1	DA-8dup	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242928	DA-9	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253459	DA-9	01/05/22	Radiological	Rn-222	0.3	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242929	DA-10	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253460	DA-10	01/05/22	Radiological	Rn-222	0.24	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242930	DA-11	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253461	DA-11	01/05/22	Radiological	Rn-222	0.24	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242931	DA-12	07/07/21	Radiological	Rn-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253462	DA-12	01/05/22	Radiological	Rn-222	0.22	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021
SLD242932	DI-1	07/07/21	Radiological	Rn-222	1.4	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2021
SLD253463	DI-1	01/05/22	Radiological	Rn-222	0.41	0	0.22	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2021

Table C-4. Radon-222 Results for CY 2021

VQs:

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STORMWATER, WASTEWATER, AND EXCAVATION WATER DATA

(On the CD-ROM on the Back Cover of this Report)

THIS PAGE INTENTIONALLY LEFT BLANK

		First Q	uarter								
Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	SOR		
Gross Alpha (raw water)			101.1	pCi/L		2.1E-05	3,000	pCi/L			
Gross Beta			64.0	pCi/L		1.3E-05	N	A			
Th-228			1.1	pCi/L		2.3E-07	2,000	pCi/L			
Th-230		(Gunther Salt)	2.4	pCi/L		5.1E-07	1,000	pCi/L			
Th-232	SLDS-BK613		< 0.6	pCi/L	54,940	6.5E-08	300	pCi/L	0.04		
Uranium (KPA)		(Gunther Sait)	106.2	pCi/L		2.2E-05	3,000	pCi/L			
Ra-226 ^c			<1.5	pCi/L		1.6E-07	10	pCi/L			
Ra-228 ^{d,e}			1.1	pCi/L		2.3E-07	30	pCi/L			
TSS			25.0	mg/L		-		-			
Gross Alpha (raw water)			138.0	pCi/L		1.5E-05	3,000	pCi/L			
Gross Beta			110.0	pCi/L		1.2E-05	N	A			
Th-228			<1	pCi/L	29,030	5.3E-08	2,000	pCi/L			
Th-230		(Gunther Salt)	3.5	pCi/L		3.8E-07	1,000	pCi/L			
Th-232	SLDS-BK614		< 0.8	pCi/L		4.3E-08	300	pCi/L	0.06		
Uranium (KPA)			163.0	pCi/L		1.8E-05	3,000	pCi/L			
Ra-226 ^c					< 0.9	pCi/L		5.1E-08	10	pCi/L	
Ra-228 ^{d,e}			<1	pCi/L		5.3E-08	30	pCi/L			
TSS			17.6	mg/L		-		-			
Gross Alpha (raw water)			140.2	pCi/L		9.7E-05	3,000	pCi/L			
Gross Beta			82.7	pCi/L		5.7E-05	N	A			
Th-228			<1.4	pCi/L		4.8E-07	2,000	pCi/L			
Th-230		02/01/21 02/20/21	2.9	pCi/L		2.0E-06	1,000	pCi/L			
Th-232	SLDS-BK615	03/01/21 - 03/30/21 (Gunther Salt)	<1.1	pCi/L	182,327	3.8E-07	300	pCi/L	0.06		
Uranium (KPA)		(Guillier Sait)	152.0	pCi/L		1.0E-04	3,000	pCi/L			
Ra-226 ^c			<2	pCi/L		6.9E-07	10	pCi/L			
Ra-228 ^{d,e}			<1.4	pCi/L		4.8E-07	30	pCi/L			
TSS			89.3	mg/L		-		-			
Total Activity Discharged in First Quarter o	f CY 2021 (Ci)				Total Activity Disc	narged through 03/31	/21 (Ci)				
Th-228	7.6E-07				Th-228		7.6E-07				
Th-230	2.9E-06				Th-230		2.9E-06				
Th-232	4.9E-07				Th-232		4.9E-07				
Uranium (KPA)	1.4E-04				Uranium (KPA)		1.4E-04				
Ra-226 Ra-228 ^d	9.0E-07				Ra-226 Ra-228 ^d		9.0E-07				
ка-228-	7.6E-07				ка-228-		7.6E-07				

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2021 **First Quarter**

Total Volume Discharged in First Quarter of CY 2021 (gallons) 266,297 Gallons

^a Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

^c 10 CFR 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Total Volume Discharged through 03/31/21 (gallons) 266,297 Gallons

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2021 (Continued)
Second Quarter

Parameter	Batch Number	Date of Discharge		itch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	soi				
Gross Alpha (raw water)			53.0	pCi/L		2.9E-05	3,000	pCi/L					
Gross Beta			42.7	pCi/L		2.3E-05	N	IA					
Th-228			1.2	pCi/L		6.5E-07	2,000	pCi/L					
Th-230		04/01/21 - 04/29/21	2.1	pCi/L		1.1E-06	1,000	pCi/L					
Th-232	SLDS-BK616	(Gunther Salt)	<1.2	pCi/L	144,917	3.2E-07	300	pCi/L	0.03				
Uranium (KPA)		(Gunnier Bait)	53.9	pCi/L		3.0E-05	3,000	pCi/L					
Ra-226 ^c			<1.3	pCi/L		3.6E-07	10	pCi/L					
Ra-228 ^{d,e}			1.2	pCi/L		6.5E-07	30	pCi/L					
TSS			62.4	mg/L		-		-					
Gross Alpha (raw water)			45.4	pCi/L	L	1.3E-05	3,000	pCi/L					
Gross Beta			28.0	pCi/L		7.8E-06	N	A					
Th-228			< 0.8	pCi/L		1.0E-07	2,000	pCi/L					
Th-230		05/06/21 05/27/21	2.3	pCi/L		6.3E-07	1,000	pCi/L					
Th-232	SLDS-BK617	05/06/21 - 05/27/21 (Gunther Salt)	<1.2	pCi/L	73,660	1.7E-07	300	pCi/L	0.0				
Uranium (KPA)		(Gunther Sait)	54.5	pCi/L		1.5E-05	3,000	pCi/L					
Ra-226 ^c			<1.5	pCi/L		2.1E-07	10	pCi/L					
Ra-228 ^{d,e}			< 0.8	pCi/L	L	1.0E-07	30	pCi/L					
TSS			<0.8 41.3	mg/L		-		-					
Gross Alpha (raw water)			31.6	pCi/L		1.1E-05	3,000	pCi/L					
Gross Beta			-				24.9	pCi/L		8.4E-06	N	A	
Th-228								0.8	pCi/L		2.7E-07	2,000	pCi/L
Th-230					2.2	pCi/L		7.3E-07	1,000	pCi/L			
Th-232	SLDS-BK618	06/01/21 - 06/28/21	< 0.5		88,674	8.1E-08	300	pCi/L	0.02				
Uranium (KPA)		(Gunther Salt)	29.8	pCi/L		1.0E-05	3,000	pCi/L					
Ra-226 ^c			<1.3	pCi/L		2.2E-07	10	pCi/L					
Ra-228 ^{d,e}			0.8	pCi/L		2.7E-07	30	pCi/L					
TSS			132.8	mg/L		-		-					
fotal Activity Discharged in Second Quar	ter of CY 2021 (Ci)				Total Activity Disc	harged through 06/30)/21 (Ci)						
Th-228	1.0E-06				Th-228		1.8E-06						
Th-230	2.5E-06				Th-230		5.4E-06						
Th-232	5.7E-07				Th-232		1.1E-06						
Uranium (KPA)	5.5E-05				Uranium (KPA)		2.0E-04						
Ra-226	7.9E-07				Ra-226		1.7E-06						
Ra-228 ^d	1.0E-06				Ra-228 ^d		1.8E-06						
otal Volume Discharged in Second Quar	ter of CY 2021 (gallons)				Total Volume Discl	harged through 06/30)/21 (gallons)					
Gallons	307,251				Gallons		573,548	,					

^b The weighted average was used to calculate the total activity.

° 10 CFR 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2021 (Continued)
Third Ouarter

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit		SOR											
Gross Alpha (raw water)			37.0	pCi/L		1.9E-05	3,000	pCi/L												
Gross Beta			23.0	pCi/L		1.2E-05	N	IA												
Th-228			<0.9	pCi/L		2.4E-07	2,000	pCi/L												
Th-230		07/01/21 - 07/29/21	2.3	pCi/L		1.2E-06	1,000	pCi/L												
Th-232	SLDS-BK619	(Gunther Salt)	< 0.7	pCi/L	138,720	2.0E-07	300	pCi/L	0.0											
Uranium (KPA)		(Ountiler Sait)	41.1	pCi/L		2.2E-05	3,000	pCi/L												
Ra-226 ^c			< 0.8	pCi/L		2.0E-07	10	pCi/L												
Ra-228 ^{d,e}			< 0.9	pCi/L		2.4E-07	30	pCi/L												
TSS			31.6	mg/L		-		-												
Gross Alpha (raw water)			22.8	pCi/L		1.6E-05	3,000	pCi/L												
Gross Beta			21.2	pCi/L		1.5E-05	N	IA												
Th-228			< 0.8	pCi/L		2.7E-07	2,000	pCi/L												
Th-230			1.7	pCi/L		1.2E-06	1,000	pCi/L												
Th-232	SLDS-BK620	08/05/21 - 08/31/21	< 0.6	pCi/L	190,944	2.0E-07	300	pCi/L	0.0											
Uranium (KPA)		(Gunther Salt)	22.4	pCi/L	1	1.6E-05	3,000	pCi/L												
Ra-226 ^c			<1.5	pCi/L		5.5E-07	10	pCi/L												
Ra-228 ^{d,e}			< 0.8	pCi/L	1	2.7E-07	30	pCi/L	-											
TSS			76.9	mg/L		-		-												
Gross Alpha (raw water)				136.1	pCi/L		5.9E-05	3,000	pCi/L											
Gross Beta							-		67.2	pCi/L		2.9E-05	N	IA						
Th-228											00/02/21 00/20/21	-	00/00/01 00/00/01	< 0.9	pCi/L		1.9E-07	2,000	pCi/L	
Th-230														00/02/21 00/20/21		00/02/21 00/20/21	00/02/21 00/20/21	00/02/21 00/20/21	00/02/21 00/20/21	1.5
Th-232	SLDS-BK621	09/02/21 - 09/30/21	<0.6	pCi/L	113,957	1.4E-07	300	pCi/L	0.05											
Uranium (KPA)		(Gunther Salt)	121.0	pCi/L		5.2E-05	3,000	pCi/L												
Ra-226 ^c			0.9	pCi/L		4.0E-07	10	pCi/L												
Ra-228 ^{d,e}			< 0.9	pCi/L		1.9E-07	30	pCi/L	-											
TSS			51.9	mg/L		-		-												
Total Activity Discharged in Third Quarte	r of CY 2021 (Ci)			U	Total Activity Discl	narged through 09/30	/21 (Ci)													
Th-228	7.1E-07				Th-228		2.5E-06													
Th-230	3.1E-06				Th-230		8.5E-06													
Th-232	5.3E-07				Th-232		1.6E-06													
Uranium (KPA)	9.0E-05				Uranium (KPA)		2.9E-04													
Ra-226	1.1E-06				Ra-226		2.8E-06													
Ra-228 ^d	7.1E-07				Ra-228 ^d		2.5E-06													
Fotal Volume Discharged in Third Quarte	r of CY 2021 (gallons)				Total Volume Disch	narged through 09/30	/21 (gallons)												
Gallons	443,621				Gallons		1,017,169													

^b The weighted average was used to calculate the total activity.

 $^{\rm c}\,10\ CFR\,$ 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2021 (Continued)
Fourth Quarter

		Fourth (Juarter												
Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b		ischarge mit	SOR						
Gross Alpha (raw water)			180.9	pCi/L		1.1E-04	3,000	pCi/L							
Gross Beta			86	pCi/L		5.0E-05	N	IA							
Th-228			<1.6	pCi/L		4.7E-07	2,000	pCi/L							
Th-230		10/04/21 - 10/28/21	3.3	pCi/L		1.9E-06	1,000	pCi/L							
Th-232	SLDS-BK622	(Gunther Salt)	<1.2	pCi/L	153,482	3.6E-07	300	pCi/L	0.07						
Uranium (KPA)		(Ountiler Sait)	178.8	pCi/L		1.0E-04	3,000	pCi/L							
Ra-226 ^c			<1.8	pCi/L		5.1E-07	10	pCi/L							
Ra-228 ^{d,e}			<1.6	pCi/L		4.7E-07	30	pCi/L							
TSS			64.5	mg/L		-		-							
Gross Alpha (raw water)			127.9 pCi/L			3.8E-05	3,000	pCi/L							
Gross Beta			111.3	pCi/L	1	3.3E-05	N	A							
Th-228			2.4	pCi/L		7.0E-07	2,000	pCi/L							
Th-230			4	pCi/L		1.2E-06	1,000	pCi/L							
Th-232	SLDS-BK623	11/01/21 - 11/29/21 (Gunther Salt)	<1.3	pCi/L	77,674	2.0E-07	300	pCi/L	0.07						
Uranium (KPA)			156.1	pCi/L	L L	4.6E-05	3,000	pCi/L							
Ra-226 ^c			1.7	pCi/L		4.9E-07	10	pCi/L							
Ra-228 ^{d,e}			2.4	pCi/L		7.0E-07	30	pCi/L							
TSS			93.4	mg/L		-		-							
Gross Alpha (raw water)			67.0	pCi/L		4.3E-05	3,000	pCi/L							
Gross Beta									35.3	pCi/L		2.3E-05	N	A	
Th-228													1.2	pCi/L	
Th-230			1.8	pCi/L		1.2E-06	1,000	pCi/L	ĺ						
Th-232	SLDS-BK624	12/02/21 - 12/30/21	< 0.7	pCi/L	169,876	2.3E-07	300	pCi/L	0.03						
Uranium (KPA)		(Gunther Salt)	66.0	pCi/L		4.2E-05	3,000	pCi/L							
Ra-226 ^c			<1.4	pCi/L		4.4E-07	10	pCi/L							
Ra-228 ^{d,e}			1.2	pCi/L		7.7E-07	30	pCi/L							
TSS			64.6	mg/L		-		-							
Total Activity Discharged in Fourth Quart	er of CY 2021 (Ci)			U	Total Activity Disc	narged through 12/31	/21 (Ci)								
Th-228	1.9E-06				Th-228	0 0	4.4E-06								
Th-230	4.3E-06				Th-230		1.3E-05								
Th-232	7.8E-07				Th-232		2.4E-06								
Uranium (KPA)	1.9E-04				Uranium (KPA)		4.8E-04								
Ra-226	1.4E-06				Ra-226		4.3E-06								
Ra-228 ^d	1.9E-06				Ra-228 ^d		4.4E-06								
Total Volume Discharged in Fourth Quart	er of CY 2021 (gallons)				Total Volume Discl	narged through 12/31	/21 (gallons)							
Gallons	401,032				Gallons	0 0	1,418,201	,							

^a Non-detect sample results are converted to half the DL.

^b The weighted average was used to calculate the total activity.

° 10 CFR 20 limit is 600 pCi/L for Ra-226.

^d Ra-228 assumed to be in equilibrium with Th-228.

^e 10 CFR 20 limit is 600 pCi/L for Ra-228.

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

APPENDIX E

GROUNDWATER FIELD PARAMETER DATA FOR CALENDAR YEAR 2021 AND ANALYTICAL DATA RESULTS FOR CALENDAR YEAR 2021

(On the CD-ROM on the Back Cover of this Report)

THIS PAGE INTENTIONALLY LEFT BLANK

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 02/11/21
B16W06D											38.00
B16W06S											36.40
B16W07D											40.09
B16W08D											40.52
B16W08S											33.10
B16W09D											35.54
B16W12S											17.42
DW14											30.82
DW15											41.20
DW16											36.84
DW17											*
DW18											41.69
DW19RD											36.87
DW19RS											**
DW21	02/21/21	50	600	6.27	0.250	159.0	0.0	12.3	34	12.56	11.90

Table E-1. Groundwater Monitoring Field ParametersFirst Quarter 2021

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 05/14/21
B16W06D											26.88
B16W06S											27.86
B16W07D											29.15
B16W08D	05/17/21	300	2700	6.90	1.97	3.8	0.00	16.91	-94	30.39	29.37
B16W08S											26.00
B16W09D	05/19/21	300	2700	6.92	3.68	0.7	0.00	18.58	-111	23.17	24.85
B16W12S											15.93
DW14	05/19/21	150	1350	7.19	4.69	27.2	0.00	20.79	-136	20.20	20.52
DW15											30.50
DW16											26.03
DW17											28.24
DW18	05/17/21	300	2700	7.04	1.71	47.3	0.40	17.11	-102	31.78	30.62
DW19RD	05/17/21	150	1350	6.99	1.88	18.0	0.00	17.20	-93	27.36	26.05
DW19RS	05/17/21	50	450	6.88	2.87	13.8	0.00	16.52	-64	21.82	21.66
DW21											10.46

Table E-1. Groundwater Monitoring Field Parameters (Continued)Second Quarter 2021

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 08/05/21
B16W06D											31.82
B16W06S											30.20
B16W07D	8/5/2021	270	4050	6.85	2.54	7.7	0.0	17.89	-109	33.76	33.76
B16W08D											34.21
B16W08S											27.75
B16W09D											29.04
B16W12S											15.62
DW14											23.20
DW15											34.68
DW16											30.35
DW17											32.88
DW18											35.34
DW19RD											30.40
DW19RS											22.33
DW21											10.00

Table E-1. Groundwater Monitoring Field Parameters (Continued)Third Quarter 2021

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 11/10/21
B16W06D											33.80
B16W06S	11/12/21	100	1,200	7.05	1.19	0.0	0.00	16.06	-138	34.01	33.18
B16W07D											36.21
B16W08D	11/10/21	280	3,360	6.86	2.08	1.3	0.00	17.02	-111	36.47	36.47
B16W08S											31.57
B16W09D											31.84
B16W12S											18.22
DW14	11/11/21	150	2,250	6.87	5.03	31.7	0.00	18.45	-98	27.00	26.88
DW15											37.61
DW16	11/10/21	300	3,600	6.90	1.68	18.3	0.00	17.28	-73	33.22	33.22
DW17											35.35
DW18	11/15/21	300	5,400	7.06	1.85	19.9	0.00	15.80	-136	38.15	37.60
DW19RD	11/11/21	150	2,250	6.95	1.98	29.7	0.00	17.06	-106	33.46	33.15
DW19RS											**
DW21											11.43

Table E-1. Groundwater Monitoring Field Parameters (Continued)

Fourth Quarter 2021

* Measurement could not be taken at DW17 during the first quarter of 2021 because water level was below top of bladder pump.

** Measurement could not be taken at DW19RS during the first and fourth quarters of 2021 because water level was below the top of bladder pump.

--- Monitoring well was not sampled during this event.

BTOC - below top of casing

DO - dissolved oxygen

ORP - oxidation reduction potential

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD249083	B16W06S	11/12/21	SW846 6020	Arsenic	230		4	μg/L	=		No
SLD249083	B16W06S	11/12/21	SW846 6020	Cadmium	0.41		0.2	μg/L	J	E01	No
SLD243241	B16W07D	08/05/21	ML-006	Ra-226	0.728	0.784	1.03	pCi/L	UJ	T06	No
SLD243241-1	B16W07D	08/05/21	ML-006	Ra-226	1.24	1.11	1.63	pCi/L	UJ	T04, T05	No
SLD243241-2	B16W07D	08/05/21	SW846 9315 MODL	Ra-226	0.443	0.168	0.169	pCi/L	=		No
SLD243241-2	B16W07D	08/05/21	SW846 9320 MODL	Ra-228	1.39	0.411	0.477	pCi/L	=		No
SLD243241	B16W07D	08/05/21	ML-005	Th-228	0.92	0.539	0.521	pCi/L	J	T04, T20	No
SLD243241-1	B16W07D	08/05/21	ML-005	Th-228	0.626	0.464	0.429	pCi/L	J	T04, T20	No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	Th-228	0.0948	0.0969	0.14	pCi/L	UJ	T06	No
SLD243241	B16W07D	08/05/21	ML-005	Th-230	1.56	0.701	0.522	pCi/L	J	F01	No
SLD243241-1	B16W07D	08/05/21	ML-005	Th-230	0.95	0.572	0.429	pCi/L	J	F01, T04, T20	No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	Th-230	0.099	0.116	0.185	pCi/L	UJ	T06	No
SLD243241	B16W07D	08/05/21	ML-005	Th-232	0.07	0.2	0.521	pCi/L	UJ	T06	No
SLD243241-1	B16W07D	08/05/21	ML-005	Th-232	0.16	0.28	0.594	pCi/L	UJ	T06	No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	Th-232	-0.0616	0.0322	0.166	pCi/L	UJ	T06	No
SLD243241	B16W07D	08/05/21	ML-015	U-234	1.65	0.74	0.552	pCi/L	=		No
SLD243241-1	B16W07D	08/05/21	ML-015	U-234	1.23	0.611	0.449	pCi/L	=		No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	U-234	1.71	0.386	0.169	pCi/L	=		No
SLD243241	B16W07D	08/05/21	ML-015	U-235	0.185	0.321	0.681	pCi/L	UJ	T06	No
SLD243241-1	B16W07D	08/05/21	ML-015	U-235	-0.0217	0.179	0.46	pCi/L	UJ	T06	No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	U-235	0.0616	0.0932	0.159	pCi/L	UJ	T06	No
SLD243241	B16W07D	08/05/21	ML-015	U-238	1.48	0.687	0.397	pCi/L	=		No
SLD243241-1	B16W07D	08/05/21	ML-015	U-238	2.27	0.838	0.447	pCi/L	=		No
SLD243241-2	B16W07D	08/05/21	EML A-01-R MOD	U-238	1.53	0.358	0.12	pCi/L	=		No
SLD241585	B16W08D	05/17/21	SW846 6020	Arsenic	25		4	μg/L	=		No
SLD241585	B16W08D	05/17/21	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD241585	B16W08D	05/17/21	ML-006	Ra-226	0.0186	0.313	1.09	pCi/L	UJ	T06	No
SLD241585	B16W08D	05/17/21	ML-005	Th-228	0.215	0.232	0.304	pCi/L	UJ	T06	No
SLD241585	B16W08D	05/17/21	ML-005	Th-230	0.917	0.485	0.453	pCi/L	J	F01, T04, T20	No
SLD241585	B16W08D	05/17/21	ML-005	Th-232	0	0.162	0.421	pCi/L	UJ	T06	No
SLD241585	B16W08D	05/17/21	ML-015	U-234	0.199	0.346	0.734	pCi/L	UJ	T06	No
SLD241585	B16W08D	05/17/21	ML-015	U-235	0.123	0.348	0.905	pCi/L	UJ	T06	No
SLD241585	B16W08D	05/17/21	ML-015	U-238	0.0744	0.205	0.527	pCi/L	UJ	T06	No
SLD249084	B16W08D	11/10/21	ML-006	Ra-226	0.635	0.458	0.593	pCi/L	J	T04, T20	No
SLD249084	B16W08D	11/10/21	ML-005	Th-228	0.70	0.432	0.463	pCi/L	J	T04, T20	No
SLD249084	B16W08D	11/10/21	ML-005	Th-230	0.733	0.431	0.374	pCi/L	J	F01, T04, T20	No

Table E-2. CY 2021 Groundwater Sampling Data

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD249084	B16W08D	11/10/21	ML-005	Th-232	0.117	0.203	0.431	pCi/L	UJ	T06	No
SLD249084	B16W08D	11/10/21	ML-015	U-234	0.0641	0.182	0.472	pCi/L	UJ	T06	No
SLD249084	B16W08D	11/10/21	ML-015	U-235	0.0791	0.224	0.582	pCi/L	UJ	T06	No
SLD249084	B16W08D	11/10/21	ML-015	U-238	0.255	0.287	0.47	pCi/L	UJ	T06	No
SLD241586	B16W09D	05/19/21	SW846 6020	Arsenic	4.9		4	μg/L	=		No
SLD241586	B16W09D	05/19/21	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD241586	B16W09D	05/19/21	ML-006	Ra-226	2.43	1.2	0.983	pCi/L	=		No
SLD241586	B16W09D	05/19/21	ML-005	Th-228	1.44	0.62	0.391	pCi/L	=		No
SLD241586	B16W09D	05/19/21	ML-005	Th-230	1.53	0.645	0.451	pCi/L	J	F01	No
SLD241586	B16W09D	05/19/21	ML-005	Th-232	0.214	0.25	0.391	pCi/L	UJ	T06	No
SLD241586	B16W09D	05/19/21	ML-015	U-234	0.0373	0.158	0.476	pCi/L	UJ	T06	No
SLD241586	B16W09D	05/19/21	ML-015	U-235	-0.023	0.19	0.489	pCi/L	UJ	T06	No
SLD241586	B16W09D	05/19/21	ML-015	U-238	0.149	0.258	0.547	pCi/L	UJ	T06	No
SLD241587	DW14	05/19/21	SW846 6020	Arsenic	140		4	μg/L	=		No
SLD241587	DW14	05/19/21	SW846 6020	Cadmium	1.3		0.2	μg/L	=		No
SLD241587	DW14	05/19/21	ML-006	Ra-226	2.28	1.19	0.98	pCi/L	J	T04, T20	No
SLD241587	DW14	05/19/21	ML-005	Th-228	1.47	0.635	0.485	pCi/L	=		No
SLD241587	DW14	05/19/21	ML-005	Th-230	2.01	0.736	0.326	pCi/L	J	F01	No
SLD241587	DW14	05/19/21	ML-005	Th-232	0.398	0.33	0.391	pCi/L	J	T04, T20	No
SLD241587	DW14	05/19/21	ML-015	U-234	0.425	0.377	0.522	pCi/L	UJ	T04, T05	No
SLD241587	DW14	05/19/21	ML-015	U-235	0	0.247	0.643	pCi/L	UJ	T06	No
SLD241587	DW14	05/19/21	ML-015	U-238	0.123	0.203	0.375	pCi/L	UJ	T06	No
SLD249085	DW14	11/11/21	SW846 6020	Arsenic	200		4	μg/L	=		No
SLD249085	DW14	11/11/21	SW846 6020	Cadmium	0.4		0.2	μg/L	J	E01	No
SLD249086	DW16	11/10/21	SW846 6020	Arsenic	22		4	μg/L	=		No
SLD249086	DW16	11/10/21	SW846 6020	Cadmium	0.37		0.2	μg/L	J	E01	No
SLD249086	DW16	11/10/21	ML-006	Ra-226	0.69	0.442	0.443	pCi/L	J	T04, T20	No
SLD249086	DW16	11/10/21	ML-005	Th-228	0.119	0.216	0.472	pCi/L	UJ	T06	No
SLD249086	DW16	11/10/21	ML-005	Th-230	0.523	0.364	0.317	pCi/L	J	F01, T04, T20	No
SLD249086	DW16	11/10/21	ML-005	Th-232	0	0.169	0.439	pCi/L	UJ	T06	No
SLD249086	DW16	11/10/21	ML-015	U-234	1.74	0.739	0.388	pCi/L	=		No
SLD249086	DW16	11/10/21	ML-015	U-235	0.0677	0.186	0.479	pCi/L	UJ	T06	No
SLD249086	DW16	11/10/21	ML-015	U-238	0.765	0.492	0.465	pCi/L	J	T04, T20	No
SLD241588	DW18	05/17/21	ML-006	Ra-226	0.88	0.77	0.897	pCi/L	UJ	T04, T05	No
SLD241588	DW18	05/17/21	ML-005	Th-228	0.363	0.36	0.598	pCi/L	UJ	T04, T05	No
SLD241588	DW18	05/17/21	ML-005	Th-230	0.462	0.377	0.486	pCi/L	UJ	T04, T05	No

 Table E-2. CY 2021 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD241588	DW18	05/17/21	ML-005	Th-232	0.181	0.231	0.35	pCi/L	UJ	T06	No
SLD241588	DW18	05/17/21	ML-015	U-234	0.651	0.453	0.395	pCi/L	J	T04, T20	No
SLD241588	DW18	05/17/21	ML-015	U-235	0	0.26	0.675	pCi/L	UJ	T06	No
SLD241588	DW18	05/17/21	ML-015	U-238	0.87	0.522	0.393	pCi/L	J	T04, T20	No
SLD249087	DW18	11/15/21	SW846 6020	Arsenic	76		4	μg/L	=		No
SLD249087	DW18	11/15/21	SW846 6020	Cadmium	0.63		0.2	μg/L	J	E01	No
SLD241589	DW19RD	05/17/21	SW846 6020	Arsenic	24		4	μg/L	=		No
SLD241589	DW19RD	05/17/21	SW846 6020	Cadmium	2.7		0.2	μg/L	=		No
SLD241589	DW19RD	05/17/21	ML-006	Ra-226	0.797	0.775	0.988	pCi/L	UJ	T04, T05	No
SLD241589	DW19RD	05/17/21	ML-005	Th-228	0.867	0.511	0.443	pCi/L	J	T04, T20	No
SLD241589	DW19RD	05/17/21	ML-005	Th-230	0.382	0.346	0.444	pCi/L	UJ	T04, T05	No
SLD241589	DW19RD	05/17/21	ML-005	Th-232	0.052	0.143	0.368	pCi/L	UJ	T06	No
SLD241589	DW19RD	05/17/21	ML-015	U-234	56.5	8.41	0.705	pCi/L	=		No
SLD241589	DW19RD	05/17/21	ML-015	U-235	3	1.36	1	pCi/L	=		No
SLD241589	DW19RD	05/17/21	ML-015	U-238	55.2	8.25	0.809	pCi/L	=		No
SLD249088	DW19RD	11/11/21	SW846 6020	Arsenic	22		4	μg/L	=		No
SLD249088	DW19RD	11/11/21	SW846 6020	Cadmium	0.35		0.2	µg/L	J	E01	No
SLD249088	DW19RD	11/11/21	ML-006	Ra-226	0.215	0.352	0.773	pCi/L	UJ	T06	No
SLD249088	DW19RD	11/11/21	ML-005	Th-228	0.198	0.31	0.664	pCi/L	UJ	T06	No
SLD249088	DW19RD	11/11/21	ML-005	Th-230	0.595	0.423	0.487	pCi/L	J	F01, T04, T20	No
SLD249088	DW19RD	11/11/21	ML-005	Th-232	0.181	0.232	0.35	pCi/L	UJ	T06	No
SLD249088	DW19RD	11/11/21	ML-015	U-234	49.1	5.95	0.335	pCi/L	=		No
SLD249088	DW19RD	11/11/21	ML-015	U-235	1.75	0.768	0.497	pCi/L	=		No
SLD249088	DW19RD	11/11/21	ML-015	U-238	48.8	5.92	0.334	pCi/L	=		No
SLD241590	DW19RS	05/17/21	SW846 6020	Arsenic	10		4	μg/L	=		No
SLD241590	DW19RS	05/17/21	SW846 6020	Cadmium	1.1		0.2	μg/L	=		No
SLD241590	DW19RS	05/17/21	ML-006	Ra-226	-0.0266	0.429	0.948	pCi/L	UJ	T06	No
SLD241590	DW19RS	05/17/21	ML-005	Th-228	0.146	0.274	0.622	pCi/L	UJ	T06	No
SLD241590	DW19RS	05/17/21	ML-005	Th-230	1.1	0.567	0.514	pCi/L	J	F01, T04, T20	No
SLD241590	DW19RS	05/17/21	ML-005	Th-232	0.0487	0.134	0.344	pCi/L	UJ	T06	No
SLD241590	DW19RS	05/17/21	ML-015	U-234	5.58	1.46	0.419	pCi/L	=		No
SLD241590	DW19RS	05/17/21	ML-015	U-235	0.755	0.559	0.517	pCi/L	J	T04, T20	No
SLD241590	DW19RS	05/17/21	ML-015	U-238	7.39	1.72	0.578	pCi/L	=		No
SLD238257	DW21	02/11/21	SW846 6020	Arsenic	78		4	µg/L	=		No
SLD238257	DW21	02/11/21	SW846 6020	Cadmium	0.43		0.2	μg/L	J	E01	No
SLD238257	DW21	02/11/21	ML-006	Ra-226	0.282	0.477	1.08	pCi/L	UJ	T06	No

 Table E-2. CY 2021 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD238257	DW21	02/11/21	ML-005	Th-228	0.715	0.746	1.3	pCi/L	UJ	T06	No
SLD238257	DW21	02/11/21	ML-005	Th-230	0.307	0.488	0.983	pCi/L	UJ	T06	No
SLD238257	DW21	02/11/21	ML-005	Th-232	-0.068	0.289	0.869	pCi/L	UJ	T06	No
SLD238257	DW21	02/11/21	ML-015	U-234	0.315	0.32	0.554	pCi/L	UJ	T06	No
SLD238257	DW21	02/11/21	ML-015	U-235	-0.0706	0.173	0.593	pCi/L	UJ	T06	No
SLD238257	DW21	02/11/21	ML-015	U-238	0.171	0.228	0.419	pCi/L	UJ	T06	No

Table E-2. CY 2021 Groundwater Sampling Data (Continued)

VQs:

= - Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

U - Indicates that the data met all QA/QC requirements, and that the parameter was analyzed for but was not detected above the reported sample quantitation limit.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary

to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

Validation Reason Codes:

E01 - ICP and Furnace Requirements: Interference check sample recovery was outside the control limit.

F01 - Blanks: Sample data were qualified as a result of the method blank.

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T05 - Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.

T06 - Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainly 50 to 100 percent of the result.

APPENDIX F

WELL MAINTENANCE CHECKLISTS FOR THE ANNUAL GROUNDWATER MONITORING WELL INSPECTIONS CONDUCTED IN CALENDAR YEAR 2021

(On the CD-ROM on the Back Cover of this Report)

THIS PAGE INTENTIONALLY LEFT BLANK

CALENDAR YEAR 2021 WELL MAINTENANCE CHECKLISTS

THIS PAGE INTENTIONALLY LEFT BLANK

Name of Observer(s):	Lon Hoover & Nathan Gross	Date:3/17/21	Time: _	0922			
Property/Location: SLDS SLAPS and Vicinity Properties (VPs) HISS							
Monitoring Well Station Identification: <u>B16W06D</u>							
 Is well identification Is well accessibility Is well accessibility Is well free of othe Is well casing free Is the weep hole Is the protective droppings, wasp Is well riser free Is well riser free Is well riser free Is well pad stable Is well pad and with the second of the second	estructions (i.e. debris, overgrown veg ee of standing water or debris? If not, open? If not, clear blockage. casing free of dents, damage, rust, or nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, e? well casing free of gaps? to area free of erosion? ent? Mississippi River and Coldwater Cree ing pressure cap? bump or dedicated tubing functional at e (i.e. shut properly or locked, if appli ork properly? est? ter flow away from well casing (i.e., 16 (TOC) elevation mark clearly visible? i impacts associated with a change in escribe in Comments/Observations se the next groundwater monitoring even needed in Comments/Observations se ths collected documenting the appeara	flush mount well? getation, etc.)? remove water. other matter (i.e., bird etc.)? k floodplain, does it hav nd working properly? icable)? no ponding)? land use or remedial ction below. ent? If no, describe the ection below.		$\mathbb{N} \cap \mathbb{N} \cap $			
		2.40					
			100 (CAN) 100 (CAN)				

Nam Obse	e of erver(s):	Lon Hoove	r & Nathan Gross	Da	ate: <u>3/17/21</u>	Time:	0920	
Property/Location: SLDS SLAPS and Vicinity Properties (VPs)								
Mon	itoring Well Stati	on Identifica	ation: <u>B16W06</u>	is				
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.	Is well identificat Is well identificat Is well accessible Is well casing free Is the weep hole of Is the protective of droppings, wasp r Is well riser free of Is concrete pad in Is well pad stable Is well pad stable Is well pad and w Is well and/or pad Is riser cap preser If well is in the M a properly workin Is well bladder put Is the well secure Does the lock wo Is lock free of rus Does surface watch Is top-of casing (T Is well free from actions? If no, des Is well ready for t type of attention r Were photograph well?	ion visible or structions (i.e of standing open? If not, asing free of nests, etc.)? of dents or da tact (i.e. free ell casing fre l area free of t? lississippi Riv g pressure ca imp or dedica (i.e. shut pro rk properly? t? er flow away FOC) elevatio impacts assoc scribe in Com- he next groun- he next groun- he ded in Con-	top of well casir . debris, overgrow water or debris? I clear blockage. dents, damage, ru mage? of major cracks, e of gaps? erosion? wer and Coldwate up? ted tubing function perly or locked, i from well casing on mark clearly v ciated with a chan uments/Observation dwater monitoring	g for flush mo vn vegetation, f not, remove ust, or other m chips, etc.)? r Creek floodp onal and work f applicable)? (i.e., no pond isible? ge in land use ons section be ng event? If mo ions section b	etc.)? water. atter (i.e., bird blain, does it ha ing properly? ing)? or remedial low. o, describe the elow.			
Comments/Observations: Bladder pump is not operational. Portable bladder pump will need to be installed 24 hours before								

.

sampling.

Property/Location: SLDS SLAPS and Vicinity Properties (VPs) HISS Monitoring Well Station Identification: B16W07D Yes N 1. Is well identification number visible on outer casing for a stick up well? Yes N	
Monitoring Well Station Identification: <u>B16W07D</u> Yes N	
Yes N	
1. Is well identification number visible on outer casing for a stick up well? 2. Is well identification visible on top of well casing for flush mount well? 2. Is well accessible? 4. Is well accessible? 4. Is well accessible? 5. Is well accessible? 6. Is the weep hole open? If not, clear blockage. 7. Is the protective casing free of dents, damage, rust, or other matter (i.e., bird droppings, wasp nests, etc.)? 8. Is well pad stable? 9. Is concrete pad intact (i.e. free of major cracks, chips, etc.)? 10. Is well pad and well casing free of gaps? 11. Is well pad and well casing free of gaps? 12. Is well add and well casing free of gaps? 13. Is riser cap present? 14. If well is in the Mississippi River and Coldwater Creek floodplain, does it have a properly working pressure cap? 15. Is well badder pump or dedicated tubing functional and working properly? 16. Is the well secure (i.e. shut properly or locked, if applicable)? 17. Does surface water flow away from well casing (i.e., no ponding)? 20. Is top-of casing (TOC) elevation mark clearly visible? 21. Is	

......

Name of Observer(s):	Lon Hoover & Nathan Gro	ss Date:	<u>3/17/21</u> T	ime: _	0915	<u>_</u>	
Property/Location: SLDS SLAPS and Vicinity Properties (VPs)							
Monitoring Well Statio	on Identification: <u>B16W(</u>	08D	_				
 Is well identification Is well accessible? Is well free of obstition Is well free of obstition Is well casing free Is the weep hole of Is the protective can droppings, waspine Is well riser free of Is well riser free of Is well pad stable? Is well pad stable? Is well pad and weils Is well and/or pad Is riser cap present If well is in the Min a properly working Is the well secure of Is the well secure of Is the well secure of Is lock free of rust Does surface wate Is well free from in actions? If no, des Is well ready for the type of attention newspace 	tructions (i.e. debris, overgro of standing water or debris? pen? If not, clear blockage. asing free of dents, damage, ests, etc.)? f dents or damage? act (i.e. free of major cracks ell casing free of gaps? area free of erosion? t? ississippi River and Coldwate g pressure cap? mp or dedicated tubing funct (i.e. shut properly or locked, k properly? ? r flow away from well casin OC) elevation mark clearly mpacts associated with a chas cribe in Comments/Observa- ne next groundwater monitor eeded in Comments/Observa- collected documenting the a	ing for flush mount w own vegetation, etc.)? If not, remove water rust, or other matter (, chips, etc.)? er Creek floodplain, a tional and working pr if applicable)? g (i.e., no ponding)? visible? ange in land use or re- tions section below. ring event? If no, destations section below.	vell? ? r. (i.e., bird does it have roperly? medial cribe the	\mathbf{Y} es \mathbf{X}			

Name of Observer(s):	Lon Hoover & Nathan Gross Date: 3/17/21 Ti	me: _	0916					
Property/Location: SLDS SLAPS and Vicinity Properties (VPs)								
Monitoring Well Stat	Monitoring Well Station Identification: <u>B16W08S</u>							
 Is well identifica Is well accessible Is well free of ob Is well casing free Is the weep hole Is the protective droppings, wasp Is well riser free Is concrete pad in Is well pad stable Is well pad and with the stable Is well and/or patholic terms Is well and/or patholic terms Is well bladder piese Is the well secure Is the well secure Is the well secure Is the vell secure Is the vell secure Is the vell secure Is the well secure Is well free of ru Does surface wa Is well free from actions? If no, de Is well ready for type of attention 	ostructions (i.e. debris, overgrown vegetation, etc.)? ee of standing water or debris? If not, remove water. open? If not, clear blockage. casing free of dents, damage, rust, or other matter (i.e., bird nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? e? well casing free of gaps? ad area free of erosion? ent? Mississippi River and Coldwater Creek floodplain, does it have ing pressure cap? bump or dedicated tubing functional and working properly? e (i.e. shut properly or locked, if applicable)? ork properly? ist? ter flow away from well casing (i.e., no ponding)? (TOC) elevation mark clearly visible? in impacts associated with a change in land use or remedial escribe in Comments/Observations section below. the next groundwater monitoring event? If no, describe the needed in Commenting the appearance and condition of the	Yes NIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						

	ne of erver(s):	Lon Hoover & Nathan Gross	Date: 3/17/21	Time:	0950		
Pro	Property/Location: SLDS SLAPS and Vicinity Properties (VPs)						
TTO	perty/Location:			јпізэ			
Mor	nitoring Well Stati	on Identification: <u>B16W09D</u>					
1. 2. 3. 4. 5. 6. 7. 8.	Is well identificat Is well accessible Is well free of obs Is well casing free Is the weep hole of Is the protective of droppings, wasp r	structions (i.e. debris, overgrown ve e of standing water or debris? If not open? If not, clear blockage. easing free of dents, damage, rust, or	flush mount well? getation, etc.)? remove water.				
9.		tact (i.e. free of major cracks, chips	etc.)?	XXXXXX		- Ö	
10.	Is well pad stable	?		\boxtimes			
11.		ell casing free of gaps?		\boxtimes			
12.		area free of erosion?		\boxtimes			
13.	Is riser cap preser						
14.	a properly working pressure cap?						
15.		imp or dedicated tubing functional a		\boxtimes			
16.							
17.	Does the lock wo			\boxtimes			
18.				\boxtimes			
19.		er flow away from well casing (i.e.,		\boxtimes			
20.		FOC) elevation mark clearly visible		\boxtimes			
21.		impacts associated with a change in scribe in Comments/Observations set		\boxtimes			
22.		the next groundwater monitoring ev needed in Comments/Observations		\boxtimes			
23.	Were photograph well?	s collected documenting the appeara	nce and condition of t	he 🛛			
	nments/Observation	ons:					
No	ne.						
		*	52M N				
2					0.0000		

.

Name of Observer(s):	Lon Hoover & Nathan Gross Date:	3/17/21	Time: _	0937	
Property/Location:	SLDS SLAPS and Vicinity Properties	(VPs) H	ISS		
Monitoring Well Stat	tion Identification: B16W12S				
 Is well identifica Is well accessible Is well accessible Is well free of ob Is well casing free Is the weep hole Is the protective droppings, wasp Is well riser free Is well riser free Is well riser free Is well pad stable Is well pad and v Is well pad and v Is well and/or pa Is riser cap prese If well is in the N a properly worki Is the well secure Is the well secure Is the well secure Is top-of casing (21) Is well ready for type of attention 	estructions (i.e. debris, overgrown vegetation, etc ee of standing water or debris? If not, remove wat open? If not, clear blockage. casing free of dents, damage, rust, or other matter nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? e? vell casing free of gaps? d area free of erosion? nt? Aississippi River and Coldwater Creek floodplain ng pressure cap? ump or dedicated tubing functional and working e (i.e. shut properly or locked, if applicable)? ork properly? st? ter flow away from well casing (i.e., no ponding) TOC) elevation mark clearly visible? impacts associated with a change in land use or escribe in Comments/Observations section below the next groundwater monitoring event? If no, do needed in Comments/Observations section below the next groundwater monitoring event? If no, do needed in Comments/Observations section below	t well? .)? .ter. er (i.e., bird n, does it have properly?)? remedial /. lescribe the w.	YE UXXXXX X XXXXXXX X XXXXXXX X X		

. .

Name of Observer(s):	Lon Hoover & Nathan Gross	Date: <u>3/17/21</u>	ſime: _	1010	
Property/Location: SLDS SLAPS and Vicinity Properties (VPs)					
Monitoring Well Stati	ion Identification: DW14				
 Is well identificat Is well accessible Is well free of obs Is well casing free Is the weep hole of Is the protective of droppings, wasp it Is well riser free of Is well riser free of Is well pad stable Is well pad and w Is well pad and w Is well pad and w Is well and/or pad Is well and/or pad Is riser cap present If well is in the N a properly working Is the well secure Does the lock wo Is lock free of rus Does surface wat Is well free from actions? If no, de Is well ready for the type of attention of type of attention of well? Were photograph well? 	structions (i.e. debris, overgrown veg e of standing water or debris? If not, open? If not, clear blockage. casing free of dents, damage, rust, or nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, ender the ender of gaps? d area free of erosion? nt? Aississippi River and Coldwater Cree ng pressure cap? ump or dedicated tubing functional a e (i.e. shut properly or locked, if appl ork properly? st? ter flow away from well casing (i.e., to TOC) elevation mark clearly visible? impacts associated with a change in escribe in Comments/Observations set the next groundwater monitoring even needed in Commenting the appeara	flush mount well? getation, etc.)? remove water. other matter (i.e., bird etc.)? k floodplain, does it have nd working properly? icable)? no ponding)? land use or remedial ction below. ent? If no, describe the ection below. nce and condition of the mpling.	\mathbf{Yes}		

	ne of erver(s):	Lon Hoover & Nathan Gross Date: 3/17/21 T	`ime: _	0935	
Proj	Property/Location: SLAPS and Vicinity Properties (VPs)				
Мог	itoring Well Stat	tion Identification: DW15			
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 	Is well identificat Is well accessible Is well free of ob Is well casing free Is the weep hole Is the protective droppings, wasp Is well riser free Is concrete pad in Is well pad stable Is well pad and v Is well and/or pat Is riser cap prese If well is in the N a properly workit Is well bladder p Is the well secure Does the lock wor Is lock free of rut Does surface wat Is top-of casing (Is well free from	estructions (i.e. debris, overgrown vegetation, etc.)? ee of standing water or debris? If not, remove water. open? If not, clear blockage. casing free of dents, damage, rust, or other matter (i.e., bird nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? e? well casing free of gaps? d area free of erosion? mt? Mississippi River and Coldwater Creek floodplain, does it have ng pressure cap? ump or dedicated tubing functional and working properly? e (i.e. shut properly or locked, if applicable)? ork properly?	Yes IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\overset{\texttt{N}}{=} \square \square$	
22.		the next groundwater monitoring event? If no, describe the needed in Comments/Observations section below.	\boxtimes		
23.	• •	hs collected documenting the appearance and condition of the	\boxtimes		
	nments/Observati rtable bladder pum	ions: p will need to be installed 24 hours before sampling.	•		

Name ofObserver(s):Lon Hoover & Nathan GrossDate: 3/17/21Time:		0928		
Property/Location: SLDS SLAPS and Vicinity Properties (VPs)				
Monitoring Well Stat	ion Identification:			
 Is well identification Is well accessible Is well accessible Is well free of ob Is well casing free Is the protective of droppings, wasp Is the protective of droppings, wasp Is well riser free Is well riser free Is well pad stable Is well pad and w Is well pad and w Is well and/or pade Is vell and/or pade Is vell bladder patient Is well bladder patient Is the well secure Is the well secure Is the well secure Is the well secure Is the vell secure Is the vell secure Is well free of rus Is well free from actions? If no, de Is well ready for type of attention Were photograph well? 	structions (i.e. debris, overgrown vegetation, etc.)? e of standing water or debris? If not, remove water. open? If not, clear blockage. casing free of dents, damage, rust, or other matter (i.e., bird nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? ?? vell casing free of gaps? d area free of erosion? nt? Mississippi River and Coldwater Creek floodplain, does it have ng pressure cap? ump or dedicated tubing functional and working properly? e (i.e. shut properly or locked, if applicable)? ork properly? st? er flow away from well casing (i.e., no ponding)? TOC) elevation mark clearly visible? impacts associated with a change in land use or remedial escribe in Comments/Observations section below. the next groundwater monitoring event? If no, describe the needed in Commenting the appearance and condition of the	Yes IMAMAM M MILIMAM M MAMMAM M M		

Name ofObserver(s):Lon Hoover & Nathan GrossDate: 3/17/21		me: _	0945	
Property/Location:	SLDS SLAPS and Vicinity Properties (VPs)	S		
Monitoring Well Stat	tion Identification: DW18			
 Is well identifica Is well accessible Is well free of ob Is well casing free Is the veep hole Is the protective droppings, wasp Is well riser free Is well riser free Is well pad stable Is well pad and v Is well pad and v Is well and/or pa Is riser cap prese If well is in the N a properly worki Is the well secure Is the well secure Is the well secure Is lock free of ru Does surface wat Is well free from actions? If no, de Is well ready for type of attention 	ostructions (i.e. debris, overgrown vegetation, etc.)? ee of standing water or debris? If not, remove water. open? If not, clear blockage. casing free of dents, damage, rust, or other matter (i.e., bird nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? e? well casing free of gaps? darea free of erosion? ent? Mississippi River and Coldwater Creek floodplain, does it have ing pressure cap? bump or dedicated tubing functional and working properly? e (i.e. shut properly or locked, if applicable)? ork properly? ist? ter flow away from well casing (i.e., no ponding)? (TOC) elevation mark clearly visible? impacts associated with a change in land use or remedial escribe in Comments/Observations section below. the next groundwater monitoring event? If no, describe the needed in Commenting the appearance and condition of the	\mathbf{Yes}		
(70)				

Property/Location: SLDS SLAPS and Vicinity Properties (VPs) HISS Monitoring Well Station Identification: DW19RD 1. Is well identification number visible on outer casing for a stick up well? No NA 2. Is well identification visible on top of well casing for flush mount well? No No 3. Is well accessible? Is well accessible? Is well accessible? 4. Is well casing free of standing water or debris? If not, remove water. Is is well accessible? Is well casing free of dents, damage, rust, or other matter (i.e., bird droppings, wasp nests, etc.)? 8. Is well riser free of dents or damage? Is somerte pad intact (i.e. free of major cracks, chips, etc.)? Image: Comparison of the code of the stable? 11. Is well pad and well casing free of gaps? Image: Code of the code of co	Name of Observer(s):	Lon Hoover & Nathan Gross Date: 3/17/21	Гime: _	0955	
1. Is well identification number visible on outer casing for a stick up well? Yes No N/A 1. Is well identification visible on top of well casing for flush mount well? Image: State S	Property/Location: SLDS SLAPS and Vicinity Properties (VPs)				
1. Is well identification number visible on outer casing for a stick up well? Image: State S	Monitoring Well Sta	tion Identification: DW19RD			
	 Is well identification Is well accessibilies Is well free of othe Is well casing free Is the weep hole Is the protective droppings, wasp Is well riser free Is well riser free Is well pad stability Is well pad at and value Is well and/or patient in the free free Is well bladder patient in the free free Is the well secure Is the well secure Is well bladder patient in the free free free Is well bladder patient in the free free free Is well ready for type of attention Were photograp well? 	tion visible on top of well casing for flush mount well? e? ostructions (i.e. debris, overgrown vegetation, etc.)? ee of standing water or debris? If not, remove water. open? If not, clear blockage. casing free of dents, damage, rust, or other matter (i.e., bird nests, etc.)? of dents or damage? ntact (i.e. free of major cracks, chips, etc.)? e? well casing free of gaps? d area free of erosion? ent? Mississispip River and Coldwater Creek floodplain, does it have ng pressure cap?. oump or dedicated tubing functional and working properly? e (i.e. shut properly or locked, if applicable)? ork properly? st? ter flow away from well casing (i.e., no ponding)? (TOC) elevation mark clearly visible? impacts associated with a change in land use or remedial escribe in Comments/Observations section below. the next groundwater monitoring event? If no, describe the needed in Commenting the appearance and condition of the ions:	\square		
				Ŷ	

Name of Observer(s):	Lon Hoover & Nathan Gross Date: 3/17/21 Ti	me: _	0957		
Property/Location:	Property/Location: SLAPS and Vicinity Properties (VPs)				
Monitoring Well St	ation Identification: <u>DW19RS</u>				
 Is well identified Is well accessibility Is well free of of Is well casing f Is the weep hold Is the protective droppings, was Is well riser free Is well pad stability Is well pad and 	bstructions (i.e. debris, overgrown vegetation, etc.)? ree of standing water or debris? If not, remove water. e open? If not, clear blockage. e casing free of dents, damage, rust, or other matter (i.e., bird p nests, etc.)? e of dents or damage? intact (i.e. free of major cracks, chips, etc.)? le? well casing free of gaps? ad area free of erosion?	YES			
	Mississippi River and Coldwater Creek floodplain, does it have ting pressure cap?	\boxtimes			
 Is well bladder Is the well secu Does the lock w Is lock free of r Does surface w Is top-of casing Is well free from actions? If no, of 	pump or dedicated tubing functional and working properly? re (i.e. shut properly or locked, if applicable)? work properly? ust? ater flow away from well casing (i.e., no ponding)? (TOC) elevation mark clearly visible? n impacts associated with a change in land use or remedial lescribe in Comments/Observations section below.				
type of attentio	r the next groundwater monitoring event? If no, describe the needed in Comments/Observations section below.	\boxtimes			
23. Were photograp well?	bhs collected documenting the appearance and condition of the	\boxtimes			
Comments/Observations: Paint and remark/label lid.					

	ne of server(s):	Lon Hoover & Nathan Gross Date: 3/	<u>3/17/21 Time:</u>	0930	
Property/Location:		SLDS SLAPS and Vicinity Properties (VP	Ps) 🗍 HISS		
Mo	nitoring Well Stati	on Identification: DW21			
INTO	moring wen stati	Dw21			
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. Con	Is well identification Is well accessible Is well free of obsists well casing free Is the weep hole of Is the protective of droppings, wasp r Is well riser free of Is concrete pad in Is well pad stable Is well pad stable Is well pad and we Is well pad and we Is well and/or pad Is riser cap presen If well is in the M a properly working Is well bladder put Is the well secure Does the lock word Is lock free of rus Does surface wate Is top-of casing (T Is well free from if actions? If no, des Is well ready for t type of attention r Were photographs well?	ructions (i.e. debris, overgrown vegetation, etc.)? of standing water or debris? If not, remove water. pen? If not, clear blockage. using free of dents, damage, rust, or other matter (i.e. ests, etc.)? f dents or damage? act (i.e. free of major cracks, chips, etc.)? fl casing free of gaps? area free of erosion? ? ssissippi River and Coldwater Creek floodplain, do g pressure cap? mp or dedicated tubing functional and working prop (i.e. shut properly or locked, if applicable)? k properly? f flow away from well casing (i.e., no ponding)? OC) elevation mark clearly visible? mpacts associated with a change in land use or remo- cribe in Comments/Observations section below. te next groundwater monitoring event? If no, descri- eeded in Comments/Observations section below.	ell?		

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G

DOSE ASSESSMENT ASSUMPTIONS

THIS PAGE INTENTIONALLY LEFT BLANK

DOSE ASSESSMENT ASSUMPTIONS

DOSE TO A MAXIMALLY EXPOSED INDIVIDUAL

An off-site, worker-based receptor is the most realistic choice to represent the hypothetical maximally exposed individual, because of the proximity of the receptor, approximately 55 m southeast of the Gunther Salt (DT-4) excavation areas and because of the time the individual will spend at this location. Thus, a realistic assessment of dose can be performed using conservative assumptions of occupancy rate and distance from the source.

The following dose assessment is for a maximally exposed individual who works full-time (2,000 hours per year) at a location approximately 55 m southeast of the Gunther Salt (DT-4) excavation areas.

Airborne Radioactive Particulates

An EDE of 0.1 mrem per year to the receptor was calculated by using activity fractions to determine a source term, and then combining the dose results for the Gunther Salt (DT-4) excavation areas. The USEPA CAP88-PC modeling code was used to calculate dose to the receptor from the SLDS excavation areas (Leidos 2022b). The distances and directions of the maximally exposed receptor from the excavated areas are presented on Figure B-1 of Appendix B. Details related to calculation of EDE for the maximally exposed receptor are contained in Appendix B.

External Gamma Pathway

Stations DA-8, DA-9, and DA-10 were close to the receptor, the average TLD results from these locations were used for the dose calculations. The station DA-8, DA-9, and DA-10 TLDs measured an average annual exposure, above background, of 9.4 mrem per year, based on 8,760 hours of continuous detector exposure. The EDE due to gamma exposure for the maximally exposed individual is estimated by assuming that the site approximates a line source with a source strength (H₁) that is the average of the TLD measurements between the source and the receptor (Cember 1996).

 $H_1 = 9.4 \text{ mrem/year}$

Based on 100 percent occupancy rate, the exposure rate (H₂) to the receptor was calculated as follows:

$$H_2 = H_1 \times \frac{h_1}{h_2} \times \frac{\tan^{-1} (L/h_2)}{\tan^{-1} (L/h_1)}$$

$$H_2 = 9.4 \text{ mrem/year}$$

where:

- H_2 = exposure rate to the receptor
- H_1 = exposure rate to the TLDs
- h_2 = distance from the source to the receptor = 55 m
- h_1 = distance from the source to the TLDs = 55 m
- L = average distance from centerline of the line source (H₁) to the end of the line source = 17 m

The actual dose to the maximally exposed individual, who is only present during a normal work year, is calculated as follows:

$$H_{MEI} = H_2 \times \frac{2,000 \text{ hours/work year}}{8,760 \text{ hours/total year}}$$
$$H_{MEI} = 2.1 \text{ mrem/year}$$

Airborne Radon Pathway

The radon data from Station DA-9 was used to determine dose due to radon and decay chain isotopes since this was the maximum measurement detected above background. Appendix C presents the radon results at all stations. Station DA-9 ATDs measured annual exposures above background of 0.04 pCi/L based on 8,760 hours of continuous exposure.

$$S_1 = \left[\frac{(0.04) pCi/L}{1}\right] = 0.04 pCi/L$$

The actual radon exposure dose to the hypothetical maximally exposed individual was calculated as follows:

$$\mathbf{S}_{\text{MEI}} = \mathbf{S}_{1} \times \mathbf{F} \times \mathbf{D}\mathbf{C}\mathbf{F} \times \mathbf{T} \times \mathbf{C}_{1} \times \mathbf{C}_{2}$$

$$S_{MEI} = 4.2 \text{ mrem/year}$$

where:

S_1	= fenceline average of ATD measurements between source and receptor
\mathbf{S}_{MEI}	= radon exposure to the hypothetical maximally exposed individual
F	= Equilibrium fraction based on NCRP 97, Section 4, one (1) $WL = 100 \text{ pCi/L}$ and
	0.7 outdoor equilibrium factor
DCF	= dose conversion factor (USEPA 1989) = 1,250 mrem per WLM
Т	= exposure time for the hypothetical maximally exposed receptor = 2,000 hours per year
C_1	= occupancy factor constant = 1 month per 170 hours
C_2	= dispersion factor = 1.01 [diffusion from source to radon detector and receptor
	distance (both 55 m) were the same but at slightly different directions]
WL	= working level (concentration unit)
WLM	= working level month (exposure unit)

Total Effective Dose Equivalent

TEDE = CEDE (airborne particulates) + H_{MEI} (external gamma) + S_{MEI} (airborne radon) TEDE = 0.1 mrem/year + 2.1 mrem/year + 4.2 mrem/year = 6.4 mrem/year

where:

CEDE = committed effective dose equivalent