
REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2023

ST. LOUIS, MISSOURI

JULY 11, 2024

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

REVISION 0

ST. LOUIS DOWNTOWN SITE ANNUAL ENVIRONMENTAL MONITORING DATA AND ANALYSIS REPORT FOR CALENDAR YEAR 2023

ST. LOUIS, MISSOURI

JULY 11, 2024

prepared by

U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program

with assistance from

Leidos, Inc.

under Contract No. W912P923C0012

TABLE OF CONTENTS

SEC	TIO	<u>N</u>		PAGE
LIST	ГОБ	TABLE	ES	ii
LIST	ГОБ	FIGUR	ES	iii
LIST	ГОБ	APPEN	NDICES	iii
ACF	RONY	YMS AN	ND ABBREVIATIONS	iv
UNI	T AB	BREVI	ATIONS	vi
			JMMARY	
1.0			AL SITE BACKGROUND AND CURRENT SITE STATUS	
	1.1		DDUCTION	
	1.2		OSE	
	1.3		OUIS SITE PROGRAM AND SITE BACKGROUND	
	1.5	1.3.1	Calendar Year 2023 Remedial Actions	
2.0	EVA	ALUAT]	ION OF RADIOLOGICAL AIR MONITORING DATA	2-1
	2.1	RADIO	DLOGICAL AIR MEASUREMENTS	2-1
		2.1.1	Gamma Radiation	
		2.1.2	Airborne Radioactive Particulates	
		2.1.3	Airborne Radon	
	2.2		UATION OF RADIOLOGICAL AIR MONITORING DATA	
		2.2.1 2.2.2	Evaluation of Gamma Radiation Data	
		2.2.2	Evaluation of Outdoor Airborne Radon Data	
		2.2.4	Evaluation of Indoor Airborne Radon Data	
3.0	EXC	CAVAT	ION WATER MONITORING DATA	3-1
	3.1		UATION OF EXCAVATION WATER DISCHARGE MONITORIN	
4.0	CDA			
4.0			VATER MONITORING DATA	
	4.1		NDWATER MONITORING	
	4.2	EVAL 4.2.1	UATION OF GROUNDWATER MONITORING DATA	
		4.2.1	Evaluation of HU-A Groundwater Monitoring Data Evaluation of HU-B Groundwater Monitoring Data	
		4.2.3	Comparison of Historical Groundwater Data	
		4.2.4	Evaluation of Potentiometric Surface	
5.0	ENV	VIRON	MENTAL QUALITY ASSURANCE PROGRAM	5-1
	5.1		RAM OVERVIEW	
	5.2	QUAL	ITY ASSURANCE PROGRAM PLAN	5-1
	5.3	-	LING AND ANALYSIS GUIDE	
	5.4		SAMPLE COLLECTION AND MEASUREMENT	
	5.5		DRMANCE AND SYSTEM AUDITS	
		5.5.1	Field Assessments	
		5.5.2	Laboratory Audits	5-3

TABLE OF CONTENTS (Continued)

SEC T	CION	$\underline{\mathbf{P}}$	AGE
	5.6	SUBCONTRACTED LABORATORY PROGRAMS	5-3
	5.7	QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES	
		5.7.1 Duplicate Samples	
		5.7.2 Split Samples	
		5.7.3 Equipment Rinsate Blanks	
	5.8	DATA REVIEW, EVALUATION, AND VALIDATION	5-5
	5.9	PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY	5-6
	5.10	DATA QUALITY ASSESSMENT SUMMARY	5-7
		RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES	
6.0	D A F	DIOLOGICAL DOSE ASSESSMENT	
	6.1	SUMMARY OF ASSESSMENT RESULTS	
	6.2	PATHWAY ANALYSIS	
	6.3	EXPOSURE SCENARIOS	6-2
	6.4	DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS	6-2
7.0	REF	ERENCES	7-1
		LIST OF TABLES	
NITIM	DED		ACE
NUM		-	AGE
Table		J i i i i i i i i i i i i i i i i i i i	
Table		J	
Table			
Table Table		, , , , , , , , , , , , , , , , , , ,	
Table		Excavation Water Discharged in CY 2023 Screened HUs for Groundwater Monitoring Wells in CY 2023	
Table		Analytes Detected in HU-A Groundwater in CY 2023	
Table		· · · · · · · · · · · · · · · · · · ·	
Table			
Table		Non-Radiological Duplicate Sample Analysis for CY 2023 – Groundwater	
Table			
Table			
Table		· · · · · · · · · · · · · · · · · · ·	
Table			
Table	5-6.	1	
		for CY 2023 – Groundwater	
Table	6-1.	Complete Radiological Exposure Pathways	6-2

ii REVISION 0

LIST OF FIGURES

NUMBER

- Figure 1-1. Location Map of the St. Louis Sites Plan View of the SLDS Figure 1-2. Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at the St. Louis Background Location – USACE Service Base Gamma Radiation and Radon Monitoring Locations Figure 2-2. Figure 3-1. MSD Excavation Water Discharge Point Generalized Stratigraphic Column Figure 4-1. Figure 4-2. Geologic Cross-Section A-A' Figure 4-3. Groundwater Monitoring Well Locations Figure 4-4. Arsenic Time-Versus-Concentration Plots in Unfiltered Groundwater Figure 4-5. Total U Time-Versus-Concentration Plots in Unfiltered Groundwater Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic in Unfiltered Groundwater at DW14, DW18, DW19RS, and DW21 and for Total U in Unfiltered
- Figure 4-7. HU-A Potentiometric Surface (May 22, 2023)
- Figure 4-8. HU-B Potentiometric Surface (May 22, 2023)
- Figure 4-9. HU-A Potentiometric Surface (September 6, 2023)

Groundwater at DW19/DW19RD and B16W08S

- Figure 4-10. HU-B Potentiometric Surface (September 6, 2023)
- Figure 6-1. Dose Trend
- Figure 6-2. Maximum Dose vs. Background Dose

LIST OF APPENDICES

- Appendix A Documents Finalized in Calendar Year 2023
- Appendix B St. Louis Downtown Site 2023 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 *CFR* 61, Subpart I
- Appendix C Environmental Thermoluminescent Dosimeter, Alpha Track Detector, and Perimeter Air Data
- Appendix D Stormwater, Wastewater, and Excavation Water Data
- Appendix E Groundwater Field Parameter and Analytical Data Results for Calendar Year 2023
- Appendix F Well Maintenance Checklists for the Annual Groundwater Monitoring Well Inspections and Field Logbooks for Environmental Monitoring Conducted in Calendar Year 2023
- Appendix G Dose Assessment Assumptions

BACK COVER

The primary distribution format for this document is electronic files. If printed copies are distributed, the following portions will be included on a CD-ROM on the back cover of the report instead of being printed: Appendices C, D, E, and F.

iii REVISION 0

ACRONYMS AND ABBREVIATIONS

AEC U.S. Atomic Energy Commission

amsl above mean sea level

ARAR applicable or relevant and appropriate requirement

ATD alpha track detector BTOC below top of casing

CEDE committed effective dose equivalent

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations
COC contaminant of concern

CY calendar year

DCF dose conversion factor

DL detection limit
DO dissolved oxygen

DoD U.S. Department of Defense DOE U.S. Department of Energy DQO data quality objective EDE effective dose equivalent

ELAP Environmental Laboratory Accreditation Program

EM Engineer Manual

EMDAR Environmental Monitoring Data and Analysis Report EMG Environmental Monitoring Guide for the St. Louis Sites

EMICY23 Environmental Monitoring Implementation Plan for the St. Louis

Downtown Site for Calendar Year 2023

EMP Environmental Monitoring Program

ER Engineer Regulation

FUSRAP Formerly Utilized Sites Remedial Action Program

Futura Coatings Company

GRAAA groundwater remedial action alternative assessment

HISS Hazelwood Interim Storage Site

HU hydrostratigraphic unit ICP inductively coupled plasma

IL investigative limit

K potassium

KPA kinetic phosphorescence analysis

Mallinckrodt LLC

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDA minimum detectable activity

MDNR Missouri Department of Natural Resources

MDC minimum detectable concentration

MDL method detection limit
MED Manhattan Engineer District

MSD Metropolitan St. Louis Sewer District
NAD normalized absolute difference (unitless)

NCRP National Council of Radiation Protection and Measurements NESHAP National Emissions Standards for Hazardous Air Pollutants

NRC U.S. Nuclear Regulatory Commission

ORP oxidation reduction potential

iv REVISION 0

ACRONYMS AND ABBREVIATIONS (Continued)

PDI pre-design investigation

QA quality assurance

QAPP quality assurance program plan

QC quality control

QSM Department of Defense (DoD)/Department of Energy (DOE) Consolidated

Quality Systems Manual (QSM) for Environmental Laboratories

Ra radium

RA remedial action RL reporting limit

RME reasonably maximally exposed

Rn radon

ROD Record of Decision for the St. Louis Downtown Site

RPD relative percent difference

SAG Sampling and Analysis Guide for the St. Louis Sites

SLAPS St. Louis Airport Site
SLDS St. Louis Downtown Site

SLS St. Louis Sites

SOP standard operating procedure SOR sum of ratios (unitless)

SU survey unit

TEDE total effective dose equivalent

Th thorium

TLD thermoluminescent dosimeter
TSS total suspended solid(s)

U uranium

USACE U.S. Army Corps of Engineers
USCS unified soil classification system

USEPA U.S. Environmental Protection Agency

VP vicinity property
VQ validation qualifier
WRS Wilcoxon Rank Sum

v REVISION 0

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

 $\begin{array}{ll} ^{\circ}C & degree(s) \ Celsius \ (centigrade) \\ \mu Ci/mL & microcurie(s) \ per \ milliliter \\ \mu g/L & microgram(s) \ per \ liter \end{array}$

Ci curie(s)
ft foot/feet
m meter(s)

mg/L milligram(s) per liter

mL milliliter(s) mrem millirem

mS/cm milliSiemen(s) per centimeter

mV millivolt(s)

NTU nephelometric turbidity unit

pCi/L picocurie(s) per liter

WL working level

WLM working level month

yd³ cubic yard(s)

vi REVISION 0

EXECUTIVE SUMMARY

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2023 applies to the St. Louis Downtown Site (SLDS), which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

The purpose of this EMDAR is to document the environmental monitoring activities and to assess whether remedial actions (RAs) at the SLDS had a measurable environmental impact. In addition, this EMDAR serves to report the current condition of the SLDS, summarize the data collection efforts for CY 2023, and provide analysis of the CY 2023 environmental monitoring data results.

The U.S. Army Corps of Engineers (USACE) St. Louis District collects comprehensive environmental data for decision-making and planning purposes. Environmental monitoring, performed as a Best Management Practice or as a component of RA, serves as a critical component in the evaluation of the current status and potential future migration of residual contaminants.

The environmental monitoring described in the *Environmental Monitoring Implementation Plan* for the St. Louis Downtown Site for Calendar Year 2023 (EMICY23) (USACE 2022) was conducted as planned, and the results are documented in this EMDAR. Evaluation of the environmental monitoring data for all SLDS properties demonstrates compliance with applicable or relevant and appropriate requirements (ARARs).

RADIOLOGICAL AIR MONITORING

Radiological air data were collected and evaluated at the SLDS through airborne radioactive particulate, radon (indoor and outdoor), and gamma radiation monitoring, as required in the EMICY23 (USACE 2022). In addition, for environmental monitoring purposes, radiological air data were also used as inputs to calculate total effective dose equivalent (TEDE) to the hypothetical maximally exposed individual at the SLDS.

The TEDE calculated for the hypothetical maximally exposed individual at the SLDS was 1.5 mrem per year. The results of the radiological air monitoring conducted at the SLDS demonstrate compliance with ARARs for the SLDS.

EXCAVATION WATER DISCHARGE MONITORING

CY 2023 was the 25th year that excavation water was monitored, discharged from the SLDS, and reported. Excavation water from the SLDS was discharged to the St. Louis sanitary sewer system in compliance with the requirements stated in the July 23, 2001, Metropolitan St. Louis Sewer District (MSD) authorization letter (MSD 2001) and amended in the October 13, 2004, MSD letter (MSD 2004). Two (2)-year authorization letters were issued beginning in 2004 and extended every 2 years through the current cycle expiring on July 23, 2024 (MSD 2022). Copies of these authorization letters can be found in the project records or in Appendix A of the EMICY23 (USACE 2022). During CY 2023, 813,843 gallons of excavation water were discharged with no exceedances of the MSD limits occurring at the SLDS.

ES-1 REVISION 0

GROUNDWATER MONITORING

Groundwater was sampled during CY 2023 at the SLDS following a protocol for individual wells and analytes. Samples were analyzed for various radiological constituents and inorganic parameters. Static groundwater elevations (i.e., water levels) for all SLDS wells were measured quarterly. An expanded groundwater monitoring event was added in CY 2023. This comprehensive sampling event included the collection of groundwater samples from the entire well network of 15 wells for the SLDS.

The environmental sampling requirements and groundwater criteria for each analyte are consistent with the EMICY23. The groundwater criteria are used for comparison and discussion purposes. The criteria for assessing groundwater sampling data at the SLDS include the investigative limits (ILs) identified in the ROD (USACE 1998a) and the combined radium (Ra)-226/Ra-228 concentration limit from 40 *Code of Federal Regulations* (*CFR*) 192.02 (Table 1 of Subpart A). The groundwater criteria are presented in Table 2-6 of the EMICY23 and in Section 4.0 of this EMDAR. For those stations where an analyte exceeded the groundwater criteria at least once during CY 2023 and sufficient data were available to evaluate trends, Mann-Kendall statistical trend analyses were completed to assess whether analyte concentrations were increasing or decreasing through time.

During CY 2023, all five hydrostratigraphic unit (HU)-A monitoring wells (B16W06S, B16W08S, B16W12S, DW19RS, and DW21) were sampled (Figure 4-3). Because HU-A is not considered a potential source of drinking water, the ROD did not establish criteria for HU-A groundwater. However, Mann-Kendall Trend analysis was conducted for arsenic in B16W06S, DW19RS and DW21 and total U in B16W08S, B16W12S, and DW19RS. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant upward trend in DW19RS and a statistically significant downward trend in DW21. The results of the Mann-Kendall Trend Tests for total U indicate a statistically significant upward trend in B16W08S. No statistically significant trend was indicated for the remaining contaminants of concern (COCs) in the HU-A groundwater for the wells sampled in CY 2023.

During CY 2023, all 10 HU-B (Mississippi Alluvial Aquifer) monitoring wells (B16W06D, B16W07D, B16W08D, B16W09D, DW14, DW15, DW16, DW17, DW18, and DW19RD) were sampled (Figure 4-3). Mann-Kendall Trend Tests were conducted for COCs that exceeded the ILs in HU-B wells during CY 2023: arsenic in DW14 and DW18; and total U in DW19RD. The results of the Mann-Kendall Trend Tests for arsenic indicate a statistically significant downward trend in DW14 and a statistically significant upward trend in DW18. The results of the Mann-Kendall Trend Tests indicate no statistically significant trend for total U concentrations in DW19RD. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of 20 µg/L since installation of DW19 in CY 1999.

Potentiometric surface maps were created from groundwater elevations measured in May and September to illustrate groundwater flow conditions in wet and dry seasons. The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant typically slopes northeast toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (November) indicates groundwater flow patterns in HU-A were consistent for the wet and dry season conditions during CY 2023.

In HU-B, groundwater flow and direction are strongly influenced by river stage, which indicates a hydraulic connection to the Mississippi River (Figures 4-8 and 4-10). The flow direction at the site is generally north-northeast toward the Mississippi River. Localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area.

ES-2 REVISION 0

1.0 HISTORICAL SITE BACKGROUND AND CURRENT SITE STATUS

1.1 INTRODUCTION

This annual Environmental Monitoring Data and Analysis Report (EMDAR) for calendar year (CY) 2023 applies to the St. Louis Downtown Site (SLDS) which is within the St. Louis Sites (SLS) (Figure 1-1) and under the scope of the Formerly Utilized Sites Remedial Action Program (FUSRAP). This EMDAR provides an evaluation of the data collected as part of the implementation of the Environmental Monitoring Program (EMP) for the SLDS. The SLDS consists of the Mallinckrodt LLC (Mallinckrodt) plant and surrounding vicinity properties (VPs) (Figure 1-2). Environmental monitoring of various media at the SLDS is required in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the commitments in the *Record of Decision for the St. Louis Downtown Site* (ROD) (USACE 1998a).

1.2 PURPOSE

The purpose of this EMDAR is to document the environmental monitoring activities and to assess whether remedial actions (RAs) at the SLDS had a measurable environmental impact. In addition, this EMDAR serves to report the current condition of the SLDS, summarize the data collection efforts for CY 2023, and provide analysis of the CY 2023 environmental monitoring data results. This EMDAR presents the following information:

- Sample collection data for various media at the SLDS and interpretation of CY 2023 EMP results;
- The compliance status of the SLDS with federal and state applicable or relevant and appropriate requirements (ARARs) or other benchmarks (e.g., *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for CY 2023* [EMICY23] [USACE 2022]);
- Dose assessments for radiological contaminants as appropriate at the SLDS;
- A summary of trends based on changes in contaminant concentrations to support RAs, ensure public safety, and maintain surveillance monitoring requirements at the SLDS; and
- The identification of data gaps and future EMP needs.

1.3 ST. LOUIS SITE PROGRAM AND SITE BACKGROUND

The FUSRAP was executed by the U.S. Atomic Energy Commission (AEC) in 1974 to identify, remediate, or otherwise control sites where residual radioactivity remains from operations conducted for the Manhattan Engineer District (MED) and AEC during the early years of the nation's atomic energy program. The FUSRAP was continued by the follow-on agencies to the AEC until 1997, when the U.S. Congress transferred responsibility for FUSRAP to the U.S. Army Corps of Engineers (USACE).

The SLDS properties were involved with refinement of uranium ores, production of uranium metal and compounds, uranium recovery from residues and scrap, and the storage and disposal of associated process byproducts. The processing activities were conducted in portions of the SLDS under contract to the MED/AEC between the early 1940s and the 1950s.

A detailed description and history of the SLDS can be found in the *Remedial Investigation Report* for the St. Louis Site (U.S. Department of Energy [DOE] 1994); the *Remedial Investigation*

1-1 REVISION 0

Addendum for the St. Louis Site (DOE 1995); the ROD (USACE 1998a); and the Environmental Monitoring Guide for the St. Louis Sites (EMG) (USACE 1999a).

USACE SLDS documents finalized in CY 2023 are listed in Appendix A.

1.3.1 Calendar Year 2023 Remedial Actions

During CY 2023, RAs were performed at the following SLDS properties (Figure 1-2): Gunther Salt North VP, Mallinckrodt Plant 2, and the Bike Path (DT-2 and DT-11). RAs at the Gunther Salt North VP and Mallinckrodt Plant 2 continued throughout the year. RAs at the Bike Path (DT-2 and DT-11) started in the fourth quarter and continued through the rest of the year. A total of 4,485 yd³ of contaminated material were shipped from the SLDS via railcar to US Ecology in Michigan for proper disposal. Additionally, loadout activities were performed at Plant 6.

Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (U.S. Department of Defense [DoD] 2000) Class 1 verifications were performed at Mallinckrodt Plant 2 (survey unit [SU]-4) during CY 2023. No MARSSIM Class 2 or Class 3 final status survey was performed at SLDS in CY 2023. Verifications at the SLDS were performed to confirm that the remediation goals of the ROD were achieved. The SLDS is shown on Figure 1-2.

Characterizations/pre-design investigations (PDIs) were performed at the Gunther Salt North VP (DT-4), Metropolitan St. Louis Sewer District (MSD) North Property, Mallinckrodt Plant 1/Building 25, and Buchanan Street during CY 2023. Based on final status survey evaluations performed as part of these characterizations/PDIs in CY 2023, Class 2 sample results did not exceed remediation goals for these properties.

No monitoring wells were decommissioned in CY 2023.

In accordance with the MSD authorization letter for the SLDS, 813,843 gallons of excavation water were discharged in CY 2023. Since the beginning of the project, 37,284,152 gallons have been treated and released to MSD at the SLDS.

1-2 REVISION 0

2.0 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

This section documents environmental monitoring activities related to radiological air data. The radiological air monitoring conducted at the SLDS is conducted as part of the EMP. Radiological air data are collected to evaluate the compliance status of each site with respect to ARARs, to evaluate trends, and to perform dose assessments for radiological contaminants, as appropriate, at each site. Section 2.1 includes a description of the types of radiological air monitoring conducted at the SLDS, potential sources of the contaminants to be measured (including natural background), and measurement techniques employed during CY 2023.

All radiological air monitoring required through implementation of the EMICY23 (USACE 2022) was conducted as planned during CY 2023. The evaluations of radiological air monitoring data for all SLDS properties demonstrate compliance with ARARs (e.g., National Emissions Standards for Hazardous Air Pollutants [NESHAP] report [Appendix B]).

A total effective dose equivalent (TEDE) for the reasonably maximally exposed (RME) member of the public was calculated for the SLDS by summing the dose due to gamma radiation, radiological air particulates, and radon. The TEDE calculated for the RME individual at the SLDS was 1.5 mrem per year. The TEDE for the SLDS was below the 10 *Code of Federal Regulations (CFR)* 20.1301 limit for members of the public, which is 100 mrem per year. Details of the radiological dose assessment (TEDE calculation) are presented in Section 6.0.

2.1 RADIOLOGICAL AIR MEASUREMENTS

The three types of radiological air monitoring conducted at the SLS during CY 2023 are gamma radiation, airborne radioactive particulates, and airborne radon. Section 2.2 provides details of the air monitoring conducted at the SLDS.

2.1.1 Gamma Radiation

Gamma radiation is emitted from natural, cosmic, and manmade sources. The earth naturally contains gamma radiation-emitting substances, such as the uranium decay series, the thorium decay series, and potassium (K)-40. Cosmic radiation originates in outer space and filters through the atmosphere to the earth. Together, these two sources comprise the majority of natural gamma background radiation. The National Council of Radiation Protection and Measurements (NCRP) estimates that the total naturally occurring background radiation dose equivalent due to gamma exposure is 51 mrem per year, 20 mrem per year of which originates from sources on earth and 31 mrem per year of which originates from cosmic sources (NCRP 2009). The background monitoring location for the SLS (Figure 2-1) are reasonably representative of background gamma radiation for the St. Louis metropolitan area (Appendix C, Table C-2).

Gamma radiation was measured at the SLDS during CY 2023 using thermoluminescent dosimeters (TLDs). TLDs were placed at locations representative of areas accessible to the public (Figure 2-2) in order to provide input for calculation of the TEDE.

The TLDs were placed at the monitoring location approximately 5 ft above the ground surface inside a housing shelter. The TLDs were collected quarterly and sent to a properly certified, off-site laboratory for analysis (Appendix C, Table C-2).

2.1.2 Airborne Radioactive Particulates

2.1.2.1 Air Sampling

Airborne radioactive particulates result from radionuclides in soils that become suspended in the air. The radionuclides in soil normally become airborne as a result of wind erosion of the surface soil or

2-1 REVISION 0

as a result of soil disturbance (e.g., excavation). This airborne radioactive material includes naturally occurring background concentrations (Appendix C, Table C-1) as well as above-background concentrations of radioactive materials present at the SLDS (Appendix C, Table C-3).

Airborne radioactive particulates were measured at the SLDS by drawing air through a filter membrane with an air sampling pump placed approximately 3 ft above the ground, and then analyzing the material contained on the filter. The results of the analysis, when compared to the amount of air drawn through the filter, were reported as radioactive contaminant concentrations (i.e., μ Ci/mL). Particulate air monitors were located in predominant wind directions at excavation and loadout area perimeter locations, as appropriate, to provide input for the NESHAP Report and calculation of TEDE to the critical receptor. Air particulate samples were typically collected daily on working days.

2.1.2.2 Estimation of Emissions in Accordance with the National Emissions Standard for Hazardous Air Pollutants

The SLDS CY 2023 NESHAP report (Appendix B) presents calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors in accordance with the NESHAP. The report is prepared in accordance with the requirements and procedures contained in 40 *CFR* 61, Subpart I.

Emission rates calculated using air sampling data, activity fractions, and other site-specific information were used for the SLDS as inputs to the U.S. Environmental Protection Agency (USEPA) CAP88-PC Version 4.1 computer code (USEPA 2020) to demonstrate compliance with the 10 mrem per year ARAR in 40 *CFR* 61, Subpart I.

CY 2023 monitoring results for the SLDS demonstrate compliance with the 10 mrem per year ARAR prescribed in 40 *CFR* 61, Subpart I. See Section 2.2.2 for further details.

2.1.3 Airborne Radon

Uranium (U)-238 is a naturally occurring radionuclide commonly found in soil and rock. Radon (Rn)-222 is a naturally occurring radioactive gas found in the uranium decay series. A fraction of the radon produced from the radioactive decay of naturally occurring U-238 diffuses from soil and rock into the atmosphere, accounting for natural background airborne radon concentrations. The NCRP estimates the total naturally occurring background radiation dose equivalent due to radon exposure is 230 mrem per year (NCRP 2009). In addition to this natural source, radon is produced from the above-background concentrations of radioactive materials present at the SLDS.

Outdoor airborne radon concentration is governed by the emission rate and dilution factors, both of which are strongly affected by meteorological conditions. Surface soil is the largest source of radon. Secondary contributors include oceans, natural gas, geothermal fluids, volcanic gases, ventilation from caves and mines, and coal combustion. Radon levels in the atmosphere have been observed to vary with elevation, season, time of day, or location. The chief meteorological parameter governing airborne radon concentration is atmospheric stability; however, the largest variations in atmospheric radon occur spatially (USEPA 1987).

Radon alpha track detectors (ATDs) were used at the SLDS to measure alpha particles emitted from radon and its associated decay products. The background monitoring location for the SLS (Figure 2-1) is reasonably representative of background radon concentrations for the St. Louis metropolitan area. Radon ATDs were co-located with environmental TLDs approximately 3 to 5 ft above the ground surface in housing shelters at locations representative of areas accessible to the public (Figure 2-2). Outdoor ATDs were collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4). Recorded radon

2-2 REVISION 0

concentrations are listed in pCi/L and are compared to the value of 0.5 pCi/L average annual above-background concentration as listed in 40 CFR 192.02(b)(2).

CY 2023 outdoor radon monitoring results for the SLDS demonstrate compliance with the 0.5 pCi/L ARAR prescribed in 40 CFR 192.02(b)(2). See Section 2.2.3 for further details.

At the SLDS, ATDs were also placed in locations within applicable structures (Building 26 at Plant 1) to monitor for indoor radon exposure (Figure 2-2). The ATDs were placed in areas that represent the highest likely exposure from indoor radon. ATD locations were selected with consideration given to known radium (Ra)-226 concentrations under applicable buildings and occupancy times at any one location within each building. Annual average indoor radon data in each applicable building were compared to the 40 *CFR* 192.12(b)(1) ARAR value of 0.02 WL. In accordance with 40 *CFR* 192.12(b)(1), reasonable effort shall be made to achieve, in each habitable or occupied building, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL. In any case, the radon decay product concentration shall not exceed 0.03 WL. Background indoor radon monitors were not necessary because the regulatory standard of 0.02 WL includes background. Indoor ATDs were also collected approximately every 6 months and sent to a properly certified off-site laboratory for analysis (Appendix C, Table C-4).

CY 2023 indoor radon monitoring results for the SLDS demonstrate compliance with the 0.02 WL ARAR prescribed by 40 *CFR* 192.12(b)(1). See Section 2.2.4 for further details.

2.2 EVALUATION OF RADIOLOGICAL AIR MONITORING DATA

2.2.1 Evaluation of Gamma Radiation Data

Gamma radiation monitoring was performed at the SLDS during CY 2023 at eight locations representative of areas accessible to the public (Figure 2-2) and at the background location (Figure 2-1) to compare on-site/off-site exposure and to provide input for calculation of TEDE to the critical receptor. The EMP uses two TLDs at Monitoring Station DA-8 (for each monitoring period) to provide additional quality control (QC) of monitoring data. A summary of TLD monitoring results for CY 2023 at the SLDS is shown in Table 2-1. TLD data are contained in Appendix C, Table C-2, of this EMDAR.

Table 2-1. Gamma Radiation Data Summary 101 CT 2025										
				-	Third Quarter		_			
Monitoring	Monitoring	TLD	Data	TLD	Data	TLD	Data	TLD	Data	Net TLD
Location	Station				(mrem/c	quarter)				Data
		Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	Rpt.	Cor.a,b	(mrem/year)
	DA-3	15.5	1.1	18.1	0.0	18.6	0.0	19	2.7	3.8
	DA-7	16.5	2.2	20.3	2.2	21.3	3.0	21.5	5.3	12.7
	DA-8	16.1	1.8	23.3	5.4	19.9	1.4	21	4.8	12.4
CI DC	DA-8 ^c	19.3	5.3	22	4.0	22	3.7	22.3	6.2	
SLDS Perimeter	DA-9	16.6	2.3	18.4	0.2	16.4	0.0	20.7	4.5	7.0
Perimeter	DA-10	19.1	5.1	20.1	2.0	19.7	1.2	21.5	5.3	13.6
	DA-11	17.5	3.3	18	0.0	18.1	0.0	19.6	3.3	6.6
	DA-12	18.8	4.7	19.6	1.5	19.7	1.2	18.2	1.8	9.2
	DA-14	15.1	0.7	17.8	0.0	18.8	0.2	17.7	1.3	2.2
Background	BA-1	14.5		18.2		18.6		16.5		

Table 2-1. Gamma Radiation Data Summary for CY 2023

2-3 REVISION 0

All quarterly data reported from the vendor have been normalized to exactly one quarter's exposure above background.

 $^{^{\}circ}$ CY 2023 net TLD data are corrected for background, shelter absorption (s/a = 1.075), and fade.

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis. Duplicate sample results were not included in calculations.

⁻⁻⁻ Result calculation is not required.

Cor. – corrected Rpt. – reported

2.2.2 Evaluation of Airborne Radioactive Particulate Data

Air sampling for radiological particulates during CY 2023 was conducted by the RA contractor at the perimeter of each active excavation and loadout area within the SLDS. Air particulate data were used as inputs to the NESHAP report (Appendix B) and calculation of TEDE to the critical receptor (Section 6.0). A summary of air particulate monitoring data from excavation perimeters is shown in Table 2-2. Airborne radioactive particulate data are contained in Appendix C, Table C-3, of this EMDAR.

Table 2-2. All bothe Radioactive 1	ai ticulate Data Sullilli	ary 101 C1 2025
Monitoring Location	Average Concent	ration (μCi/mL) ^a
	Communication Albertain	C D-4-

Table 2-2 Airborne Redigective Particulate Data Summary for CV 2023

Monitoring Location	Average Concentration (μCi/mL) ^a			
Monitoring Location	Gross Alpha	Gross Beta		
Bike Path (DT-2 and DT-11)	7.98E-15	3.68E-14		
Plant 2	4.47E-15	3.63E-14		
Plant 6 Loadout	4.69E-15	3.72E-14		
Background Concentration (BA-1) ^b	4.96E-15	2.41E-14		

Average concentration values for the sampling period by location.

Evaluation of Outdoor Airborne Radon Data

Outdoor airborne radon monitoring was performed at the SLDS using ATDs to measure radon emissions. Eight detectors were co-located with the TLDs at locations shown on Figure 2-2. One additional detector was located at Monitoring Station DA-8 as a QC duplicate. A background ATD, co-located with the background TLD (Section 2.2.1), was used to compare on-site exposure and off-site background exposure. In accordance with 40 CFR 192.02(b)(2), control of residual radioactive materials from a uranium mill tailings pile must be designed to provide reasonable assurance that releases of radon to the atmosphere will not increase the annual average concentration of radon outside the disposal site by more than 0.5 pCi/L. Although a uranium mill tailings pile is not associated with any of the SLS, these standards are used for comparative purposes. Outdoor airborne radon data were used as an input for calculation of the TEDE to the critical receptor (Section 6.0) and compared to the 0.5 pCi/L average annual concentration above background value listed in 40 CFR 192.02(b)(2). The average annual radon concentration above background at the SLDS monitoring stations was 0.00 pCi/L, meeting the 40 CFR 192.02(b)(2) limit of 0.5 pCi/L. A summary of outdoor airborne radon data is shown in Table 2-3. Outdoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Table 2-3. Outdoor Airborne Radon (Rn-222) Data Summary for CY 2023

Manitaging	Manitarina	Average Annual Concentration (pCi/L)				
Monitoring Location	Monitoring Station	01/04/23 to 07/05/23 (Uncorrected) ^a	07/05/23 to 01/02/24 (Uncorrected) ^a	Average Annual Concentration ^b		
	DA-3	0.08	0.22	0.00		
	DA-7	0.08	0.19	0.00		
	DA-8	0.08	0.19	0.00		
	DA-8 c	0.08	0.16			
SLDS	DA-9	0.08	0.24	0.01		
	DA-10	0.08	0.19	0.00		
	DA-11	0.08	0.16	0.00		
	DA-12	0.08	0.22	0.00		
	DA-14	0.08	0.16	0.00		
Background	BA-1	0.08	0.22			

Detectors were installed and removed on the dates listed. Data are as reported from the vendor (gross data including background).

2-4 REVISION 0

These concentrations are provided for informational purposes only.

Results reported from vendor for two periods are time-weighted and averaged to estimate an annual average radon concentration (pCi/L)

A QC duplicate is collected at the same time and location, and is analyzed by the same method for evaluating precision in sampling and analysis. Result calculation is not required.

2.2.4 Evaluation of Indoor Airborne Radon Data

Indoor radon monitoring was performed at one building at SLDS (Building 26 at Plant 1) using one ATD placed in the building at a height of 5 ft (to approximate breathing zone conditions) to measure radon concentrations (Figure 2-2). The ATD was installed in January of CY 2023 at the monitoring location, collected for analysis after approximately 6 months of exposure, and replaced with another ATD that would represent radon exposure for the remainder of the year. Recorded radon concentrations (listed in pCi/L) were converted to radon WL, and an indoor radon equilibrium factor of 0.4 (NCRP 1988) was applied.

The results (including background) were evaluated based on the criteria contained in 40 CFR 192.12(b)(1). The average annual radon concentration was determined to be less than the 40 CFR 192.12(b)(1) criterion of 0.02 WL in Building 26 at Plant 1 (Leidos 2023a). Additional details of the data and calculation methodology used to determine indoor radon WL in Building 26 at Plant 1 are contained in Table 2-4. Indoor ATD data are contained in Appendix C, Table C-4, of this EMDAR.

Table 2-4. Indoor Airborne Radon (Rn-222) Data Summary for CY 2023

Manitaning	Monitovina	Average Annual Concentration (pCi/L)			
Monitoring Location	Monitoring Station	01/04/23 to 07/05/23 ^a	07/05/23 to 01/02/24 ^a	Annual Average ^b	$\mathbf{WL^c}$
Plant 1, Building 26	DI-1	0.19	0.86	0.53	0.002

Detectors were installed and removed on the dates listed. Data are as reported from the vendor.

2-5 REVISION 0

b Results reported from vendor for two periods are averaged to estimate an annual average radon concentration (pCi/L).

The average annual WL is calculated by dividing the average pCi/L by 100 pCi/L per WL and multiplying by 0.4. The average annual WL must be less than 0.02 (40 CFR 192.12(b)).

THIS PAGE INTENTIONALLY LEFT	BLANK
St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Repo	

2-6 REVISION 0

3.0 EXCAVATION WATER MONITORING DATA

This section provides a description of the excavation water discharge monitoring activities conducted at the SLDS during CY 2023. Excavation water is stormwater and groundwater that accumulates in excavations present at the SLDS as a result of RAs. Excavation water effluent from the SLDS is discharged to combined (sanitary and storm) MSD sewer inlets located at the SLDS. It then flows to the Bissell Point Sewage Treatment Plant under a special discharge authorization. This excavation water was collected, treated, and monitored before being discharged to MSD manhole 17D4-353C. These MSD manholes are depicted on Figure 3-1.

The purpose of excavation water discharge monitoring at the SLDS is to maintain compliance with specific discharge limits to ensure protection of human health and the environment. The MSD is the regulatory authority for water discharges and has issued authorization letters for the SLDS allowing discharges of excavation water that meets discharge-limit-based criteria (MSD 1998, 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022). On October 30, 1998, the USACE received an MSD conditional authorization letter to discharge the excavation water collected at the SLDS resulting from USACE RAs (MSD 1998). On July 23, 2001, the MSD issued a separate conditional discharge authorization letter for discharges of excavation water resulting from USACE RAs (MSD 2001). The MSD issued a change to the self-monitoring and special discharge authorization for the SLDS on October 13, 2004, and issued a 2-year extension to that authorization dated June 19, 2006 (MSD 2004, 2006). On May 22, 2008; May 10, 2010; May 24, 2012; June 23, 2014; July 18, 2016; June 11, 2018, July 16, 2020, and June 7, 2022 the MSD issued extensions to the special discharge authorization for the SLDS that remained in effect until July 23, 2010; July 23, 2012; July 23, 2014; July 23, 2016; July 23, 2018; July 23, 2020, and July 23, 2022, respectively (MSD 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022). On June 7, 2022, the MSD issued an extension to the special discharge authorization for the SLDS that remains in effect until July 23, 2024 (MSD 2022). The results obtained from these monitoring activities are presented and evaluated with respect to the discharge limits described in the EMICY23 (USACE 2022).

Section 2.2.2 of the EMICY23 outlines the parameters and annual average discharge limits for the excavation water discharges at the SLDS (USACE 2022). For cases in which the local regulatory authorities have not provided discharge limits for the SLDS radiological contaminants of concern (COCs), parameters from 10 *CFR* 20, Appendix B, water effluent values are used to calculate the sum of ratios (SOR) value for each discharge. Additionally, the SOR aids in the establishment of water management protocols.

3.1 EVALUATION OF EXCAVATION WATER DISCHARGE MONITORING RESULTS

During CY 2023, 813,843 gallons of excavation water from 12 batches were discharged to MSD manhole 17D4-353C. The analytical results for all measured parameters by batch, along with the total activity discharged for each parameter, are included in Appendix D, Table D-1. A summary of the number of discharges, gallons of water discharged, and total radiological activity for the CY 2023 excavation water discharges is provided in Table 3-1. All excavation water discharge monitoring required through implementation of the EMICY23 was conducted as planned during CY 2023. The evaluation of monitoring data demonstrates compliance with all MSD criteria.

3-1 REVISION 0

Table 3-1. Excavation Water Discharged in CY 2023

	Number of	Number of Gallons	Total Activity (Ci)				
Quarter	Discharges	Discharged ^a	Thorium ^b	Uranium (Isotopic Uranium) ^c	Radium ^d		
1	3	218,324	2.9E-06	3.9E-05	1.3E-06		
2	3	182,885	2.3E-06	1.5E-05	1.2E-06		
3	3	277,256	4.0E-06	2.7E-05	1.7E-06		
4	3	135,378	1.2E-06	1.8E-05	7.2E-07		
Annual Totals	12	813,843	1.0E-05	9.8E-05	4.9E-06		

^a Quantities based on actual quarterly discharges from the SLDS.

3-2 REVISION 0

^b Calculated value based on the addition of isotopic analyses: thorium (Th)-228, Th-230, and Th-232.

Activity based on total U results. Total U (kinetic phosphorescence analysis [KPA]) is unavailable and sum of isotopic results are being substituted.

d Calculated value based on the addition of isotopic analyses: Ra-226 and Ra-228.

4.0 GROUNDWATER MONITORING DATA

During CY 2023, 15 groundwater monitoring wells were sampled at the SLDS. Groundwater was sampled following a protocol for individual wells and analytes, and was analyzed for various radiological constituents and inorganic analytes. Static water levels were measured quarterly at the SLDS. An expanded groundwater monitoring event was added in CY 2023. This comprehensive sampling event included the collection of groundwater samples from the entire well network of 15 wells for the SLDS. In addition, field parameters were measured during purging of the wells prior to sampling. The groundwater field parameter results for CY 2023 sampling at the SLDS are presented in Appendix E, Table E-1. The SLDS groundwater analytical sampling results for CY 2023 are contained in Appendix E, Table E-2.

Stratigraphy

Groundwater at the SLDS is found within three hydrostratigraphic units (HUs). These units are, in order of increasing depth, the Upper HU (HU-A), which consists of fill overlying clay and silt; the Lower HU (HU-B), also referred to as the Mississippi Alluvial Aquifer, consisting of sandy silts and silty sands; and the Limestone Bedrock Unit, referred to as HU-C (Figures 4-1 and 4-2). The upper unit, HU-A, is not an aquifer and is not considered a potential source of drinking water, because it has insufficient yield and poor natural water quality. HU-B is one of the principal aquifers in the St. Louis area but expected future use as drinking water at the SLDS is minimal, because the Mississippi and Missouri Rivers provide a readily available source and the water from the aquifer is of poor quality due to elevated concentrations of iron and manganese. HU-C would be an unlikely water supply source, as it is a deeper and less productive HU. No known drinkingwater wells are located in the vicinity of the SLDS. St. Louis City Ordinance 66777 explicitly forbids the installation of wells into the subsurface for the purposes of using groundwater as a potable water supply (City of St. Louis 2005). The expected future use of SLDS groundwater is not anticipated to change from its current use.

As shown in the geologic cross-section of the SLDS (Figure 4-2), the erosional surface of the bedrock dips eastward toward the Mississippi River. HU-A overlies HU-B on the eastern side of the SLDS and bedrock on the western side of the SLDS. HU-B thins westerly along the bedrock surface until it becomes absent beneath the SLDS. HU-C underlies the unconsolidated sediments at depths ranging from 19 ft on the western side of the SLDS to 80 ft near the Mississippi River.

Groundwater Criteria

The CY 2023 monitoring data for HU-B groundwater at the SLDS are compared to the following groundwater criteria established in the ROD: $50~\mu g/L$ arsenic, $5~\mu g/L$ cadmium, $20~\mu g/L$ total U, and 5~pCi/L combined Ra-226 and Ra-228 (USACE 1998a). The ROD did not establish groundwater criteria for HU-A groundwater. An evaluation of concentration trends is conducted for COCs detected in HU-A.

Summary of Calendar Year 2023 Groundwater Monitoring Results

Trend analysis was performed for the COCs detected in HU-A groundwater including arsenic (B16W06S, DW19RS, and DW21) and total U (B16W08S, B16W12S, and DW19RS). A Mann-Kendall Trend Test was not performed for arsenic concentrations at B16W08S and B16W12S; and cadmium concentrations at B16W08S, B16W12S, DW19RS, and DW21, because the historical datasets do not have a detection frequency greater than 50 percent. The trend analysis indicates a statistically significant downward trend for the arsenic concentrations at DW21, an upward trend for arsenic concentrations at DW19RS, and an upward trend in concentrations for total U at B16W08S.

4-1 REVISION 0

No other statistically significant trends were identified in the COCs detected in shallow groundwater during CY 2023.

During CY 2023, two COCs (arsenic and total U) were detected at concentrations above the ROD groundwater criteria in HU-B groundwater. The concentration of arsenic exceeded the investigative limit (IL) (50 μ g/L) in the samples collected in the second quarter, fourth quarter, and a comprehensive event of CY 2023. Arsenic exceeded the investigative limit from HU-B wells in the second quarter at DW14 (130 μ g/L), in the fourth quarter at DW18 (53 μ g/L), and during the comprehensive event at DW14 (140 μ g/L) and DW18 (110 μ g/L). The concentration of total U exceeded the IL (20 μ g/L) in the samples collected during the fourth quarter and comprehensive sampling event of CY 2023 from well DW19RD, the HU-B replacement well for DW19. The total U concentrations detected in the CY 2023 sample from well DW19RD was 126.54 μ g/L in the fourth quarter and 119.01 μ g/L from the comprehensive sampling event. The average total U concentration detected at DW19RD since well installation (112.7 μ g/L) is similar to the average concentration detected in the samples collected at DW19 prior to its decommissioning (87.0 μ g/L). The maximum total U concentration detected in DW19RD (174.4 μ g/L) is less than the maximum concentration detected in the historical dataset for DW19 (200.7 μ g/L).

These CY 2023 sampling results, combined with previous sampling results since 1999, were used to identify any significant trends in HU-B wells. Trend analysis was performed for the COCs detected in HU-B wells in excess of the ILs (arsenic in DW14 and DW18 and total U in DW19RD). The Mann-Kendall Trend Test results for HU-B groundwater indicate a statistically significant upward trend in arsenic concentrations in DW18 and a downward trend for concentrations of arsenic in DW14. No statistically significant trends in total U concentrations were identified in the HU-B groundwater. However, total U concentrations in groundwater samples from monitoring wells DW19 and DW19RD have consistently exceeded the IL of 20 μ g/L. No other significant changes in the concentrations of the COCs occurred in HU-B groundwater during CY 2023.

4.1 GROUNDWATER MONITORING

The selected remedy presented in the ROD involves excavation and disposal of radiologically contaminated accessible soil and the monitoring of groundwater. The goal of the groundwater portion of the SLDS remedy is to maintain protection of HU-B and to establish the effectiveness of the source removal action. This goal is achieved by monitoring perimeter wells on a routine basis to ensure no significant impacts to HU-B from COCs. The HU-B groundwater results for the SLDS COCs are compared to the following ROD groundwater criteria (USACE 1998a):

- 1. The ILs: 50 μg/L arsenic, 5 μg/L cadmium, and 20 μg/L total U; and
- 2. The concentration limits from the Uranium Mill Tailings Radiation Control Act regulations listed in 40 *CFR* 192.02, Table 1 to Subpart A: 5 pCi/L combined Ra-226 and Ra-228.

The concentration limits for other SLDS COCs listed in 40 *CFR* 192.02, Table 1 to Subpart A $(50 \mu g/L \text{ arsenic}, 10 \mu g/L \text{ cadmium}, \text{ and } 30 \text{ pCi/L combined U-234} \text{ and U-238})$, are not relevant or appropriate because these limits are equal to or less stringent than the ILs.

If monitoring of HU-B indicates that the concentrations of SLDS COCs significantly exceed the above criteria, the ROD requires that a groundwater remedial action alternative assessment (GRAAA) be initiated to further assess the fate and transport of the COCs in HU-B and to determine if additional RAs are necessary. Based on the results of 8 consecutive rounds of quarterly sampling conducted between 1999 and 2001, total U concentrations were above the IL in HU-B well DW19 over an extended period, leading to the initiation of Phase 1 of the GRAAA.

4-2 REVISION 0

The first phase of the GRAAA was completed in CY 2003 (USACE 2003). Phase 1 summarized the sampling data available for each of the monitoring wells completed in HU-B and provided recommendations for further investigation of HU-B. This EMDAR carefully reviews the HU-B data to provide additional information for future phases of the GRAAA. The ROD also specifies that a groundwater monitoring plan will be developed to assess the fate and transport of MED/AEC residual contaminants through and following the RA.

Because HU-A is not considered a potential source of drinking water, the ROD did not establish criteria for HU-A groundwater. An evaluation of concentration trends is conducted for select COCs detected in HU-A groundwater to support assessment of the effectiveness of the RA in the CERCLA 5-year reviews. The results of the trend analysis are presented in Section 4.2.3.

4.2 EVALUATION OF GROUNDWATER MONITORING DATA

Monitoring Well Network

The EMP monitoring well network for the SLDS is shown on Figure 4-3. The screened HUs for the SLDS groundwater monitoring wells are identified in Table 4-1. Prior to initiating monitoring of HU-B, as specified by the ROD (USACE 1998a), no EMP sampling was performed at the SLDS. In CY 2023, 15 monitoring wells (5 HU-A and 10 HU-B) were sampled for radionuclides and/or inorganic COCs at the SLDS. Groundwater sampling at the SLDS was conducted on February 20 (first quarter); May 23 (second quarter); September 7 and October 23 (third quarter); October 24 through November 1 (fourth quarter); and a comprehensive sampling event conducted on June 5 through 19 of CY 2023. The CY 2023 analytical results for the SLDS are presented in Appendix E, Table E-2. For discussion purposes, the groundwater analytical data acquired from the CY 2023 sampling events at the SLDS are presented separately for HU-A (Section 4.2.1) and HU-B (Section 4.2.2). Appendix F, Attachment F-1, provides the well maintenance checklists for the annual inspection of the SLDS groundwater monitoring wells conducted on April 17, 2023. Appendix F, Attachment F-2, contains copies of the field logbook pages for groundwater sampling conducted in CY 2023.

Table 4-1. Screened HUs for	' Groundwater	Monitoring (Wel	ls in	CY	2023	į
-----------------------------	---------------	--------------	-----	-------	----	------	---

Well ID	Screened HU
B16W06Da	HU-B
B16W06S ^a	HU-A
B16W07Da	HU-B
B16W08Da	HU-B
B16W08S ^a	HU-A
B16W09Da	HU-B
B16W12S ^a	HU-A
DW14 ^a	HU-B
DW15 ^a	HU-B
DW16 a	HU-B
DW17 a	HU-B
DW18 ^a	HU-B
DW19RD ^{a,b}	HU-B
DW19RS ^{a,b}	HU-A
DW21a	HU-A

Wells sampled in CY 2023.

4-3 REVISION 0

Replacement wells for DW19 were installed and developed in March 2019.

4.2.1 Evaluation of HU-A Groundwater Monitoring Data

The results of the CY 2023 groundwater sampling of HU-A groundwater at the SLDS are summarized in Table 4-2. During CY 2023, five HU-A monitoring wells (B16W06S, B16W08S, B16W12S, DW19RS, and DW21) were sampled. DW21 was sampled in the first quarter for arsenic, cadmium, and radionuclides (Ra-226, Ra-228, thorium [Th]-228, Th-230, Th-232, U-234, U-235, and U-238). DW19RS was sampled in the second quarter for arsenic, cadmium, and radionuclides. B16W12S and DW21 were sampled in the third quarter for arsenic, cadmium, and radionuclides. DW21 was sampled for arsenic, cadmium, and radionuclides in the fourth quarter. B16W06S, B16W08S, B16W12S, DW19RS, and DW21 were sampled in a comprehensive event conducted in June of 2023 for arsenic, cadmium, and radionuclides.

Table 4-2. Analytes Detected in HU-A Groundwater in CY 2023

Analyte	Units	Stationa	Minimum Detected	Maximum Detected	Mean Detected	Frequency of Detection
		B16W06S	190	190	190	1/1
		B16W08S	2.2 J	2.2 J	2.2 J	1/1
Arsenic	μg/L	B16W12S	1.6 J	1.6 J	1.6 J	1/2
		DW19RS	11	15	13	2/2
		DW21	57	66	61.5	4/4
		B16W08S	0.38 J	0.38 J	0.38 J	1/1
C. L. i	/Т	B16W12S	0.51 J	0.63	0.57 J	2/2
Cadmium	μg/L	DW19RS	0.2 J	3.6 J	1.9 J	2/2
		DW21	1.1 J	2.5	1.8 J	4/4
TL 220	C'./I	B16W12S	0.48 J	0.48 J	0.48 J	1/2
Th-228	pCi/L	DW21	0.575 J	1.48 J	1.027 J	3/3
		B16W06S	1.12 J	1.12 J	1.12 J	1/1
		B16W08S	0.747 J	0.747 J	0.747 J	1/1
Th-230	pCi/L	B16W12S	0.536 J	0.593 J	0.564 J	2/2
	1	DW19RS	0.542 J	0.832 J	0.687 J	2/2
		DW21	1.58 J	1.9 J	1.74 J	3/3
		B16W08S	3.99	3.99	3.99	1/1
U-234	pCi/L	B16W12S	1.26 J	1.58	1.42 J	2/2
	1	DW19RS	2.58	4.79	3.685 J	2/2
		B16W08S	3.21	3.21	3.21	1/1
U-238	pCi/L	B16W12S	1.17 J	1.81	1.49 J	2/2
	1	DW19RS	2.15	3.91	3.03	2/2
		B16W06S	0.22	0.22	0.22	1/1
		B16W08S	9.71	9.71	9.71	1/1
Total U ^b	μg/L	B16W12S	3.59	5.41	4.5	2/2
		DW19RS	6.57	11.74	9.15	2/2
		DW21	0.54	0.84	0.69	3/3

Table lists only those stations at which the analyte was detected in HU-A groundwater.

Validation qualifier (VQ) symbol indicates: "J" analyte was identified as estimated quantity.

The analytes detected in HU-A groundwater in CY 2023 are listed in Table 4-2. The remaining SLDS COCs (Ra-226 and Th-232) were not detected in the five HU-A groundwater wells monitored during CY 2023. Trend analysis was conducted for arsenic in B16W06S, DW19RS, and DW21; and total U in B16W08S, B16W12S, and DW19RS. Because total U values are calculated using the U-234, U-235, and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes for B16W08S, B16W12S, and DW19RS. Because the majority of their

4-4 REVISION 0

b Total U values were calculated from isotopic concentrations in pCi/L and converted to μg/L using radionuclide-specific activities and assuming secular equilibrium.

historical results were near or below their detection limits (DLs), a trend analysis was not performed for arsenic in B16W08S, and B16W12S; cadmium in B16W08S, B16W12S, DW19RS, and DW21; and Th-230 in B16W06S, B16W08S, B16W12S, DW19RS, and DW21.

Based on the graphs and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), a statistically significant downward trend in the arsenic concentrations at DW21 occurred, an upward trend in arsenic concentration at DW19RS occurred, and an upward trend for total U concentrations at B16W08S occurred. No other statistically significant trends were identified in the COCs detected in the HU-A groundwater for the wells sampled in CY 2023. Time-versus-concentration plots for arsenic and total U are provided on Figure 4-4 and Figure 4-5, respectively.

4.2.2 Evaluation of HU-B Groundwater Monitoring Data

The results of the CY 2023 groundwater sampling of HU-B groundwater at the SLDS are summarized in Table 4-3. During CY 2023, 10 HU-B monitoring wells (B16W06D, B16W07D, B16W08D, B16W09D, DW14, DW15, DW16, DW17, DW18, and DW19RD) were sampled. B16W08D was sampled in the first quarter for arsenic, cadmium, and radionuclides. DW14 was sampled in the second quarter for arsenic, cadmium, and radionuclides. B16W06D, B16W07D, B16W08D, B16W09D, DW15, DW18, and DW19RD were sampled in the fourth quarter for arsenic, cadmium, and radionuclides. B16W06D, B16W07D, B16W08D, B16W09D, DW14, DW15, DW16, DW17, DW18, and DW19RD were sampled in a comprehensive event conducted in June of 2023 for arsenic, cadmium, and radionuclides.

Table 4-3. Analytes Detected in HU-B Groundwater in CY 2023

		ROD Groundwater Criteria			Minimum	Maximum	Mean	Number of Detects >	Frequency
Analyte	ILa	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	Detected Detected Detected Groundwater Criteria		of Detection		
				B16W06D	1.9 J	1.9 J	1.9 J	0	1/2
			B16W07D	22	24	23	0	2/2	
				B16W08D	19	22	20.5	0	3/3
				B16W09D	8.2 J	25	16.6 J	0	2/2
Arsenic	50	NA	μg/L	DW14	130	140	135	2	2/2
Arsenie	50	IVA	μg/L	DW15	34	41	37.5	0	2/2
				DW16	9.4 J	9.4 J	9.4 J	0	1/1
				DW17	2.3 J	2.3 J	2.3 J	0	1/1
				DW18	53	110	81.5	2	2/2
				DW19RD	17	18	17.5	0	2/2
				B16W06D	0.29	0.32 J	0.30 J	0	2/2
				B16W07D	0.1 J	0.1 J	0.1 J	0	2/2
			μg/L	B16W08D	0.33 J	1.4 J	0.86 J	0	3/3
				B16W09D	0.1J	0.1J	0.1 J	0	2/2
Cadmium	5	NA		DW14	0.68 J	1.2 J	0.94 J	0	2/2
Cadimum)	IVA		DW15	0.34 J	0.34 J	0.34 J	0	2/2
				DW16	1.1 J	1.1 J	1.1 J	0	1/1
				DW17	2.3 J	2.3 J	2.3 J	0	1/1
				DW18	0.45	0.45	0.45	0	2/2
				DW19RD	0.33 J	0.88	0.60 J	0	2/2
				B16W06D	1.58	1.89	2.52	NA	2/2
				B16W07D	0.886 J	1.64	1.263 J	NA	2/2
Ra-226	NA^c	NA	pCi/L	B16W09D	1.17 J	1.32	1.24 J	NA	2/2
				DW14	2.92	5.73	4.325	NA	2/2
				DW16	0.652 J	0.652 J	0.652 J	NA	1/1

4-5 REVISION 0

Table 4-3. Analytes Detected in HU-B Groundwater in CY 2023 (Continued)

	ROI	O Groundwater Criteria			Minimum	Maximum	Mean	Number of Detects >	Frequency	
Analyte	ILa	40 <i>CFR</i> 192.02, Table 1, Subpart A	Units	Station ^b	ntion ^b Detected		Detected	ROD Groundwater Criteria	of Detection	
				B16W06D	0.64 J	0.902 J	0.771 J	NA	2/2	
			B16W07D	0.416 J	0.416 J	0.416 J	NA	1/2		
			B16W08D	0.763 J	0.763 J	0.763 J	NA	1/3		
TL 220	NT A	NIA	C:/T	B16W09D	0.607 J	0.607 J	0.607 J	NA	1/2	
Th-228	NA	NA	pCi/L	DW14	2.65 J	2.65 J	2.65 J	NA	1/2	
				DW15	0.567 J	0.567 J	0.567 J	NA	1/2	
				DW18	0.324 J	0.531 J	0.427 J	NA	2/2	
				DW19RD	0.539 J	0.539 J	0.539 J	NA	1/2	
				B16W06D	1.35 J	1.42	1.385 J	NA	2/2	
				B16W07D	1.07 J	1.48 J	1.275 J	NA	2/2	
				B16W08D	0.328 J	1.18 J	0.754 J	NA	3/3	
				B16W09D	0.811 J	1.25 J	1.03 J	NA	2/2	
TI 220	NT A	NT A	C:/I	DW14	0.85 J	1.16 J	1.00 J	NA	2/2	
Th-230	NA	NA	pCi/L	DW15	0.705 J	0.801 J	0.753 J	NA	2/2	
				DW16	0.718 J	0.718 J	0.718 J	NA	1/1	
				DW17	0.566 J	0.566 J	0.566 J	NA	1/1	
				DW18	0.692 J	1.05 J	0.871 J	NA	2/2	
				DW19RD	0.799 J	1.12 J	0.959 J	NA	2/2	
				B16W07D	0.731 J	2.14 J	1.35 J	NA	2/2	
				B16W08D	0.479 J	0.479 J	0.479 J	NA	1/3	
				B16W09D	1.95	1.95	1.95	NA	1/2	
U-234	NA	NA	pCi/L	DW14	1.02 J	2.24	1.63 J	NA	2/2	
			1	DW16	0.766 J	0.766 J	0.766 J	NA	1/1	
				DW17	1.23	1.23	1.23	NA	1/1	
				DW19RD	41	44.8	42.9	NA	2/2	
U-235	NA	NA	pCi/L	DW19RD	1.32 J	2.07	1.695 J	NA	2/2	
				B16W07D	2 J	2 J	2 J	NA	1/2	
				B16W09D	1.84	1.84	1.84	NA	1/2	
11 220	NT A	NIA	C:/T	DW14	0.442 J	1.5	0.971 J	NA	2/2	
U-238	NA	NA	pCi/L	DW16	0.994 J	0.994 J	0.994 J	NA	1/1	
				DW17	1.18	1.18	1.18	NA	1/1	
				DW19RD	39.7	42.1	40.9	NA	2/2	
				B16W06D	0.11	0.18	0.145	0	2/2	
				B16W07D	1.25	6.03	3.64	0	2/2	
				B16W08D	0.24	0.97	0.605	0	3/3	
			B16W09D	5.83	5.83	2.92	0	1/2		
Total I id	Total U ^d 20	NT 4	∈/т	DW14	1.32	4.48	2.90	0	2/2	
Total U		NA	μg/L	DW15	0.19	0.25	0.22	0	2/2	
				DW16	3.0	3.0	3.0	0	1/1	
				DW17	3.55	3.55	3.55	0	1/1	
				DW18	0.04	0.27	1.55	0	2/2	
				DW19RD	119.01	126.54	122.77	2	2/2	

USACE 1998a.

The analytes detected in HU-B groundwater in CY 2023 are listed in Table 4-3. The remaining SLDS COC, Th-232, was not detected in the HU-B groundwater wells monitored during CY 2023.

> 4-6 **REVISION 0**

Table lists only those stations at which the analyte was detected in HU-B groundwater.

The 5 pCi/L combined Ra-226/Ra-228 concentration limit from 40 *CFR* 192.02, Subpart A, Table 1, which is for comparative evaluation.

Total U values were calculated from isotopic concentrations in pCi/L and converted to µg/L using radionuclide-specific activities and assuming secular equilibrium.

Assuming section equinorium.

NA – not appropriate. (No IL is specified or the concentration limits specified in Table 1 of 40 *CFR* 192.02, Subpart A, are the same or less stringent than the IL and thus not relevant or appropriate).

VQ symbol indicates: "J" analyte was identified as estimated quantity.

During CY 2023, one inorganic SLDS COC, arsenic, was detected at a concentration above its ROD groundwater criterion in HU-B groundwater. The concentration of arsenic exceeded the IL (50 μ g/L) in the samples collected during the second and fourth quarters of CY 2023 from DW14 (130 μ g/L and 140 μ g/L, respectively), and DW18 (110 μ g/L and 53 μ g/L, respectively). The time-versus-concentration plots for arsenic in DW14 and DW18 are provided on Figure 4-4.

One radiological COC, total U, exceeded its ROD groundwater criteria in HU-B groundwater at the SLDS during CY 2023. The concentration of total U exceeded the IL (20 μ g/L) in the sample collected during the second and fourth quarters of CY 2023 from DW19RD, the HU-B replacement well for DW19. The concentration of total U had exceeded the IL in the annual groundwater samples collected from DW19 since installation of the well in CY 1999. On August 3, 2016, DW19 was plugged and abandoned so that remediation activities could be conducted in that area. In March 2019, after the remediation activities were completed, DW19RD was installed to allow continued assessment of contaminant concentration trends in HU-B in this area. The total U concentration detected in the CY 2023 samples from DW19RD was 119.01 μ g/L in the second quarter and 126.54 μ g/L in the fourth quarter. The overall average total U concentration detected at DW19RD (100.60 μ g/L) is similar to the average concentration detected in the samples collected at DW19 prior to its decommissioning (87.0 μ g/L). The total U time-versus-concentration plots in unfiltered groundwater at the SLDS are shown on Figure 4-5.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), a statistically significant trend was identified in HU-B groundwater. A statistically significant upward trend in arsenic concentrations at DW18 and a downward trend on arsenic concentrations at DW14 were identified. An expanded version of the time-versus-concentration plot and trend is provided on Figure 4-6 for arsenic in DW14 and DW18.

Based on the time-versus-concentrations plots and quantitative evaluation of trends using the Mann-Kendall Trend Test (Section 4.2.3), a statistically significant trend was not identified in the total U concentrations in DW19RD. Because total U values are calculated using the U-234, U-235, and U-238 values, the trends in their values should be the same as the total U trend results. Therefore, it was not necessary to perform a separate trend analysis for each of these isotopes. The total U concentration detected in DW19RD during CY 2023 exceeds the corresponding IL (20 μ g/L), as did the sample collected from this well in CY 2022. An expanded version of the time-versus-concentration plot and trends for total U in DW19 and its replacement well DW19RD is provided on Figure 4-6.

4.2.3 Comparison of Historical Groundwater Data

A quantitative evaluation of COC concentration trends in SLDS groundwater was conducted based on available sampling data for the period from January 1999 through December 2023. The Mann-Kendall Trend Test was used to evaluate possible trends for those COCs detected in HU-A and for those COCs that exceeded ROD groundwater criteria in HU-B during CY 2023. The Mann-Kendall Trend Test was not conducted for those COCs with a detection frequency less than 50 percent or historical results generally within the range of measurement error of their DLs (e.g., Ra-226 in DW14). For HU-A, a trend analysis was conducted for arsenic in B16W06S, DW19RS, and DW21; and total U in B16W08S, B16W12S, and DW19RS. Because the historical results were generally below or only slightly above the DLs, a trend analysis was not performed for arsenic in B16W08S and B16W12S; cadmium in B16W08S, B16W12S, DW19RS and DW21; or Th-230 in B16W06S, B16W08S, B16W12S, DW19RS, and DW21. The Mann-Kendall Trend Test was conducted for three COCs that exceeded the ILs in HU-B wells during CY 2023: arsenic in DW14, DW18, and total U in DW19RD.

4-7 REVISION 0

Statistical Method and Trend Analysis

Several statistical methods are available to evaluate contaminant trends in groundwater. These include the Mann-Kendall Trend Test, the Wilcoxon Rank Sum (WRS) Test, and the Seasonal Kendall Test (USEPA 2000). The latter two tests are applicable to data that may or may not exhibit seasonal behavior, but generally require larger sample sizes than the Mann-Kendall Trend Test. The Mann-Kendall Trend Test was selected for this project because this test can be used with small sample sizes (as few as four data points with detect values) and because a seasonal variation in concentrations was not indicated by the time-versus-concentration plots at the SLDS. The Mann-Kendall Trend Test is a non-parametric test and, as such, is not dependent upon assumptions of distribution, missing data, or irregularly-spaced monitoring periods. In addition, data reported as being less than the DL can be used (Gibbons 1994). The test can assess whether a time-ordered dataset exhibits an increasing or decreasing trend, within a predetermined level of significance. While the Mann-Kendall Trend Test can use as few as four data points, often this is not enough data to detect a trend. Therefore, the test was performed only at those monitoring stations where data have been collected for at least six sampling events.

A customized Microsoft Excel® spreadsheet was used to perform the Mann-Kendall Trend Test. The test involves listing the sampling results in chronological order and computing all differences that may be formed between current measurements and earlier measurements. The value of the test statistic (S) is the difference between the number of strictly positive differences and the number of strictly negative differences. If S is a large positive value, then evidence of an increasing trend in the data exists. If S is a large negative value, then evidence of a decreasing trend in the data exists. If no trend is identified and all observations are independent, then all rank orderings of the annual statistics are equally likely (USEPA 2000). The results of the Mann-Kendall Trend Test are reported in terms of a p value or Z-score, depending on sample size, N. If the sample size is less than or equal to 10, then the p value is computed. If the p value is less than or equal to 0.05, the test concludes that the trend is statistically significant. If the p value is greater than 0.05, the test concludes no evidence of a significant trend is identified. For dataset sizes larger than 10, the Z-score is compared to ± 1.64 , which is the comparison level at a 95 percent confidence level. If the Z-score is greater than +1.64, the test concludes that a significant upward trend exists. If the Z-score is less than –1.64, the test concludes that a significant downward trend exists. For Z-scores between -1.64 and +1.64, no statistical evidence of a significant trend exists.

The results of the Mann-Kendall Trend Test are less reliable for datasets containing high numbers of non-detects, particularly if the DL changes over time. Thus, for datasets for which more than 50 percent of the time-series data are non-detect, the Mann-Kendall Trend Test was not conducted. No general consensus regarding the percentage of non-detects that can be handled by the Mann-Kendall Trend Test has been reached.

Only unfiltered data were used, and split sample and QC sample results were not included in the dataset for the Mann-Kendall Trend Test. The Mann-Kendall Trend Test is used to evaluate the data and determine trends without regard to isotopic analysis. In addition, for monitoring wells for which the Mann-Kendall Trend Test has indicated a trend (either upward or downward), another analysis is performed to determine if the trend is due to inherent error associated with the analytical test method for each sample analysis. For this analysis, graphs are generated to depict the trends, if present, and the range of associated measurement error.

Results of Trend Analysis for Groundwater

The Mann-Kendall Trend Test results are provided in Table 4-4. Time-versus-concentration plots for those wells and analytes exhibiting a statistically significant trend based on the Mann-Kendall

4-8 REVISION 0

Trend Test results (e.g., arsenic in DW18 and DW21) are provided on Figure 4-6. Although the Mann-Kendall Trend Test did not identify a trend in the total U results in DW19RD, a time-versus-concentration plot is provided on Figure 4-6 for the replacement well for DW19.

Table 4-4.	Results of	Mann-Ke	ndall Trend	Test for	Groundwater	· in	CY 2023

Analyta	Station	HU	Na	Test Sta	atistics ^{b,c}	Trend ^d
Analyte	Station	nu	11	S	Z	1 rend*
	B16W06S	HU-A	29	-22	-0.39	No Trend
	DW14	HU-B	22	-122	-3.43	Downward Trend
Arsenic	DW18	HU-B	37	363	4.74	Upward Trend
	DW19RS	HU-A	11	27	2.04	Upward Trend
	DW21	HU-A	36	-363	-34.93	Downward Trend
	B16W08S	HU-A	15	37	1.78	Upward Trend
Total II	B16W12S	HU-A	21	-6	-0.15	No Trend
Total U	DW19RD	HU-B	12	20	1.30	No Trend
	DW19RS	HU-A	11	15	1.09	No Trend

N is the number of unfiltered groundwater sample results for a particular analyte at the well over a particular time period. The time period is between January of 1999 and December of 2023. For DW19RD and DW19RS, which were installed in March 2019, the dataset was restricted to March 2019 to December 2023.

Inorganics

Based on the results of the Mann-Kendall Trend Test, Four wells exhibit statistically significant trends: a downward trend for arsenic in HU-A well DW21 and HU-B well DW14, and an upward trend for arsenic in HU-A well DW19RS and HU-B well DW18. Because the Mann-Kendall Trend Test does not consider the effects of measurement error and does not provide any information concerning the magnitude of the trend, time-versus-concentration plots of arsenic in DW14, DW18, DW19RS, and DW21 were used to evaluate these factors (Figure 4-6). The plots also show the best-fit trend lines based on the data scatter. No other significant changes in the concentrations of the inorganic COCs occurred in HU-A or HU-B groundwater during CY 2023.

Radionuclides

Based on the results of the Mann-Kendall Trend Test, one well exhibits statistically significant trends: an upward trend for total U in HU-A well B16W08S. The Mann-Kendall Trend Test results indicated no additional trend in total U concentrations in HU-A wells B16W12S, and DW19RS or in HU-B well DW19RD. The time-versus-concentration plots for B16W08S, B16W12S, DW19RS, and DW19RD are provided on Figure 4-5. The maximum concentrations of total U in DW19RS and DW19RD in CY 2023 were 11.7 μ g/L and 126.5 μ g/L, respectively. The total U concentration in DW19RD exceeded the corresponding IL for HU-B groundwater (20 μ g/L). An expanded version of the time-versus-concentration plot for total U in DW19 and its replacement well DW19RD is provided on Figure 4-6. The best-fit trend line included on the time-versus concentration plot for total U in DW19 and DW19RD confirms no significant trend in the results.

4.2.4 Evaluation of Potentiometric Surface

Groundwater elevations were measured in monitoring wells at the SLDS in February, May, September, and October of CY 2023. Potentiometric surface maps were created from the May and September measurements to illustrate groundwater flow conditions in wet and dry seasons, respectively. The potentiometric maps for both HU-A and HU-B are presented on Figures 4-7 through 4-10.

4-9 REVISION 0

Mann-Kendall Trend Tests were performed at a 95 percent level of confidence.

^c Test Statistics: S – S-statistic, Z – Z-score, or normalized test statistic (used if N>10).

Trend: The Z-score is compared to ± 1.64 to determine trend significance.

The groundwater surface in HU-A under the eastern portion of the Mallinckrodt plant typically slopes northeast toward the Mississippi River. Comparison of Figure 4-7 (May) with Figure 4-9 (September) indicates groundwater flow patterns in HU-A were consistent for the wet and dry season conditions during CY 2023. During CY 2023, the HU-A potentiometric surface elevations averaged approximately 6.5 ft higher during the wet season (May) than during the dry season (September).

As shown on Figures 4-8 and 4-10, the groundwater flow patterns in HU-B are strongly influenced by river stage. This indicates that groundwater in HU-B is hydraulically connected to the Mississippi River. The flow direction in HU-B is generally north-northeasterly toward the river in both the wet and dry seasons. A localized groundwater depression was observed in the vicinity of the two HU-B wells DW18 and B16W07D, likely due to decreased recharge from the river and decreased seepage from overlying HU-A in that area. The HU-B groundwater elevations in CY 2023 averaged approximately 18.9 ft higher in the wet season (May) than during the dry season (September). In comparison, the difference in the Mississippi River stage in St. Louis was approximately 24.04 ft higher on May 16 (400.20 ft above mean sea level [amsl]) than on September 16 (376.16 ft amsl).

4-10 REVISION 0

5.0 ENVIRONMENTAL QUALITY ASSURANCE PROGRAM

5.1 PROGRAM OVERVIEW

The environmental quality assurance (QA) program includes management of the QA and QC programs, plans, and procedures governing environmental monitoring activities at all SLS and at subcontracted vendor laboratories. This section describes the environmental monitoring standards of the FUSRAP and the goals for these programs, plans, and procedures.

The environmental QA program provides the FUSRAP with reliable, accurate, and precise monitoring data. The program furnishes guidance and directives to detect and prevent problems from the time a sample identification number is issued until the associated data are evaluated and reported.

Key elements in achieving the goals of this program are maintaining compliance with the QA program; personnel training; compliance assessments; use of QC samples; documentation of field activities and laboratory analyses; and a review of data to document precision, accuracy, and completeness.

General objectives are as follows:

- To provide data of sufficient quality and quantity to support ongoing remedial efforts, to aid in defining potential COCs, to meet the requirements of the EMG (USACE 1999a) and the Sampling and Analysis Guide for the St. Louis Sites (SAG) (USACE 2000), and to support the ROD (USACE 1998a);
- To provide data of sufficient quality to meet applicable State of Missouri and federal concerns (e.g., reporting requirements); and
- To ensure samples were collected using approved techniques and are representative of existing site conditions.

5.2 **OUALITY ASSURANCE PROGRAM PLAN**

The quality assurance program plan (QAPP) for activities performed at the SLDS is described within Section 3.0 of the SAG. The QAPP provides the organization, objectives, functional activities, and specific QA/QC activities associated with investigations and sampling activities at the SLDS.

QA/QC procedures are performed in accordance with applicable professional technical standards, USEPA requirements, government regulations and guidelines, and specific project goals and requirements. The QAPP was prepared in accordance with USEPA and USACE guidance documents, including *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (USEPA 1991), *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations* (USEPA 1994), and Engineer Manual (EM) 200-1-3, *Requirements for the Preparation of Sampling and Analysis Plans* (USACE 2001).

5.3 SAMPLING AND ANALYSIS GUIDE

The SAG summarizes standard operating procedures (SOPs) and data quality requirements for collecting and analyzing environmental data. The SAG integrates protocols and methodologies identified under various USACE and regulatory guidance. It describes administrative procedures for managing environmental data and governs sampling plan preparation, data review, evaluation and validation, database administration, and data archiving. The identified sampling and monitoring structures are delineated in programmatic documents such as the EMG (USACE 1999a), which is an

5-1 REVISION 0

upper tier companion document to the SAG (USACE 2000). The EMICY23 outlines the analyses to be performed at each site for various media (USACE 2022).

Flexibility to address non-periodic environmental sampling (e.g., specific studies regarding environmental impacts, well installations, and/or in-situ waste characterizations) was accomplished by the issuance of work descriptions. Environmental monitoring data obtained during these sampling activities were reported to USEPA Region 7 on a quarterly basis in the Federal Facilities Agreement Progress Reports.

5.4 FIELD SAMPLE COLLECTION AND MEASUREMENT

Prior to beginning field sampling, field personnel were trained, as necessary, and participated in a project-specific readiness review. These activities ensured that standard procedures were followed in sample collection and completion of field logbooks, chain-of-custody forms, labels, and custody seals. Documentation of training and readiness was submitted to the project file.

The master field investigation documents are the site field logbooks. The primary purpose of these documents is to record each day's field activities; personnel on each sampling team; and any administrative occurrences, conditions, or activities that may have affected the fieldwork or data quality of any environmental samples for any given day. Guidance for documenting specific types of field sampling activities in field logbooks or log sheets is provided in Appendix C of EM 200-1-3 (USACE 2001).

At any point in the process of sample collection or data and document review, a non-conformance report may be initiated if non-conformances are identified (Leidos 2015a). Data entered into the St. Louis FUSRAP database may be flagged accordingly.

5.5 PERFORMANCE AND SYSTEM AUDITS

Performance and system audits of both field and laboratory activities were conducted to verify that sampling and analysis activities were performed in accordance with the procedures established in the SAG and activity-specific work description or the EMICY23 (USACE 2022).

5.5.1 Field Assessments

Internal assessments (audit or surveillance) of field activities (sampling and measurements) are conducted periodically by the QA/QC Officer (or designee). Assessments could include an examination of field sampling records; field instrument operating records; sample collection, handling, and packaging procedures; and maintenance of QA procedures and chain-of-custody forms. These assessments occurred at the onset of the project to verify that all established procedures were followed (systems audit).

Performance assessments followed the systems audit to ensure that deficiencies had been corrected and to verify that QA practices/procedures were being maintained throughout the duration of the project. These assessments involved reviewing field measurement records, instrumentation calibration records, and sample documentation.

External assessments may be conducted at the discretion of the USACE, USEPA Region 7, or the Missouri Department of Natural Resources (MDNR).

5-2 REVISION 0

5.5.2 Laboratory Audits

The on-site FUSRAP St. Louis Radioanalytical Laboratory locations are subject to periodic review(s) by the local USACE Chemist to demonstrate compliance with the *Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories* (QSM) (DoD and DOE 2021). Accordingly, the on-site laboratories participate in blind, third-party performance evaluation studies (performance audits) at least twice per year, with results reported to the local USACE point(s) of contact. In addition, contract laboratories are required to be accredited under the DoD Environmental Laboratory Accreditation Program (ELAP). The DoD ELAP requires an annual audit and re-accreditation every 3 years. The annual ELAP audit was performed on August 15 through 16, 2023.

These system audits include examining laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records. Performance audits consist of USACE laboratories receiving performance evaluation samples from an outside vendor for an ongoing assessment of laboratory precision and accuracy. The analytical results of the analysis of performance evaluation samples are evaluated by the local USACE Chemist to ensure that laboratories maintain acceptable performance.

Internal performance and system audits of laboratories were conducted by the Laboratory QA Manager as directed in the *Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radioanalytical Laboratory* (USACE 2018). System audits included an examination of laboratory documentation of sample receipt, sample log-in, sample storage, chain-of-custody procedures, sample preparation and analysis, and instrument operating records against the requirements of the laboratory's SOPs. Internal performance audits were also conducted on a regular basis. Single-blind performance samples were prepared and submitted along with project samples to the laboratory for analysis. The Laboratory QA Manager evaluated the analytical results of these single-blind performance samples to ensure that the laboratory maintained acceptable performance. Quarterly QA/QC reports were generated and provided to the local USACE authority – the reports document the ongoing QC elements and provide for further monitoring of quality processes/status. Also, QA plans and methodology follow the guidance presented in the QSM (DoD and DOE 2021).

5.6 SUBCONTRACTED LABORATORY PROGRAMS

All samples collected during environmental monitoring activities were analyzed by USACE-approved subcontractor laboratories. QA samples were collected for groundwater and were analyzed by the designated USACE QA laboratory. Each laboratory supporting this work maintained statements of qualifications, including organizational structure, QA Manual, and SOPs. Additionally, subcontracted laboratories are also required to be an accredited laboratory under the DoD ELAP.

Samples collected during these investigations were analyzed by the USEPA methods contained in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846*, (USEPA 1993) and by other documented USEPA or nationally recognized methods. Laboratory SOPs are based on the QSM (DoD and DOE 2021).

5.7 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

QA/QC samples were collected and analyzed for the purpose of assessing the quality of the sampling effort and the reported analytical data. QA/QC samples include duplicate samples (–1) and split samples (–2). The equation utilized for accuracy and precision can be found in Section 5.9.

5-3 REVISION 0

5.7.1 Duplicate Samples

Duplicate samples measure precision and were collected by the sampling teams. Samples were submitted for analysis to the on-site project laboratory or contract laboratories. The purpose of these samples is to provide activity-specific, field-originated information regarding the homogeneity of the sampled matrix and the consistency of the sampling effort. These samples were collected concurrently with the primary environmental samples and equally represent the medium at a given time and location. Duplicate samples were collected from groundwater and were submitted to the contracted laboratories for analysis. Approximately one duplicate sample was collected for every 20 groundwater samples for non-radiological and radiological analytes at the SLDS. Precision is measured by the relative percent difference (RPD) for radiological analyses if the RPD exceeds the criteria.

The RPDs for non-radiological analyses are presented in Table 5-1. The RPDs and NADs for radiological analyses are presented in Table 5-2. The overall precision for the CY 2023 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

Table 5-1. Non-Radiological Duplicate Sample Analysis for CY 2023 – Groundwater

Crossed materials Nomed	Arsenic	Cadmium
Groundwater Sample Name ^a	RPD ^b	RPD ^b
SLD266942 / SLD266942-1	11.76	NC
SLD270138 / SLD270138-1	8.70	40.00

Groundwater samples ending in "-1" are duplicate groundwater samples.

Bold values exceed the control limits. Values not in bold are within control limits.

Table 5-2. Radiological Duplicate Sample Analysis for CY 2023 – Groundwater

Groundwater Sample Name ^a	Ra-226		Ra-228		Th-228		Th-230	
Groundwater Sample Name	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD266942 / SLD266942-1	NC	NA	*	*	NC	NA	13.33	NA
SLD270138 / SLD270138-1	NC	NA	*	*	8.78	NA	76.25	1.00
Groundwater Sample Name ^a	Th-232		U-234		U-235		U-238	
Groundwater Sample Name	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD266942 / SLD266942-1	NC	NA	4.76	NA	54.14	0.74	13.40	NA
SLD270138 / SLD270138-1	NC	NA	20.62	NA	NC	NA	2.47	NA

^a Groundwater samples ending in "-1" are duplicate groundwater samples.

5.7.2 Split Samples

Split samples measure accuracy and were collected by the sampling team and sent to a USACE QA laboratory for analysis to provide an independent assessment of contractor and subcontractor laboratory performance. Approximately one split sample was collected for every 20 groundwater samples for non-radiological and radiological analytes at the SLDS. The RPDs and NADs for non-radiological analyses are presented in Table 5-3. The RPDs and NADs for radiological analyses are presented in Table 5-4. With the exception of a few outliers, which can be attributed to matrix interference and were qualified accordingly, the overall accuracy for CY 2023 environmental monitoring activities was acceptable. See Section 5.9 for the evaluation process.

5-4 REVISION 0

RPD criterion for liquid samples is less than or equal to 30 percent.

NC - not calculated (due to one or both concentrations being below minimum detectable concentration [MDCs])

PPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

^{*} Not calculated because either the parent or split sample was not analyzed.

NA – not applicable (see RPD)

NC – not calculated (due to one or both concentrations being below MDCs)

Table 5-3. Non-Radiological Split Sample Analysis for CY 2023 – Groundwater

Cuoundwatau Samula Namas	Arsenic	Cadmium	
Groundwater Sample Name ^a	RPD ^b	RPD ^b	
SLD266942 / SLD266942-2	11.76	140.81	
SLD270138 / SLD270138-2	4.26	145.95	

Groundwater samples ending in "-2" are split groundwater samples.

Bold values exceed the control limits. Values not in bold are within control limits.

Table 5-4. Radiological Split Sample Analysis for CY 2023 – Groundwater

Groundwater Sample Name ^a	Ra-226		Ra-	Ra-228		Th-228		230
Groundwater Sample Name	RPD ^b	NAD	RPD^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD266942 / SLD266942-2	NC NA		*	*	NC	NA	127.01	1.44
SLD270138 / SLD270138-2	NC	NA	*	*	NC	NA	NC	NA
Croundwater Cample Namel	Th-232		U-234		U-235		U-238	
Groundwater Sample Name ^a	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD	RPD ^b	NAD
SLD266942 / SLD266942-2	NC	NA	5.26	NA	39.02	0.60	3.33	NA
SLD270138 / SLD270138-2	NC	NA	3.81	NA	NC	NA	11.32	NA

^a Groundwater samples ending in "-2" are split groundwater samples.

5.7.3 Equipment Rinsate Blanks

Equipment rinsate blank samples are typically taken from the rinsate water collected from equipment decontamination activities. These samples consist of analyte-free water that has been rinsed over sampling equipment for the purposes of evaluating the effectiveness of equipment decontamination. All of the monitoring wells have dedicated sampling equipment, rendering decontamination unnecessary. Because decontamination does not apply, equipment rinsate blanks were not employed.

5.8 DATA REVIEW, EVALUATION, AND VALIDATION

All data packages received from the analytical laboratory were reviewed and either evaluated and/or validated by data management personnel. Data validation is the systematic process of ensuring that the precision and accuracy of the analytical data are adequate for their intended use. Validation was performed in accordance with *Data Verification and Validation* (Leidos 2015b), and/or with project-specific guidelines. General chemical data quality management guidance found in Engineer Regulation (ER)-1110-1-263 (USACE 1998b) was also used when planning for chemical data management and evaluation. Additional details of data review, evaluation, and validation are provided in the *FUSRAP Laboratory Data Management Process for the St. Louis Site* (USACE 1999b). Data assessment guidance to determine the usability of data from hazardous, toxic, and radioactive waste projects is provided in EM-200-1-6 (USACE 1997).

One hundred (100) percent of the data generated from all analytical laboratories was independently reviewed and either evaluated or validated. The data review process documents the possible effects on the data from various QC failures; it does not determine data usability, nor does it include assignment of data validation qualifier (VQ) flags. The data evaluation or validation process uses the results of the data review to determine the usability of the data. The process of data evaluation summarizes the potential effects of QA/QC failures on the data, and the USACE District Chemist or District Health Physicist assesses their impact on the attainment of the project-specific data quality objectives (DQOs). Consistent with the data quality requirements, as defined in the DQOs, approximately 10 percent of all project data were validated.

5-5 REVISION 0

RPD criterion for liquid samples is less than or equal to 30 percent

RPD criterion for liquid samples is less than or equal to 30 percent. If the RPD is greater than 30 percent, then the NAD shall be less than or equal to 1.96 to remain within the control limits.

^{*} Not calculated because either the parent or split sample was not analyzed.

NA – not applicable (see RPD)

NC - not calculated (due to one or both concentrations being below MDCs)

5.9 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPARABILITY, COMPLETENESS, AND SENSITIVITY

The data evaluation process considers precision, accuracy, representativeness, completeness, comparability, and sensitivity. This section provides detail to the particular parameters and to how the data were evaluated for each, with discussion and tables to present the associated data. An evaluation of the overall precision, accuracy, representativeness, completeness, comparability, and sensitivity of the CY 2023 environmental monitoring activities was acceptable and complete.

Accuracy and precision can be measured by the RPD or the NAD using the following equation:

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) \times 100$$

$$NAD = \frac{\left|S - D\right|}{\sqrt{U_S^2 + U_D^2}}$$

where:

S = Parent Sample Result

D = Duplicate/Split Sample Result

U_S = Parent Sample Uncertainty

U_D = Duplicate/Split Sample Uncertainty

RPD has units of percent (%); NAD is unitless

The RPD is calculated for all samples if a detectable result is reported for both the parent and the QA field split or field duplicate. For radiological samples, when the RPD is greater than 30 percent, the NAD is used to determine the accuracy or precision of the method. NAD accounts for uncertainty in the results, RPD does not. The NAD should be less than or equal to 1.96. Neither equation is used when the analyte in one or both of the samples is not detected. In cases in which neither equation can be used, the comparison is counted as acceptable in the overall number of comparisons.

Precision is a measure of mutual agreement among individual measurements performed under the same laboratory controls. To evaluate for precision, a field duplicate is submitted to the same laboratory as the original sample to be analyzed under the same laboratory conditions. The RPD and NAD between the two results was calculated and used as an indication of the precision of the analyses performed (Tables 5-1 and 5-2). Sample collection precision was measured in the laboratory by the analyses of duplicates. The overall precision for the CY 2023 environmental monitoring sampling activities was acceptable.

Accuracy provides a gauge or measure of the agreement between an observed result and the true value for an analysis. The RPD and NAD between the two results was calculated and used as an indication of the accuracy of the analyses performed (Tables 5-3 and 5-4). For this report, accuracy is measured through the use of the field split samples through a comparison of the prime laboratory results versus the results of an independent laboratory. With the exception of a few outliers, which were qualified accordingly, the overall accuracy for CY 2023 environmental monitoring sampling activities was acceptable.

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Representativeness is a qualitative parameter that depends upon the proper design of the sampling program and proper laboratory protocols. Representativeness is satisfied

5-6 REVISION 0

through proper design of the sampling network, use of proper sampling techniques, following proper analytical procedures, and not exceeding holding times of the samples. Representativeness was determined by assessing the combined aspects of the QA program, QC measures, and data evaluations. The network design was developed from the EMICY23, the sampling protocols from the SAG have been followed, and analytical procedures were conducted within the bounds of the QAPP. The overall representativeness of the CY 2023 environmental monitoring activities was acceptable.

Comparability expresses the confidence with which one dataset can be compared to another. The extent to which analytical data will be comparable depends upon the similarity of sampling and analytical methods, as well as sample-to-sample and historical comparability. Standardized and consistent procedures used to obtain analytical data are expected to provide comparable results. For example, post-CY 1997 analytical data may not be directly comparable to data collected before CY 1997, because of differences in DQOs. Additionally, some sample media (e.g., stormwater and radiological monitoring) have values that are primarily useful in the present, thus the comparison to historic data is not as relevant. However, the overall comparability of the applicable environmental monitoring data met the project DQOs.

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under normal conditions. It is expected that laboratories will provide data meeting QC acceptance criteria for all samples tested. For the CY 2023 environmental monitoring activities, the data completeness was 100 percent (St. Louis FUSRAP DQO for completeness is 90 percent).

Sensitivity is the determination of minimum detectable concentration (MDC) values that allows the investigation to assess the relative confidence that can be placed in an analytical result in comparison to the magnitude or level of analyte concentration observed. For this report, MDC is a term generically used to represent both the method detection limit (MDL) for non-radiological analytes and the minimum detectable activity (MDA) for radiological analytes. The closer a measured value to the MDC, the less confidence and more variation the measurement will have. Project sensitivity goals were expressed as quantitation level goals in the SAG. These levels were achieved or exceeded throughout the analytical process.

The MDC is reported for each result obtained by laboratory analysis. These very low MDCs are achieved through the use of gamma spectroscopy for all radionuclides of concern, with additional analyses from alpha spectroscopy for thorium, and inductively coupled plasma (ICP) for metals. Variations in MDCs for the same radiological analyte reflects variability in the detection efficiencies and conversion factors due to factors such as individual sample aliquot, sample density, and variations in analyte background radioactivity for gamma and alpha spectroscopy, at the laboratory. Variations in MDLs for the same non-radiological analyte reflect variability in calibrations between laboratories, dilutions, and analytical methods. In order to complete the data evaluation (i.e., precision, accuracy, representativeness, and comparability), analytical results that exceed the MDC of the analyte are desired.

5.10 DATA QUALITY ASSESSMENT SUMMARY

The overall quality of the data meets the established project objectives. Through proper implementation of the project data review, evaluation, validation, and assessment process, project information has been determined to be acceptable for use.

Data, as presented, have been qualified as usable, but estimated when necessary. Data that have been estimated have concentrations/activities that are below the quantitation limit or are indicative of accuracy, precision, or sensitivity less than desired but adequate for interpretation.

5-7 REVISION 0

These data can withstand scientific scrutiny, are appropriate for their intended purpose, are technically defensible, and are of known and acceptable precision and accuracy. Data integrity has been documented through proper implementation of QA/QC measures. The environmental information presented has an established confidence, which allows utilization for the project objectives and provides data for future needs.

5.11 RESULTS FOR PARENT SAMPLES AND THE ASSOCIATED DUPLICATE AND SPLIT SAMPLES

Table 5-5. Non-Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2023 – Groundwater

Groundwater	Arsenic ^b			Cadmium ^b				
Sample Namea	Result	DL	VQ	Result	DL	VQ		
SLD266942	18.00	1.60	=	0.33	0.20	J		
SLD266942-1	16.00	1.60	=	0.20	0.20	U		
SLD266942-2	16.00	0.50	=	1.90	0.19	=		
SLD270138	24.00	1.60	=	0.10	0.06	=		
SLD270138-1	22.00	1.60	=	0.15	0.06	=		
SLD270138-2	23.00	0.50	=	0.64	0.19	=		

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

Table 5-6. Radiological Parent Samples and Associated Duplicate and Split Samples for CY 2023 – Groundwater

Groundwater		Ra-2	26 ^a			Ra-2	28 ^a			Th-22	28 ^a	
Sample Nameb	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD266942	0.24	0.31	0.58	UJ	*	*	*	*	0.39	0.35	0.48	UJ
SLD266942-1	0.50	0.42	0.60	UJ	*	*	*	*	0.33	0.35	0.65	UJ
SLD266942-2	0.35	0.19	0.24	J	*	*	*	*	0.03	0.13	0.22	UJ
SLD270138	0.89	0.52	0.48	J	*	*	*	*	0.42	0.36	0.38	J
SLD270138-1	0.25	0.29	0.48	UJ	*	*	*	*	0.38	0.33	0.35	J
SLD270138-2	0.26	0.20	0.29	UJ	*	*	*	*	-0.08	0.14	0.31	UJ
Groundwater		Th-2.	30 ^a			Th-2	32ª			U-23	34 ^a	
Sample Nameb	Result	Error	MDC	VQ	Result	Error	MDC	VQ	Result	Error	MDC	VQ
SLD266942	1.12	0.57	0.48	J	0.13	0.23	0.48	UJ	41.00	6.92	0.93	=
SLD266942-1	1.28	0.56	0.41	J	0.28	0.27	0.41	UJ	43.00	5.47	0.42	=
SLD266942-2	0.25	0.20	0.23	J	0.00	0.04	0.11	UJ	38.90	3.75	0.12	=
SLD270138	1.48	0.69	0.46	J	0.13	0.21	0.38	UJ	2.14	1.11	0.83	J
SLD270138-1	0.66	0.45	0.49	J	0.05	0.14	0.35	UJ	1.74	0.87	0.63	J
SLD270138-2	0.26	0.23	0.27	UJ	0.00	0.09	0.20	UJ	2.06	0.52	0.17	=
Groundwater		U-23	55 ^a			U-23	8 ^a					
Sample Nameb	Result	Error	MDC	VQ	Result	Error	MDC	VQ				
SLD266942	1.32	0.95	0.99	J	39.70	6.74	0.92	Ш				
SLD266942-1	2.30	0.91	0.60	=	45.40	5.72	0.42	=				
SLD266942-2	1.96	0.49	0.15	=	38.40	3.70	0.12	=				
SLD270138	0.16	0.45	1.18	UJ	2.00	1.07	0.82	J				
SLD270138-1	-0.03	0.25	0.65	UJ	2.05	0.94	0.52	=				
SLD270138-2	0.05	0.10	0.20	UJ	2.24	0.54	0.14	=				

^a Results are expressed in pCi/L. Negative results are less than the laboratory system's background level.

5-8 REVISION 0

Result values are expressed in µg/L.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "U" analyte was not detected.

Samples ending in "-1" are duplicate samples. Samples ending in "-2" are split samples.

^{*} Data for analyte are not available from laboratory analysis. Ra-228 assumed to be in equilibrium with Th-228.

VQ symbols indicate: "=" for positively identified results, "J" analyte was identified as estimated quantity, and "UJ" analyte was not detected and had QC deficiencies.

6.0 RADIOLOGICAL DOSE ASSESSMENT

This section evaluates the cumulative dose to a hypothetically impacted individual from exposure to radiological contaminants at the SLDS and documents dose trends. The regulatory dose limit for members of the public is 100 mrem per year, as stated in 10 *CFR* 20.1301. Although 10 *CFR* 20.1301 is not an ARAR for the SLDS, the USACE has provided this evaluation to evaluate public exposures from St. Louis FUSRAP cleanup operations. Compliance with the dose limit in §20.1301 can be demonstrated by one of the two following methods (§20.1302(b)(1) and (2)):

- 1. Demonstrating by measurement or calculation that the TEDE to the individual likely to receive the highest dose from SLDS operations does not exceed the annual dose limit (i.e., 100 mrem per year); or
- 2. Demonstrating that: (i) the annual average concentration of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area does not exceed the values specified in Table 1 of Appendix B of 10 *CFR* 20; and (ii) if an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 2 mrem per hour.

The USACE has elected to demonstrate compliance by calculation of the TEDE to a hypothetical individual likely to receive the highest dose from the SLDS operations (method 1). This section describes the methodology employed for this evaluation.

Dose calculations are presented for a hypothetical maximally exposed individual at the SLDS. The monitoring data used in the dose calculations are reported in the respective environmental monitoring sections of this EMDAR.

Dose calculations related to airborne emissions, as required by 40 CFR 61, Subpart I (National Emission Standards for Emissions of Radionuclides Other Than Radon From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered By Subpart H), are presented in Appendix B (the "St. Louis Downtown Site 2021 Radionuclide Emissions NESHAP Report Submitted in Accordance with Requirements of 40 CFR 61, Subpart I").

6.1 SUMMARY OF ASSESSMENT RESULTS

The TEDE from the SLDS to the receptor from all complete/applicable pathways combined was 1.5 mrem per year, estimated for an individual who works full-time at DT-8, formerly PSC Metals.

Figure 6-1 documents annual dose trends from CY 2000 to CY 2023 at the SLDS. A comparison of the maximum annual dose from CY 2000 to CY 2023 at the SLDS to the annual average natural background dose of approximately 620 mrem per year is provided on Figure 6-2.

6.2 PATHWAY ANALYSIS

Table 6-1 lists the four complete pathways for exposure from SLDS radiological contaminants evaluated by the St. Louis FUSRAP EMP. These pathways are used to identify data gaps in the EMP and to estimate potential radiological exposures from the SLDS. Of the four complete pathways, three were applicable in CY 2023 and were thus incorporated into radiological dose estimates.

6-1 REVISION 0

Table 6-1. Complete Radiological Exposure Pathways

Exposure Pathway	Pathway Description	Applicable to CY 2023 Dose Estimate
Liquid A	Ingestion of groundwater from local wells downgradient from the site.	NA
Airborne A	Inhalation of particulates dispersed through wind erosion and RAs.	Y
Airborne B	Inhalation of Rn-222 and decay products emitted from contaminated soils/wastes.	Y
External	Direct gamma radiation from contaminated soils/wastes.	Y

NA – not applicable for the site

Y – applicable for the site

In developing specific elements of the St. Louis FUSRAP EMP, potential exposure pathways of the radioactive materials present on-site are reviewed to determine which pathways are complete. Evaluation of each exposure pathway is based on hypothesized sources, release mechanisms, types, probable environmental fates of contaminants, and the locations and activities of potential receptors. Pathways are then reviewed to determine whether a link exists between one or more radiological contaminant sources, or between one or more environmental transport processes, to an exposure point where human receptors are present. If it is determined that a link exists, the pathway is termed complete. Each complete pathway is reviewed to determine if a potential for exposure was present during CY 2023. If potential for exposure was present, the pathway is termed applicable. Only applicable pathways are considered in estimates of dose.

Table 6-1 shows the pathways applicable to the CY 2023 dose estimates for the SLDS. The Liquid A exposure pathway was not applicable in CY 2023, because the aquifer is of naturally low quality and it is not known to be used for any domestic purpose in the vicinity of the SLDS (DOE 1994).

6.3 EXPOSURE SCENARIOS

Dose calculations were performed for a maximally exposed individual at a critical receptor location for applicable exposure pathways (Table 6-1) to assess dose due to radiological releases from the SLDS. A second set of dose equivalent calculations were performed to meet NESHAP requirements (Appendix B), which were also used for purposes of TEDE calculation.

The scenarios and models used to evaluate these radiological exposures are conservative, but appropriate. Although radiation doses can be calculated or measured for individuals, it is not appropriate to predict the health risk to a single individual using the methods prescribed herein. Dose equivalents to a single individual are estimated by hypothesizing a maximally exposed individual and placing this individual in a reasonable, but conservative scenario. This method is acceptable when the magnitude of the dose to a hypothetical maximally exposed individual is small, as is the case for the SLDS. This methodology provides for reasonable estimates of potential exposure to the public and maintains a conservative approach. The scenarios and resulting estimated doses are outlined in Section 6.4.

6.4 DETERMINATION OF TOTAL EFFECTIVE DOSE EQUIVALENT FOR EXPOSURE SCENARIOS

The TEDE for the exposure scenario was calculated using CY 2023 monitoring data. Calculations for dose scenarios are provided in Appendix G. Dose equivalent estimates are well below the standards set by the U.S. Nuclear Regulatory Commission (NRC) for annual public exposure and USEPA NESHAP limits.

6-2 REVISION 0

The CY 2023 TEDE for a hypothetical maximally exposed individual near the SLDS is 1.5 mrem per year.

This section discusses the estimated TEDE to a hypothetical maximally exposed individual assumed to frequent the perimeter of the SLDS and receive a radiation dose by the exposure pathways identified in Section 6.2. No private residences are adjacent to the site areas where uranium processing activities occurred. Therefore, all calculations of dose equivalent due to the applicable pathway assume a realistic residence time that is less than 100 percent. A full-time employee business receptor was considered to be the maximally exposed individual from the SLDS.

The exposure scenario assumptions include the following:

- Exposure to radiation from all SLDS sources occurs to the maximally exposed individual while working full-time outside at the receptor location facility located approximately 75 m from the assumed line source. Exposure time is 2,000 hours per year (Leidos 2024b).
- Exposure from external gamma radiation was calculated using environmental TLD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor. The site is assumed to represent a line-source to the receptor (Leidos 2024b).
- Exposure from airborne radioactive particulates was estimated using soil concentration data and air particulate monitoring data to determine a source term, and then running the CAP88-PC modeling code to estimate dose to the receptor (Leidos 2024b).
- Exposure from Rn-222 (and decay chain isotopes) was calculated using ATD monitoring data at the site locations representative of areas accessible to the public between the source and the receptor (Leidos 2024b).

Based on the exposure scenario and assumptions described above, a maximally exposed individual working outside at the receptor location facility received 0.4 mrem per year from external gamma, 0.4 mrem per year from airborne radioactive particulates, and 0.6 mrem per year from Rn-222, for a TEDE of 1.5 mrem per year (Leidos 2024b). In comparison, the average exposure to natural background radiation in the United States results in a TEDE of approximately 620 mrem per year (NCRP 2009).

6-3 REVISION 0

St. Louis Downtown Site Annual Er	nvironmental Monitoring	Data and Analysis Repor	t for CY 2023	
		-		
ТНІ	S PAGE INTENT	IONALLY LEFT	RLANK	
1111	S THOL HALLA	TOTALLET LETT		

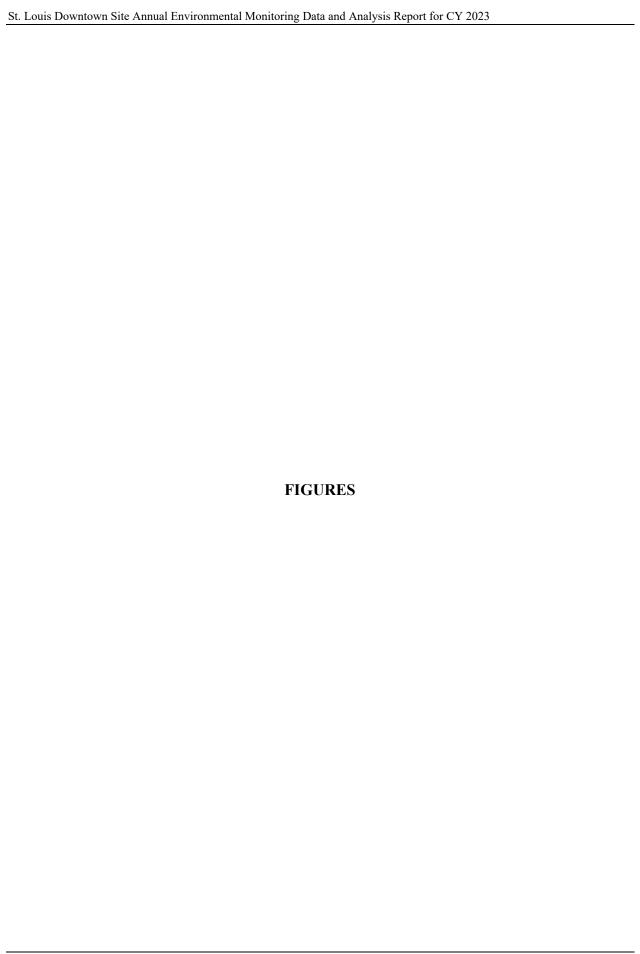
6-4 REVISION 0

7.0 REFERENCES

- Cember, H., 1996. Introduction to Health Physics. Mcgraw-Hill, New York, NY. 1996.
- City of St. Louis 2005. City Ordinance 66777, effective August 2005.
- DoD 2000. U.S. Department of Defense, U.S. Department of Energy, U.S. Environmental Protection Agency, and U.S. Nuclear Regulatory Commission. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. NUREG 1575. EPA 402-R-97-016. August 2000.
- DoD and DOE 2021. U.S. Department of Defense and U.S. Department of Energy. *Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories*. DoD Quality Systems Manual Version 5.4. 2021.
- DOE 1994. U.S. Department of Energy. *Remedial Investigation Report for the St. Louis Site.* St. Louis, Missouri. DOE/OR/21949-280. January 1994.
- DOE 1995. U.S. Department of Energy. *Remedial Investigation Addendum for the St. Louis Site.* St. Louis, Missouri. DOE/OR/ 21950-132. September 1995.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*. John Wiley and Sons, Inc., New York. January 1994.
- Leidos 2015a. Leidos, Inc. Environmental Science & Engineering Operation, Standard Operating Procedure. "Control of Nonconforming Items." ESE A15.1. Revision 0. January 31, 2015.
- Leidos 2015b. Leidos, Inc. *Data Verification and Validation*. Environmental Science & Engineering Operation. Standard Operating Procedure. ESE DM-05. Revision 0. January 31, 2015.
- Leidos 2024a. Leidos, Inc. Radon Working Levels (WL) at SLDS. Calculation Package. March 2024.
- Leidos 2024b. Leidos, Inc. Total Effective Dose Equivalent (TEDE) to the Hypothetically Maximally Exposed Individual at SLDS. Calculation Package. March 2024.
- MSD 1998. Metropolitan St. Louis Sewer District. Letter dated October 30, 1998. From Bruce H. Litzsinger, Civil Engineer, to Ken Axetel, International Technology Corporation.
- MSD 2001. Metropolitan St. Louis Sewer District. Letter dated July 23, 2001. From Bruce H. Litzsinger, Civil Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: St. Louis Downtown Site. File: IU Mallinckrodt 21120596-00.
- MSD 2004. Metropolitan St. Louis Sewer District. Letter dated October 13, 2004. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. File: IU Mallinckrodt 21120596-00.
- MSD 2006. Metropolitan St. Louis Sewer District. Letter dated June 19, 2006. From Roland A. Biehl, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2008. Metropolitan St. Louis Sewer District. Letter dated May 22, 2008. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.

7-1 REVISION 0

- MSD 2010. Metropolitan St. Louis Sewer District. Letter dated May 10, 2010. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2012. Metropolitan St. Louis Sewer District. Letter dated May 24, 2012. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 2112059600, SP809.
- MSD 2014. Metropolitan St. Louis Sewer District. Letter dated June 23, 2014. From Steven M. Grace, Environmental Assistant Engineer, to Sharon Cotner, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2016. Metropolitan St. Louis Sewer District. Letter dated July 18, 2016. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2018. Metropolitan St. Louis Sewer District. Letter dated June 11, 2018. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- MSD 2020. Metropolitan St. Louis Sewer District. Letter dated July 16, 2020. From Steven M. Grace, Environmental Assistant Engineer, to Bruce Munholand, USACE FUSRAP Project Manager. Subject: FUSRAP St. Louis Downtown Site, File: IU-SPECGX 1011728100, SP809.
- MSD 2022. Metropolitan St. Louis Sewer District. Letter dated June 7, 2022. From Steven M. Grace, Environmental Assistant Engineer, to David Evans. Subject: FUSRAP St. Louis Downtown Site, File: IU-Mallinckrodt 1011728100, SP809.
- NCRP 1988. National Council on Radiation Protection and Measurements. *Measurement of Radon and Radon Daughters in Air*. NCRP Report No. 97. November 1988.
- NCRP 2009. National Council on Radiation Protection and Measurements. *Ionizing Radiation Exposure of the Population of the United States*. NCRP Report No. 160. 3 March 2009.
- USACE 1997. U.S. Army Corps of Engineers, Environmental Quality. *Chemical Quality Assurance for HTRW Projects*. Engineer Manual. EM-200-1-6. October 10, 1997.
- USACE 1998a. U.S. Army Corps of Engineers. *Record of Decision for the St. Louis Downtown Site*. St. Louis, Missouri. Final. July 1998.
- USACE 1998b. U.S. Army Corps of Engineers, Engineering and Design. *Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities*. Engineer Regulation. ER-1110-1-263. April 30, 1998.
- USACE 1999a. U.S. Army Corps of Engineers. Environmental Monitoring Guide for the St. Louis Sites. Final. December 1999.
- USACE 1999b. U.S. Army Corps of Engineers. FUSRAP Laboratory Data Management Process for the St. Louis Site. St. Louis, Missouri. June 1999.


7-2 REVISION 0

- USACE 2000. U.S. Army Corps of Engineers. Sampling and Analysis Guide for the St. Louis Site. Final. October 2000.
- USACE 2001. U.S. Army Corps of Engineers, Environmental Quality. *Requirements for the Preparation of Sampling and Analysis Plans*. Engineer Manual. EM 200-1-3. February 1, 2001.
- USACE 2003. U.S. Army Corps of Engineers. *Phase 1 Ground-Water Remedial Action Alternative Assessment (GRAAA) at SLDS.* St. Louis Missouri. Final. June 2003.
- USACE 2018. U.S. Army Corps of Engineers. Laboratory Quality Assurance Plan for the FUSRAP St. Louis Radiological Laboratory. St. Louis, Missouri. Revision 11. February 2018.
- USACE 2022. U.S. Army Corps of Engineers. *Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2023*. St. Louis, Missouri. Revision 0. December 30, 2022.
- USEPA 1987. U.S. Environmental Protection Agency. *Environmental Radon*. Volume 35. New York. 1987.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington D.C. *Exposure Factor Handbook*. EPA/600/8-89/043. July 1989.
- USEPA 1991. U.S. Environmental Protection Agency. *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*. QAMS-005/80. 1991.
- USEPA 1993. U.S. Environmental Protection Agency. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846.* Third Edition. Final Update III-A. EPASW-846.3-3a. March 1993.
- USEPA 1994. U.S. Environmental Protection Agency. *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations*. EPA QA/R-5. January 1994.
- USEPA 2000. U.S. Environmental Protection Agency. *Guidance for Data Quality Assessment Practical Methods for Data Analysis*. EPA QA/G-9. QA00 Update. July 2000.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 10 CFR 20, Standards for Protection Against Radiation.
- 10 CFR 20.1301, Dose Limits for Individual Members of the Public.
- 40 CFR 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 192, Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings.

7-3 REVISION 0

St. Louis Downtown Site Annual Environmental Monitoring	Data and Analysis Report for CY 2023
THIS PAGE INTENT	TONALLY LEFT BLANK
	TOTALLET ELT I BEATAIL
	TOTALEST BETT BETTAK

7-4 REVISION 0

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
THE DAME INTERPRETARIALLY FREE DIAMIZ	
THIS PAGE INTENTIONALLY LEFT BLANK	

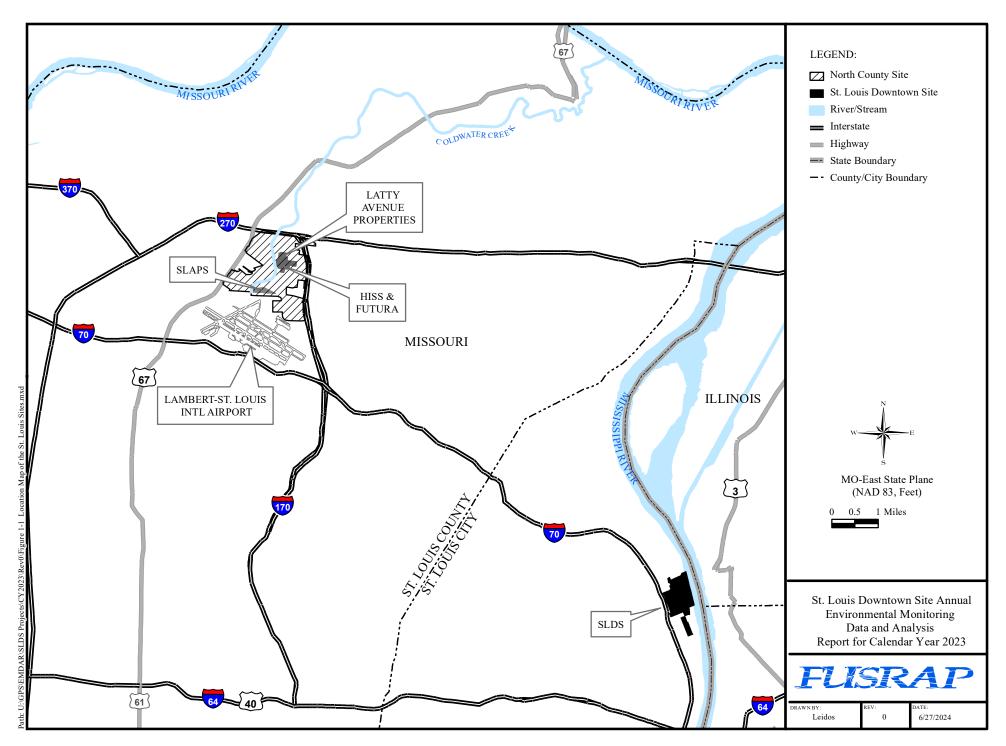


Figure 1-1. Location Map of the St. Louis Sites

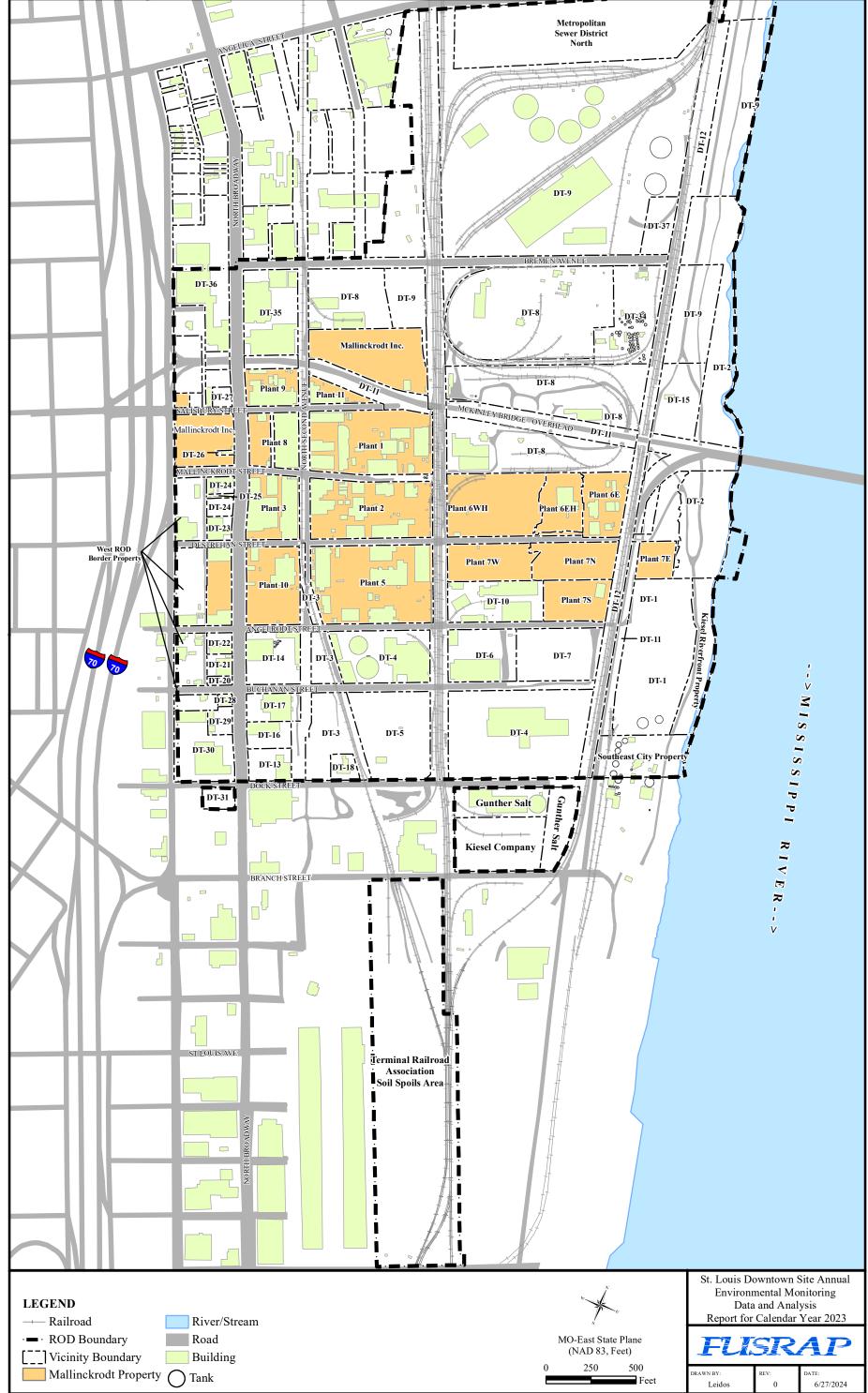


Figure 1-2. Plan View of the SLDS

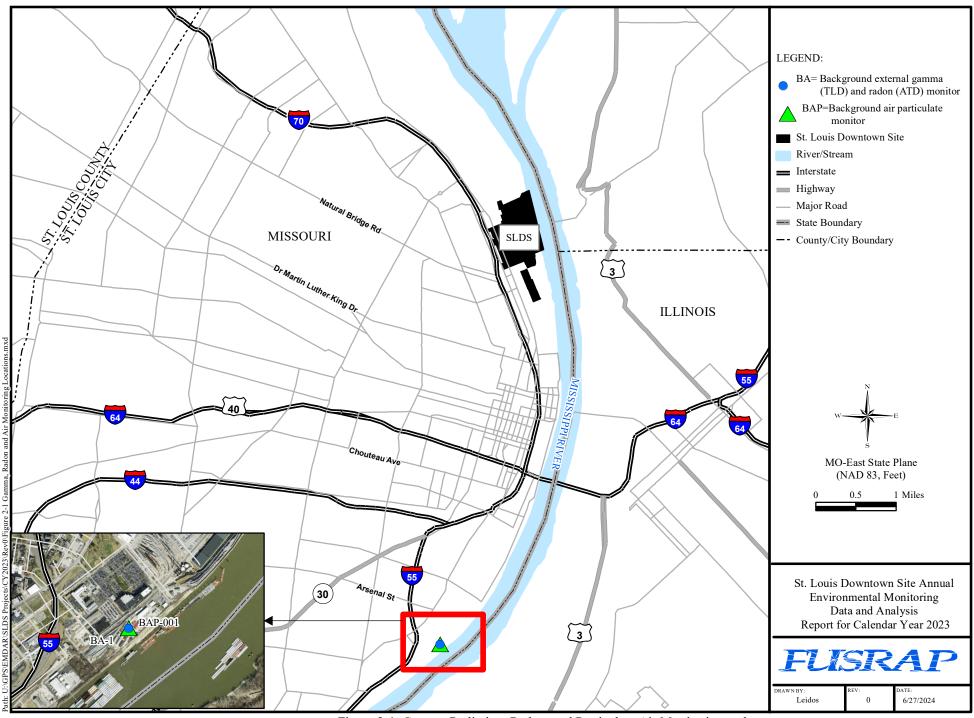


Figure 2-1. Gamma Radiation, Radon, and Particulate Air Monitoring at the St. Louis Background Location - USACE Service Base

Figure 2-2. Gamma Radiation and Radon Monitoring Locations

Figure 3-1. MSD Excavation Water Discharge Point

Unit Designation	Approximate Thickness (ft)	Description
it (HU-A)	0-25	RUBBLE and FILL Grayish black (N2) to brownish black (5YR2/1). Dry to slightly moist, generally becoming moist at 5 to 6 ft and saturated at 10 to 12 ft. Slight cohesion, variable with depth, moisture content, and percentage of fines present. Consistency of relative density is unrepresentative due to large rubble fragments. Rubble is concrete, brick, glass, and coal slag. Percentage of fines as silt or clay increases with depth from 5 to 30 percent. Some weakly cemented aggregations of soil particles. Adhesion of fines to rubble increases with depth and higher moisture content. Degree of compaction is slight to moderate with frequent large voids.
Upper Hydrostratigraphic Unit (HU-A)	0-10	Silty CLAY (CH) Layers are mostly olive gray (5Y2/1), with some olive black (5Y2/1). Predominantly occurs at contact of undisturbed material, or at boundary of material with elevated activity. Abundant dark, decomposed organics. Variable percentages of silt and clay composition.
Hydrostra	0-5	CLAY (CL) Layers are light olive gray (5Y5/2), or dark greenish gray (5GY4/1). Slightly moist to moist, moderate cohesion, medium stiff consistency. Tends to have lowest moisture content. Slight to moderate plasticity.
Upper	0-2.5	Interbedded CLAY, Silty CLAY, SILT and Sandy SILT (CL, ML, SM) Dark greenish gray (5GY4/1) to light olive gray (5Y6/1). Moist to saturated, dependent on percentage of particle size. Contacts are sharp, with structure normal to sampler axis to less than 15 degrees downdip. Layer thicknesses are variable, random in alternation with no predictable vertical gradation or lateral continuity. Some very fine-grained, rounded silica sand as stringers. Silt in dark mafic/biotite flakes. Some decomposed organics.
igraphic 8)	0-10	Sandy SILT (ML) Olive gray (5Y4/1). Moist with zones of higher sand content saturated. Slight to moderate cohesion, moderate compaction. Stiff to very stiff consistency, rapid dilatancy, nonplastic. Sand is well sorted, very fine and fine-grained rounded quartz particles.
Lower Hydrostratigraphic Unit (HU-B)	0-50	Silty SAND and SAND (SM, SP, SW) Olive gray (5Y4/1). Saturated, slight cohesion, becoming noncohesive with decrease of silt particles with depth. Dense, moderate compaction. Moderate to well-graded, mostly fine- and medium-grained, with some fine- and coarse-grained particles. Mostly rounded with coarse grains slightly subrounded. Gradual gradation from upper unit, silty sand has abundant dark mafic/biotite flakes. Sand is well-graded, fine gravel to fine sand. Mostly medium-grained, with some fine-grained and few coarse-grained and fine gravel.
Limestone Bedrock Unit (HU-C)	Total thickness not penetrated during drilling	LIMESTONE Light olive gray (5Y4/1) with interbedded chert nodules. Generally hard to very hard; difficult to scratch with knife. Slightly weathered, moderately fresh with little to no discoloration or staining. Top 5 ft is moderately fractured, with 99 percent of joints normal to the core axis. Joints are open, planar, and smooth. Some are slightly discolored with trace of hematite staining.

SOURCE: MODIFIED FROM DOE 1994.

NOTE: THE CODES IN PARENTHESES FOLLOWING THE LITHOLOGIES ARE THE UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) CODES.

THE CODES IN PARENTHESES FOLLOWING THE COLOR DESCRIPTIONS REPRESENT CHROMA, HUE, AND VALUE FROM THE MUNSELL SOIL COLOR CHARTS.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2023

AUTHOR REVISION DATE
Leidos 0 05-17-2024

NOT TO SCALE

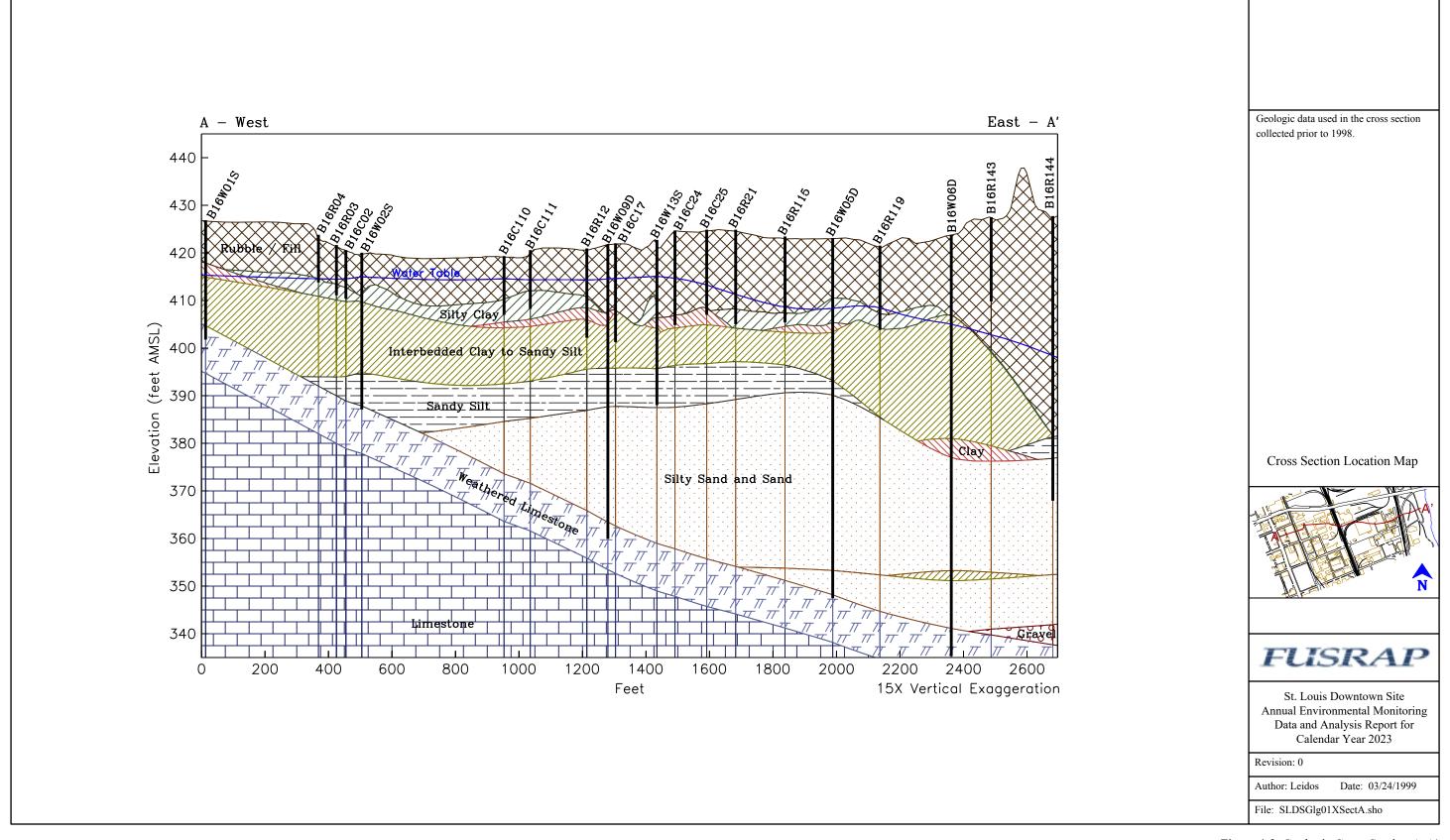


Figure 4-2. Geologic Cross-Section A-A'

Figure 4-3. Groundwater Monitoring Well Locations

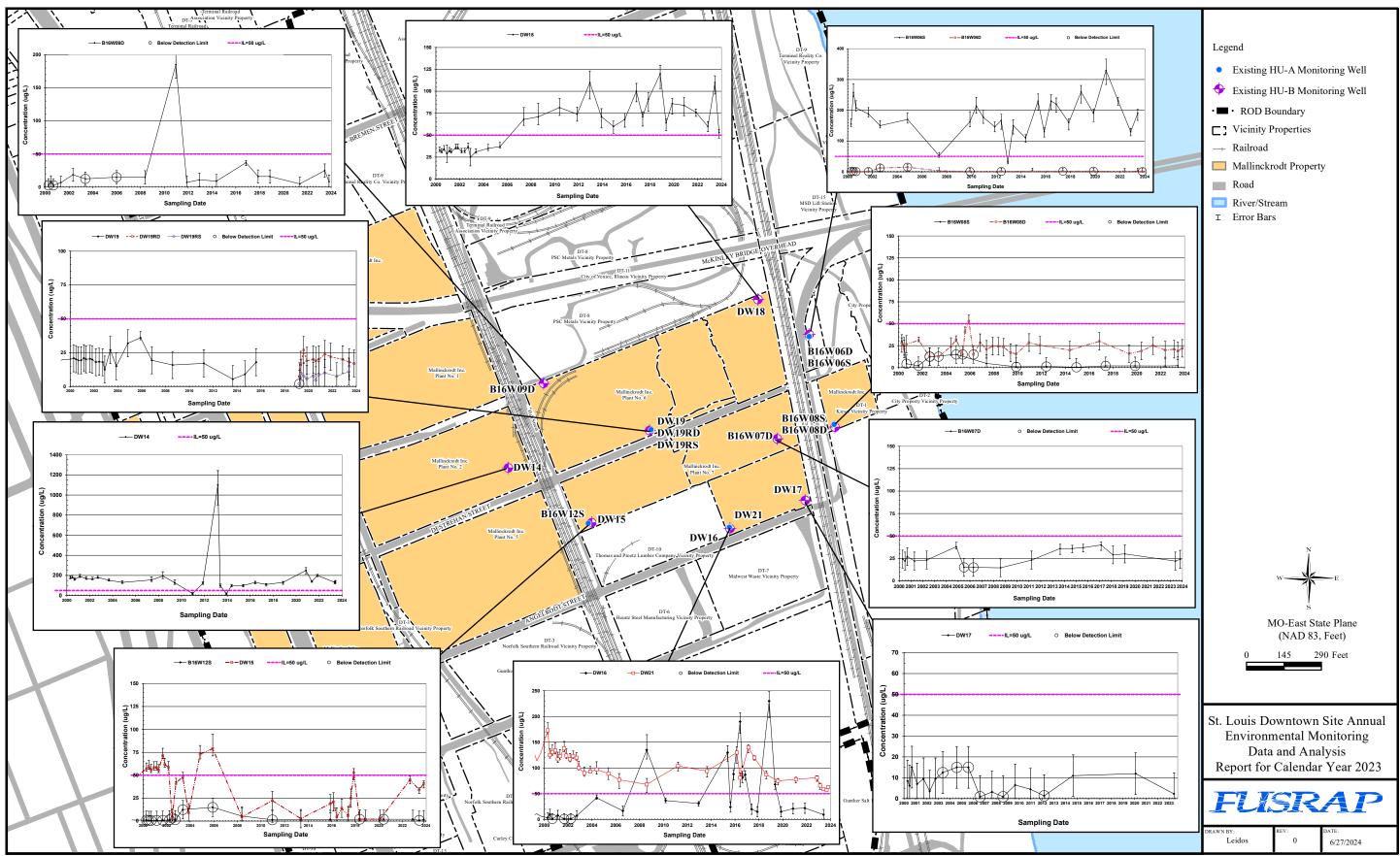


Figure 4-4. Arsenic Time-Versus-Concentration Plots in Unfiltered Groundwater

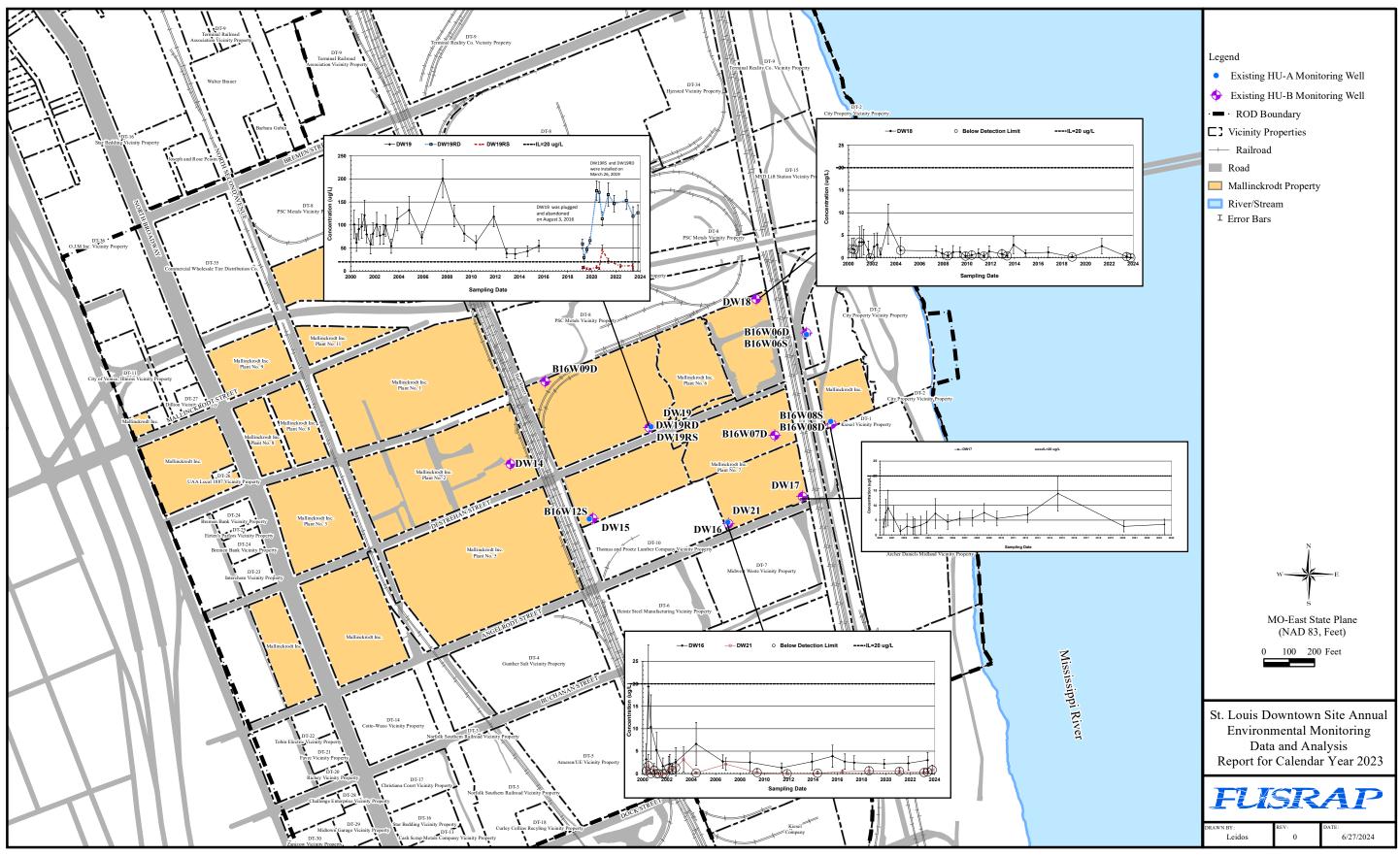
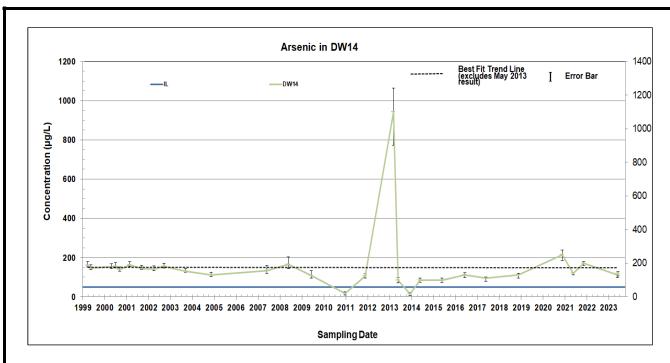
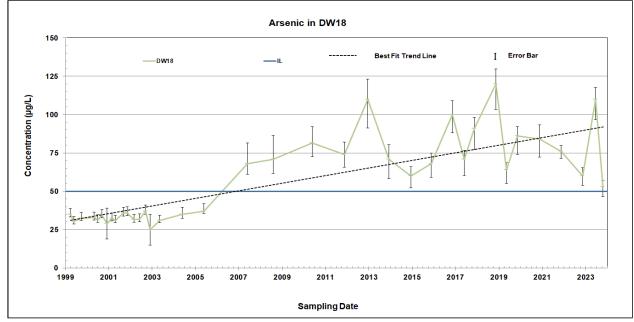
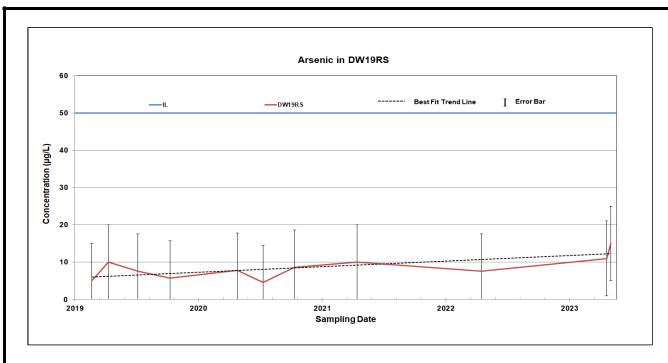




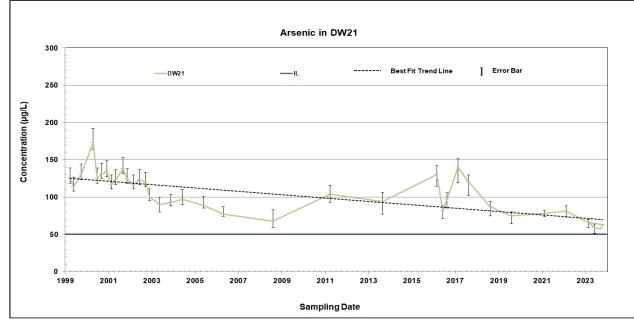
Figure 4-5. Total U Time-Versus-Concentration Plots in Unfiltered Groundwater

Notes

For arsenic results less than 3 times the reporting limit (RL), the error bar represents \pm RL.

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.


For total U, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.



St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2023

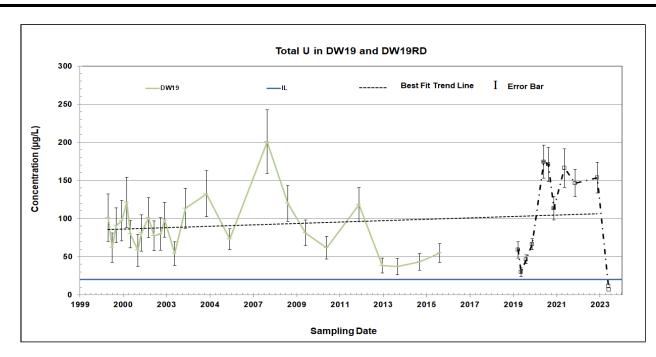
REVISION: 0 DATE: 05-17-2024

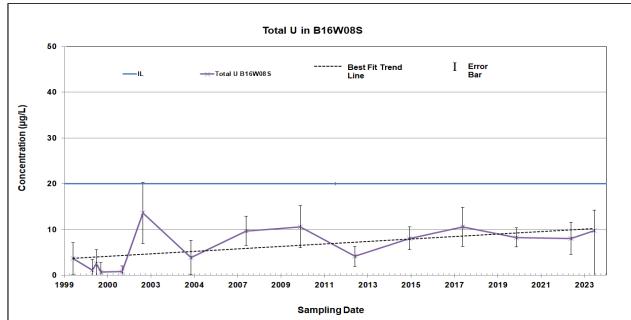
Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic in Unfiltered Groundwater at DW14, DW18, DW19RS, and DW21 and for Total U in Unfiltered Groundwater at DW19/DW19RD and B16W08S

Notes

For arsenic results less than 3 times the reporting limit (RL), the error bar represents \pm RL.

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.


For total Ú, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.



St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2023

REVISION: 0 DATE: 05-17-2024

Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic in Unfiltered Groundwater at DW14, DW18, DW19RS, and DW21 and for Total U in Unfiltered Groundwater at DW19/DW19RD and B16W08S (Continued)

Notes

For arsenic results less than 3 times the reporting limit (RL), the error bar represents \pm RL.

For arsenic results exceeding 3 times the RL, the error bar represents the upper and lower control limits on the control spike samples. Error bars for arsenic for 2003 and earlier are based on laboratory control limits for 2003. Error bars for 2004 and later are based on laboratory control limits reported for the respective years.

For total Ú, the error bar represents ± the sum of the measurement errors for U-234, U-235, and U-238, converted to µg/L.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2023

REVISION: 0 DATE: 05-17-2024

Figure 4-6. Time-Versus-Concentration Plots and Trends for Arsenic in Unfiltered Groundwater at DW14, DW18, DW19RS, and DW21 and for Total U in Unfiltered Groundwater at DW19/DW19RD and B16W08S (Continued)

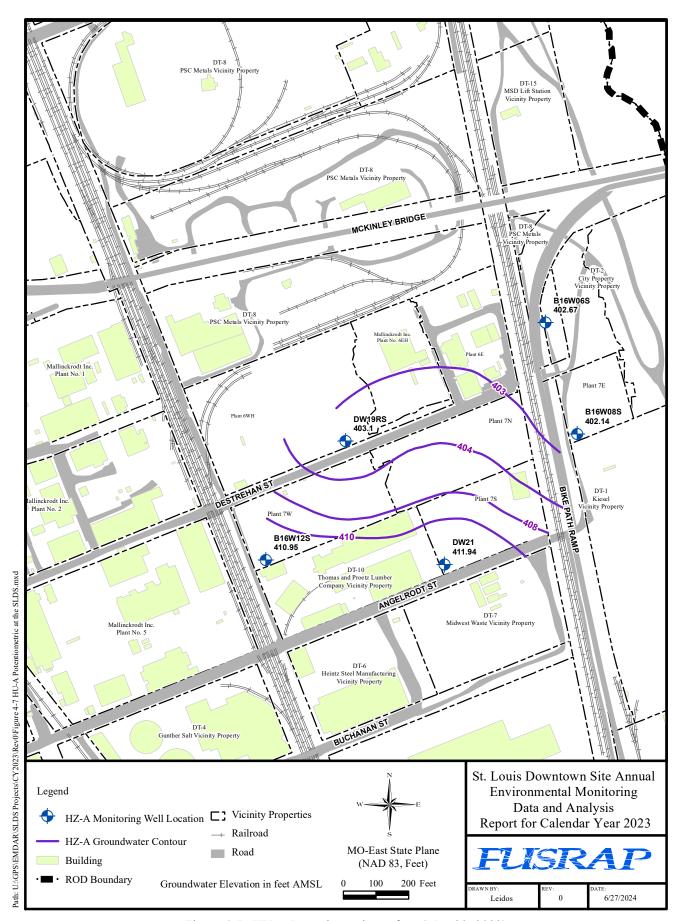


Figure 4-7. HU-A Potentiometric Surface (May 22, 2023)

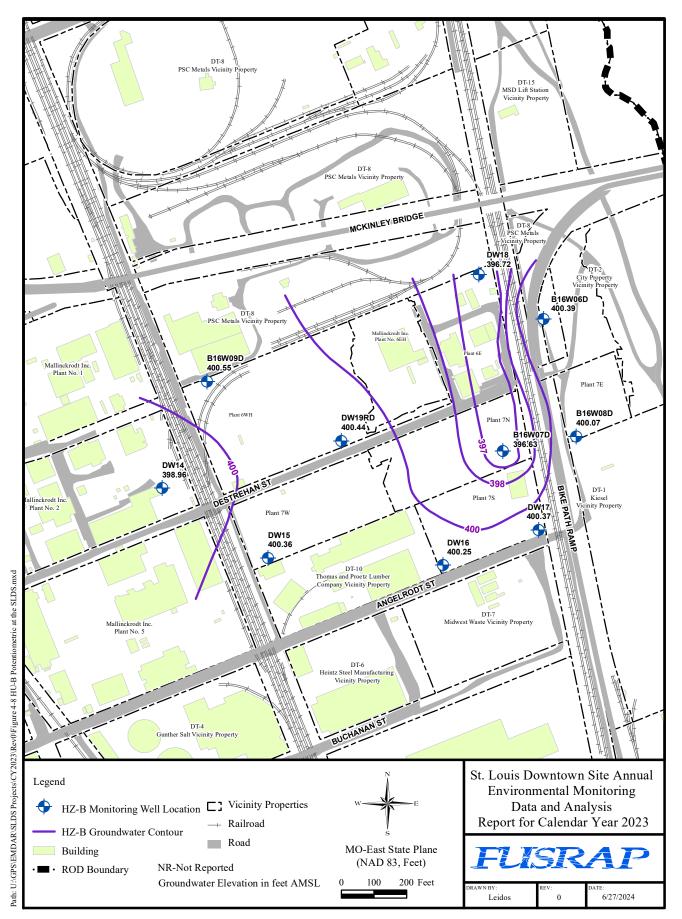


Figure 4-8. HU-B Potentiometric Surface (May 22, 2023)

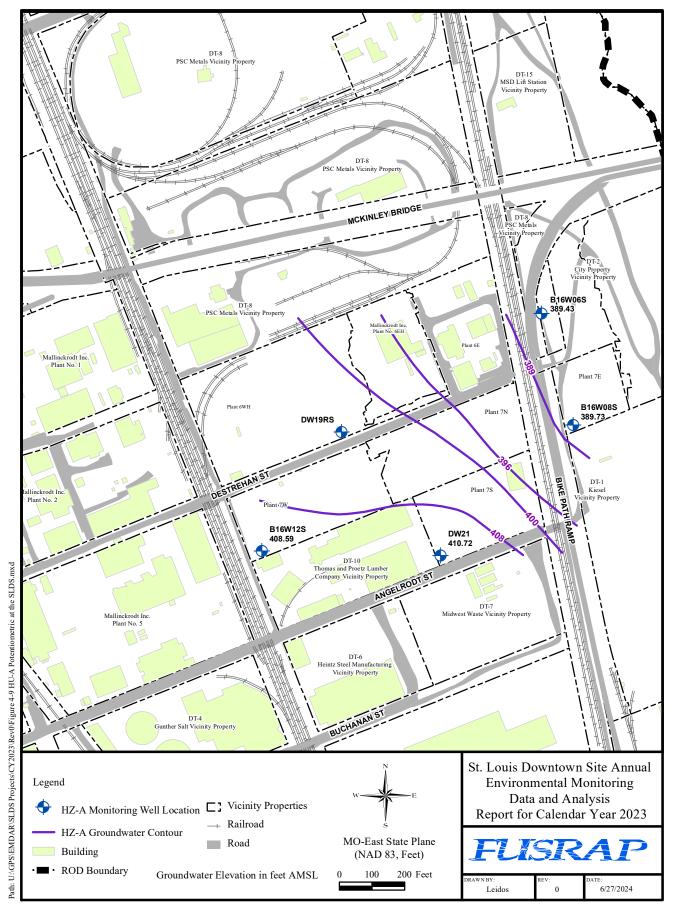


Figure 4-9. HU-A Potentiometric Surface (September 6, 2023)

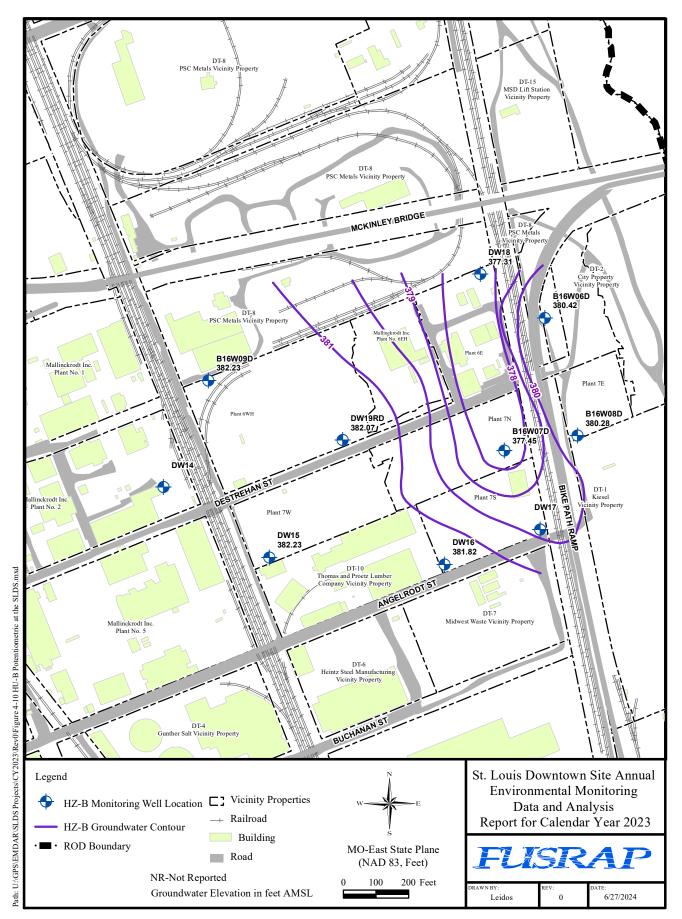


Figure 4-10. HU-B Potentiometric Surface (September 6, 2023)

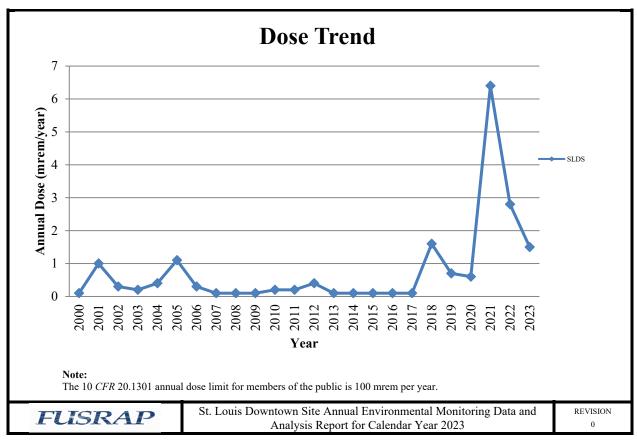


Figure 6-1. Dose Trend

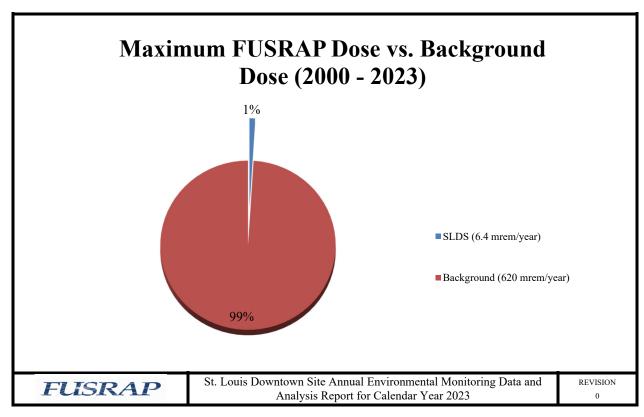


Figure 6-2. Maximum Dose vs. Background Dose

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
APPENDIX A	
DOCHMENTS FINALIZED IN CALENDAD VEAD 1012	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	
DOCUMENTS FINALIZED IN CALENDAR YEAR 2023	

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

- Pre-Design Investigation Summary Report for St. Louis Downtown Site Vicinity Property Terminal Railroad Association (DT-9) Rail Spurs (May 22).
- Remedial Design/Remedial Action Work Description Terminal Railroad Association Vicinity Property (DT-9) Rail Spurs, Supplement No. 5 to the Remedial Action Work Plan for Selective Remediation at the St. Louis Downtown Site (June 7).
- Pre-Design Investigation Summary Report North Second Street and the Norfolk Southern Railroad Vicinity Property (DT-3) (June 22).
- St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for Calendar Year 2022 (June 23).
- Pre-Design Investigation Summary Report and Final Status Survey Evaluation for Accessible Soil within the St. Louis Downtown Site West Border Properties (September 13).
- Mississippi River Characterization Sampling Report (September 20).
- Environmental Monitoring Implementation Plan for the St. Louis Downtown Site for Calendar Year 2024 (December 22).

APPENDIX A	A-2	REVISION
	THIS PAGE INTENTIONALLY LEFT BLANK	
	-	
St. Louis Downtown Site	e Annual Environmental Monitoring Data and Analysis Report for CY 2023	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
APPENDIX B
ST. LOUIS DOWNTOWN SITE 2023 RADIONUCLIDE EMISSIONS NESHAP REPOR SUBMITTED IN ACCORDANCE WITH REQUIREMENTS OF 40 $\it CFR$ 61, SUBPART
SUBMITTED IN ACCORDANCE WITH REQUIREMENTS OF 40 CFR 01, SUBTART

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

TABLE OF CONTENTS

<u>SEC'</u>	TION		PAGE
LIST	OF T	ABLES	B-ii
LIST	OF F	IGURES	B-ii
LIST	OF A	TTACHMENTS	B-ii
ACR	ONYM	IS AND ABBREVIATIONS	B-iii
UNI	Г АВВ	REVIATIONS	B-iv
EXE	CUTIV	/E SUMMARY AND DECLARATION STATEMENT	B-v
1.0	PUR	POSE	B-1
2.0	MET	THOD	B-3
	2.1	EMISSION RATE	
	2.2	EFFECTIVE DOSE EQUIVALENT	
3.0	MET	TEOROLOGICAL DATA	
4.0	ST. I	LOUIS DOWNTOWN SITE PROPERTIES UNDER TVE REMEDIATION	
	4.1	SITE HISTORY	B-7
	4.2	MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2023	B-7
	4.3	SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS	B-7
	4.4	LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2023	B-8
	4.5	DISTANCES TO CRITICAL RECEPTORS	B-8
	4.6	EMISSIONS DETERMINATION	B-8
	4.7	CAP88-PC RESULTS	B-10
5.0	REF	ERENCES	B-11

REVISION 0

LIST OF TABLES

<u>NUMBER</u>	· ·	PAGE
Table B-1.	St. Louis Wind Speed Frequency	B-5
Table B-2.	St. Louis Wind Rose Frequency	B-5
Table B-3.	Critical Receptors for CY 2023	B-8
Table B-4.	Average Gross Alpha and Beta Airborne Particulate Emissions for CY 2023	B-8
Table B-5.	Excavation Effective Areas and Effective Diameters for CY 2023	B-9
Table B-6.	Site Release Flow Rates for CY 2023	B-9
Table B-7.	Area Airborne Radioactive Particulate Emission Rates Based on Excavation	
	Perimeter Air Samples for CY 2023	B-10
Table B-8.	CAP88-PC Results for Critical Receptors for CY 2023	B-10

LIST OF FIGURES

NUMBER

Figure B-1. Critical Receptors

LIST OF ATTACHMENTS

Attachment B-1 Calculated Emission Rates
Attachment B-2 CAP88-PC Output Reports

ACRONYMS AND ABBREVIATIONS

Ac actinium

AEC U.S. Atomic Energy Commission

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

CY calendar year

DOE U.S. Department of Energy EDE effective dose equivalent

FUSRAP Formerly Utilized Sites Remedial Action Program

GIS geographic information system

Mallinckrodt LLC

MED Manhattan Engineer District

MSD Metropolitan St. Louis Sewer District

NAD normalized absolute difference

NESHAP National Emission Standard for Hazardous Air Pollutants

Pa protactinium Ra radium

RA remedial action

ROD Record of Decision for the St. Louis Downtown Site

SLDS St. Louis Downtown Site

SLS St. Louis Sites
SU survey unit
Th thorium
U Uranium

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

VP vicinity property

UNIT ABBREVIATIONS

Both English and metric units are used in this report. The units used in a specific situation are based on common unit usage or regulatory language (e.g., depths are given in feet, and areas are given in square meters). Units included in the following list are not defined at first use in this report.

°C degree(s) Celsius (centigrade)
μCi/cm³ microcurie(s) per cubic centimeter

μCi/mL microcurie(s) per milliliter

Ci curie(s) cm centimeter(s)

cm³ cubic centimeter(s)

m meter(s)

m² square meter(s)
m³ cubic meter(s)
mL milliliter
mrem millirem

pCi/g picocuries per gram

EXECUTIVE SUMMARY AND DECLARATION STATEMENT

This report presents the results of National Emission Standard for Hazardous Air Pollutants (NESHAP) calculations for the St. Louis Formerly Utilized Sites Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS) for calendar year (CY) 2023. NESHAP requires the calculation of the effective dose equivalent (EDE) from radionuclide emissions to critical receptors. The report follows the requirements and procedures contained in 40 Code of Federal Regulations (CFR) 61, Subpart I, National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.

This NESHAP report evaluates SLDS properties where there was a reasonable potential for radionuclide emissions due to St. Louis FUSRAP activities. These sites include the SLDS Bike Path, Plant 2, and Plant 6 Loadout.

Emissions from the SLDS were evaluated for the entire CY 2023 to provide a conservative estimate of total emissions.

The NESHAP standard of EDE to a critical receptor from radionuclide emissions is 10 mrem per year. The SLDS did not exceed this standard. The EDE from radionuclide emissions at the SLDS was calculated using soil characterization data, air particulate monitoring data, and the U.S. Environmental Protection Agency (USEPA) CAP88-PC modeling code, which resulted in an EDE at the SLDS of 0.4 mrem per year.

The evaluation for the SLDS resulted in less than 10 percent of the dose standard prescribed in 40 CFR 61.102. This site is exempt from the reporting requirements of 40 CFR 61.104(a).

DECLARATION STATEMENT - 40 CFR 61.104(a)(xvi)

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See 18 *U.S. Code* 1001.

Signature	Date
Office:	U.S. Army Corps of Engineers, St. Louis District Office
Address:	114 James S McDonnell Boulevard
	Hazelwood, MO 63042
Contact:	Jon Rankins

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023
	THIS DAGE INTENTIONALLY LEFT DUANTZ
	THIS PAGE INTENTIONALLY LEFT BLANK

1.0 PURPOSE

This NESHAP report contains the EDE calculations from radionuclide emissions (exclusive of radon) to critical receptors from the SLDS properties at which a reasonable potential existed for radionuclide emissions due to St. Louis FUSRAP activities. These sites include the SLDS Bike Path, Plant 2, and Plant 6 Loadout. The air emissions from the SLDS are ground releases of particulate radionuclides in soil as a result of windblown action and remedial activity in the form of excavation and off-site disposal of soil.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
THIS PAGE INTENTIONALLY LEFT BLANK	

2.0 METHOD

Emission rates for the SLDS were modeled using guidance documents (i.e., A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities [USEPA 1989]) referenced in 40 CFR 61, Appendix E, Compliance Procedures Methods for Determining Compliance with Subpart I, and were measured by collection of environmental air samples. Emission rates, along with appropriate meteorological data and distances to critical receptors¹, were input into the USEPA computer code CAP88-PC to obtain the EDE from the air emissions.

Although 40 *CFR* 61.103 requires the use of the USEPA computer code COMPLY, USEPA no longer supplies technical support for COMPLY. However, the USEPA lists both COMPLY and CAP88-PC as atmospheric models for assessing dose and risk from radioactive air emissions (USEPA 2020). The USEPA continues to maintain and update the CAP88-PC modeling program, and has updated it as recently as March 2020. In previous FUSRAP NESHAP reports, both COMPLY and CAP88-PC results have been compared. This comparison indicated that CAP88-PC is a comparable and conservative method of demonstrating compliance with 40 *CFR* 61, Subpart I. For these reasons, CAP88-PC was used in this NESHAP report to demonstrate compliance with the NESHAP standard.

2.1 EMISSION RATE

The method used to determine particulate radionuclide emission rates from the SLDS was 40 CFR 61, Appendix D, Methods for Estimating Radionuclide Emissions. Emissions during excavations were evaluated using air sampling data at the excavation and loadout perimeters.

2.2 EFFECTIVE DOSE EQUIVALENT

The EDE to critical receptors¹ is obtained using USEPA computer code CAP88-PC, Version 4.1 (USEPA 2020). CAP88-PC uses a Gaussian plume equation to estimate the dispersion of radionuclides and is referenced by the USEPA to demonstrate compliance with the NESHAP emissions criterion in 40 *CFR* 61. An area ground release at a height of 1.0 m is modeled for the SLDS.

The EDE is calculated by combining doses from ingestion, inhalation, air immersion, and external ground surface. CAP88-PC contains historical weather data libraries for major airports across the country, and the results can be modeled for receptors at multiple distances from the emissions source.

¹ "Critical receptors," as used in this report, are the locations for the nearest residence, farm, business, and school.

St. Louis Downtown Site An	nnual Environmental Monitoring Data and Analysis Report for	r CY 2023
	<u> </u>	
	THIS PAGE INTENTIONALLY LEFT B	LANK

3.0 METEOROLOGICAL DATA

Meteorological data were obtained from the CAP88-PC code for the Lambert – St. Louis International Airport (wind file 13994.WND). Data in the file were accumulated from 1988 through 1992.

Average Annual Wind Velocity: 4.446 m per second
Average Annual Precipitation Rate: 111 cm per year
Average Annual Air Temperature: 14.18 °C

Wind speed frequency data were obtained from Lambert – St. Louis International Airport (see Table B-1).

Table B-1. St. Louis Wind Speed Frequency

Wind Speed Group (Knots)	Frequency (Percent)
0 - 3	10
4 – 7	29
8 - 12	36
13 - 18	21
19 – 24	3
25 – 31	1

Knot = 1.151 miles per hour

Wind direction frequency data were obtained from the CAP88-PC wind file, 13994.WND (see Table B-2).

Table B-2. St. Louis Wind Rose Frequency

Wind D	Wind Direction W		Wind Direction		Wind Frequency
Wind Toward	Wind From	(Percent)	Wind Toward Wind From		(Percent)
North	South	13.1	South	North	5.6
North-Northwest	South-Southeast	7.4	South-Southeast	North-Northwest	4.3
Northwest	Southeast	6.8	Southeast	Northwest	6.1
West-Northwest	East-Southeast	6.9	East-Southeast	West-Northwest	8.7
West	East	5.5	East	West	9.0
West-Southwest	East-Northeast	2.8	East-Northeast	West-Southwest	6.8
Southwest	Northeast	3.1	Northeast	Southwest	5.4
South-Southwest	North-Northeast	3.7	North-Northeast	South-Southwest	5.0

St. Louis Downtown Site An	nnual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS TAGE IN TENTION MEET EET I BEMAK	

4.0 ST. LOUIS DOWNTOWN SITE PROPERTIES UNDER ACTIVE REMEDIATION

4.1 SITE HISTORY

From 1942 until 1957, Mallinckrodt LLC (Mallinckrodt) was contracted by the Manhattan Engineer District (MED) and the U.S. Atomic Energy Commission (AEC) to process uranium ore for the production of uranium metal. Residuals of the process, including spent pitchblende ore, and radium, thorium, uranium, and their radioactive decay products, were inadvertently released from the Mallinckrodt property into the environment. Residuals from the uranium process had elevated levels of radioactive radium, thorium, and uranium. From 1942 to 1945, Plants 1, 2, 6, 7, and 4 (now Plant 10) were involved in the development of uranium-processing techniques, uranium compounds and metal production, and uranium metal recovery from residues and scrap. Mallinckrodt decontaminated Plants 1 and 2 from 1948 through 1950 to meet the AEC criteria then in effect, and the AEC released these plants for use without radiological restrictions in 1951. MED/AEC operations ended in 1957.

A radiological survey conducted at the SLDS in 1977 found radiological contamination that exceeded existing guidelines. In response to this survey, it was determined that further investigation of the site was necessary to characterize the nature and extent of the contamination. In 1990, the USEPA Region 7 and the U.S. Department of Energy (DOE) established schedules and deliverables for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at the St. Louis Sites (SLS). In 1994, the DOE submitted the *Remedial Investigation Report for the St. Louis Site* (DOE 1994). The FUSRAP was transferred from the DOE to the U.S. Army Corps of Engineers (USACE) on October 13, 1997.

The *Record of Decision for the St. Louis Downtown Site* (ROD) was issued in October 1998 (USACE 1998). The USACE began remediation in October 1998, and characterization, pre-design investigation, and excavation activities have continued on Mallinckrodt and SLDS vicinity properties (VPs) through 2023.

4.2 MATERIAL HANDLING AND PROCESSING FOR CALENDAR YEAR 2023

Excavation activities were performed at the SLDS areas of the bike path on DT-2 and DT-11 and Mallinckrodt Plant 2. Additionally, loadout activities were performed at Plant 6. Excavated soils placed in the loadout area are tamped down at the end of each night or sprayed with a surfactant over longer periods of time. The excavated soils were removed from the site by rail. General area air samples were collected around excavation and loadout perimeters during CY 2023, with the results used to determine the air emissions. In situ emissions from inactive areas of the SLDS were not calculated because the ground surface soil at the SLDS is generally covered with asphalt or concrete that limits the potential for material to become airborne.

4.3 SOURCE DESCRIPTION – RADIONUCLIDE SOIL CONCENTRATIONS

For the SLDS excavation areas, the activity fraction for each radionuclide was determined based upon excavated area property-specific average soil radionuclide concentrations as determined from railcar data used to characterize the waste for shipment. Attachment B-1 contains Table B-1-1, a summary table of the radionuclide concentrations for each area or plant and VPs. The averaged total alpha and total beta air particulate concentrations at each SLDS property and the activity fraction for each corresponding property were used to calculate the emission rate for each area.

4.4 LIST OF ASSUMED AIR RELEASES FOR CALENDAR YEAR 2023

Wind erosion during periods of remedial action (RA) excavations and periods in which the loadout pile was uncovered is assumed for the particulate radionuclide emission determinations from the SLDS. Unexcavated plants and VPs do not contribute to the emission determinations for periods of inactivity due to the low activity and cover.

4.5 DISTANCES TO CRITICAL RECEPTORS

The distances to critical receptors are shown on Figure B-1 and listed in Table B-3. Distances and directions to critical receptors are determined by using tools in a geographic information system (GIS).

	Nearest Residence		Farm		Business		School	
Sources	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction	Distance (m)	Direction
Bike Path	850	Southwest	1,500	East	140	Southwest	1,000	West
Plant 2	330	South-Southwest	2,050	East	15	North	540	West-Northwest
Plant 6 Loadout	400	Southwest	1,850	East	75	North	700	West

Table B-3. Critical Receptors for CY 2023

4.6 EMISSIONS DETERMINATION

4.6.1 Measured Airborne Radioactive Particulate Emissions

Particulate air samples were collected from several locations at prominent wind directions from around the perimeter of the SLDS excavations and loadout area to measure the radionuclide emissions from remedial activities. The sample locations were established at the start of each remedial activity and provide the basis for determining the radionuclide emission rates during CY 2023. The average gross alpha and beta concentrations (in μ Ci/mL) are determined for each area or plant location for CY 2023. The area or plant average concentrations are presented in Table B-4.

Table B-4. Average Gross Alpha and Beta Airborne Particulate Emissions
for CY 2023

Monitoring Location	Average Concentration (μCi/mL) ^a		
Monitoring Location —	Gross Alpha	Gross Beta	
Bike Path (DT-2 and DT-11)	7.98E-15	3.68E-14	
Plant 2	4.47E-15	3.63E-14	
Plant 6 Loadout	4.69E-15	3.72E-14	
Background Concentrations ^b	4.96E-15	2.41E-14	

Average concentration values for the sampling period by location.

The activity fractions for all radionuclides at each SLDS property were determined as discussed in Section 4.3 of this NESHAP report. The product of the radionuclide activity fraction and the gross concentration for each property provides the radionuclide emission concentration (in μ Ci/cm³) for that area. The gross average concentration (in μ Ci/cm³) is converted to a release (emission) rate, measured in Ci per year using Equations 1 and 2 from A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of the EDE.

Non-DOE Federal Facilities (USEPA 1989). Equation 1 is used to determine the effective diameter of a non-circular stack or vent.

$$D = (1.3 \text{ A})^{1/2}$$
 Equation 1

where:

D = effective diameter of the release in m

A = area of the stack, vent, or release point (in m²)

Table B-5 provides the effective surface area available for release of airborne radionuclides normalized to one year and the effective diameter for each area or plant of the SLDS where excavation or loadout was conducted in CY 2023. Calculation of the effective surface area is contained in Attachment B-1.

Table B-5. Excavation Effective Areas and Effective Diameters for CY 2023

SLDS Location	Effective Area (m ²)	Effective Diameter (m)
Bike Path	5	3
Plant 2	32	6
Plant 6 Loadout	2,000	51

The average annual wind speed for the Lambert – St. Louis International Airport is provided in CAP88-PC as 4.446 m per second. Conversion of this wind speed to a flow rate through stacks with the listed effective diameters for each area is completed using Equation 2.

$$F = V \pi (D)^2 / 4$$
 Equation 2

where:

V = wind velocity (in m per minute) = 266.76 m per minute

F = flow rate (in m³ per minute)

 π = mathematical constant

D = effective diameter of the release (in m) determined using Equation 1

Converting the velocity of emissions from the sites to an effective flow rate, results in the following site release flow rates for the SLDS areas, as listed in Table B-6. The product of the flow rate, the activity fraction associated with each radionuclide, and the appropriate conversion factors provide the site emission rate for each radionuclide, as listed in Table B-7. Flow rate and average radionuclide concentration data are contained in Attachment B-1.

Table B-6. Site Release Flow Rates for CY 2023

SLDS Location	Site Release Flow Rate (m ³ /minute)
Bike Path	1.3E+03
Plant 2	8.8E+03
Plant 6 Loadout	5.4E+05

4.6.2 Total Airborne Radioactive Particulate Emission Rates

The CY 2023 emission rates for each excavated SLDS area are presented in Table B-7 and are based on the air samples collected from the perimeter of the excavated areas.

Table B-7. Area Airborne Radioactive Particulate Emission Rates Based on Excavation Perimeter Air Samples for CY 2023

Property	Bike Path	Plant 2	Plant 6 Loadout
Radionuclide		Emission (Ci/year)a	
Uranium (U)-238	7.7E-07	8.9E-06	5.6E-04
U-235	5.2E-08	4.9E-07	3.1E-05
U-234	7.7E-07	8.9E-06	5.6E-04
Radium (Ra)-226	6.2E-07	6.4E-07	4.8E-05
Thorium (Th)-232	4.2E-07	1.8E-07	1.5E-05
Th-230	1.5E-06	3.2E-07	3.0E-05
Th-228	4.2E-07	1.8E-07	1.5E-05
Ra-224	4.2E-07	1.8E-07	1.5E-05
Th-234	8.1E-06	8.0E-05	5.1E-03
Protactinium (Pa)-234m	8.1E-06	8.0E-05	5.1E-03
Th-231	5.4E-07	4.4E-06	2.8E-04
Ra-228	4.4E-06	1.7E-06	1.3E-04
Actinium (Ac)-228	4.4E-06	1.7E-06	1.3E-04
Pa-231	3.2E-07	4.9E-07	3.1E-05
Ac-227	3.2E-07	4.9E-07	3.1E-05

Release rate based on 365-day period at a respective flow rate (as presented in Table B-6) as determined from the average annual wind speed (4.446 m per second) and the effective site area (as presented in Table B-5) for each location.

4.7 CAP88-PC RESULTS

The CAP88-PC report is contained in Attachment B-2. The effective area factor input was taken from Table B-5. This evaluation demonstrates that all SLDS critical receptors receive less than 10 percent of the dose standard prescribed in 40 *CFR* 61.102; therefore, the SLDS is exempt from the reporting requirements of 40 *CFR* 61.104(a). The results are summarized in Table B-8.

Table B-8. CAP88-PC Results for Critical Receptors for CY 2023

	Dose (mrem/year)			
Source	Nearest Residence ^a	Farm ^a	Business ^{b,c}	School ^b
Bike Path	< 0.1	< 0.1	< 0.1	< 0.1
Plant 2	< 0.1	< 0.1	< 0.1	< 0.1
Plant 6 Loadout	< 0.1	< 0.1	0.4	< 0.1
SLDS Total Dosed	< 0.1	< 0.1	0.4	< 0.1

¹⁰⁰ percent occupancy factor.

b Corrected for the 23 percent occupancy factor (40 hours per week for 50 weeks per year).

The critical receptor for business is the Plant 6 Loadout business receptor located 75 m north of the Plant 6 Loadout, 350 m west-southwest of the Bike Path, and 200 m northwest of Plant 2.

d Combined dose from all sources at the SLDS.

5.0 REFERENCES

- DOE 1994. U.S. Department of Energy. Remedial Investigation Report for the St. Louis Site. St. Louis, Missouri. DOE/OR/21949-280. January 1999.
- USACE 1998. U.S. Army Corps of Engineers. Record of Decision for the St. Louis Downtown Site. St. Louis, Missouri. Final. July 1998.
- USEPA 1989. U.S. Environmental Protection Agency, Office of Radiation Programs, Washington, D.C. A Guide for Determining Compliance with the Clean Air Act Standards for Radionuclide Emissions from NRC-Licensed and Non-DOE Federal Facilities. EPA 520/1-89-002. October 1989.
- USEPA 2020. U.S. Environmental Protection Agency. CAP88-PC Version 4.1 Computer Code, March 2020.
- 18 U.S. Code 1001. U.S. Code, Title 18, Crimes and Criminal Procedure; Part I, Crimes; Chapter 47, Fraud and False Statements; Section 1001, Statements or entries generally.
- 40 CFR 61, Subpart I. National Emission Standards for Radionuclide Emissions from Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H.
- 40 CFR 61, Appendix D. Methods for Estimating Radionuclide Emissions.
- 40 CFR 61, Appendix E. Compliance Procedures Methods for Determining Compliance with Subpart I.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
THIS PAGE INTENTIONALLY LEFT BLANK

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023				
APPENDIX B				
FIGURE				

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
THE DAME INTERMEDIAL AT LAKE BY ANIA	
THIS PAGE INTENTIONALLY LEFT BLANK	

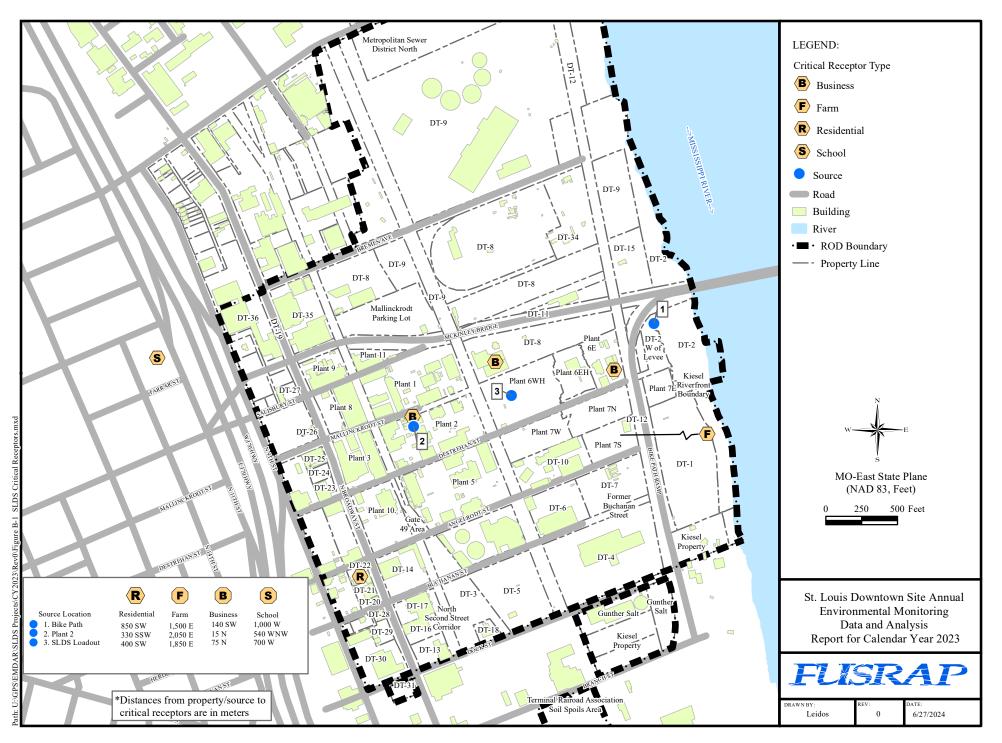


Figure B-1. Critical Receptors

ouis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 20)23
	ATTACHMENT B-1	
	CALCULATED EMISSION RATES	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
THE DAME INTERMEDIAL AT LAKE BY ANIA	
THIS PAGE INTENTIONALLY LEFT BLANK	

Table B-1-1. Excavation/Loadout Area Soil Radionuclide Concentrations for CY 2023a

Property	Bike Path ^a	Plant 2ª	Plant 6 Loadout Averagea
Radionuclide	Average Concentration (pCi/g) ^a		
U-238	1.1	16.9	14.1
U-235	0.1	0.9	0.8
U-234	1.1	16.9	14.1
Ra-226	0.9	1.2	1.2
Ra-228	0.6	0.4	0.4
Th-232	0.6	0.4	0.4
Th-230	2.1	0.6	0.7
Th-228	0.6	0.4	0.4
Pa-231	0.4	0	0.01
Ac-227	0	0	0

Average concentration from the SLDS CY 2023 excavated property and loadout area. When data were not available, the radionuclide was assumed to be in secular equilibrium with parent radionuclide.

Table B-1-2. Average Gross Alpha and Beta Airborne Particulate Concentrations for CY 2023

Manifesius I aastisu	Average Concentration (µCi/mL) for Location ^a		
Monitoring Location	Gross Alpha	Gross Beta	
Bike Path	7.98E-15	3.68E-14	
Plant 2	4.47E-15	3.63E-14	
Plant 6 Loadout	4.69E-15	3.72E-14	
Background Concentration ^b	4.96E-15	2.41E-14	

Average concentration values for the sampling period by location.

Table B-1-3. Remedial Action (RA) Data for CY 2023

Excavation Location Name	Surface Area (m²)	Start Date ^a	Backfill Date ^a
DT-11, Bike Path North Slope, SU-1F	32	12/14/23	12/31/23
DT-2, Bike Path, SU-5B	93	12/19/23	12/31/23
Plant 2 North Area 2, SU-4B	58	11/07/22	03/16/23
Plant 2 North Area 2, SU-4C	18	04/24/23	05/09/23
Plant 2 North Area 2, SU-4D	20	05/10/23	09/28/23
Plant 2 North Area 2, SU-4E	23	08/28/23	10/16/23
Plant 6 Loadout	2,000	01/01/23	12/31/23

Open/close dates set to start or stop at the CY boundary.

Remedial Action (RA) includes excavation and loadout activities.

These concentrations are provided for informational purposes only. However, as a conservative approach, they were not subtracted from the gross average concentration during the determination of EDE.

SU - survey unit

Table B-1-4. Average Surface Area and Flow Rate Per Location for CY 2023

Location	Total Days	Surface Area × Total Days	Average Surface Area/Year (A) ^a (m ²)	Diameter of Stack $D = (1.3 \text{ A})^{1/2}$ (m)	Flow Rate $F = V \pi [(D)^2 / 4]*60$ (m³/minute)
Bike Path					
DT-11, Bike Path North Slope, SU-1F	18	576			
DT-2, Bike Path, SU-5B	13	1,209			
	Total	1,785	5	3	1.3E+03
Plant 2					
Plant 2 North Area 2, SU-4B	130	7,540			
Plant 2 North Area 2, SU-4C	16	288			
Plant 2 North Area 2, SU-4D	142	2,840			
Plant 2 North Area 2, SU-4E	50	,			
	Total	11,818	32	6	8.8E+03
Plant 6 Loadout					
Plant 6 Loadout	365	730,000			
	Total	730,000	2,000	51	5.4E+05

^a Average surface area/year = $[\Sigma(\text{surface area x total days})]/365$.

Table B-1-5. Airborne Radioactive Particulate Emissions Based on Excavation Perimeter Air Samples for CY 2023

Property		Bike Path			Plant 2		l	Plant 6 Loado	ut
Radionuclide	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c	Activity Fraction ^a	Emission Conc. (μCi/cm³) ^b	Release Rate (Ci/year) ^c
U-238	0.14	1.1E-15	7.7E-07	0.43	1.9E-15	8.9E-06	0.42	2.0E-15	5.6E-04
U-235	0.01	7.4E-17	5.2E-08	0.02	1.1E-16	4.9E-07	0.02	1.1E-16	3.1E-05
U-234 ^d	0.14	1.1E-15	7.7E-07	0.43	1.9E-15	8.9E-06	0.42	2.0E-15	5.6E-04
Ra-226	0.11	8.8E-16	6.2E-07	0.03	1.4E-16	6.4E-07	0.04	1.7E-16	4.8E-05
Th-232	0.08	6.0E-16	4.2E-07	0.01	4.0E-17	1.8E-07	0.01	5.2E-17	1.5E-05
Th-230	0.26	2.1E-15	1.5E-06	0.02	6.9E-17	3.2E-07	0.02	1.0E-16	3.0E-05
Th-228	0.08	6.0E-16	4.2E-07	0.01	4.0E-17	1.8E-07	0.01	5.2E-17	1.5E-05
Ra-224 ^d	0.08	6.0E-16	4.2E-07	0.01	4.0E-17	1.8E-07	0.01	5.2E-17	1.5E-05
Th-234	0.32	1.2E-14	8.1E-06	0.48	1.7E-14	8.0E-05	0.47	1.8E-14	5.1E-03
Pa-234m ^d	0.32	1.2E-14	8.1E-06	0.48	1.7E-14	8.0E-05	0.47	1.8E-14	5.1E-03
Th-231 ^d	0.02	7.8E-16	5.4E-07	0.03	9.5E-16	4.4E-06	0.03	9.8E-16	2.8E-04
Ra-228	0.17	6.4E-15	4.4E-06	0.01	3.6E-16	1.7E-06	0.01	4.6E-16	1.3E-04
Ac-228 ^d	0.17	6.4E-15	4.4E-06	0.01	3.6E-16	1.7E-06	0.01	4.6E-16	1.3E-04
Pa-231 ^d	0.06	4.5E-16	3.2E-07	0.02	1.1E-16	4.9E-07	0.02	1.1E-16	3.1E-05
Ac-227 ^d	0.06	4.5E-16	3.2E-07	0.02	1.1E-16	4.9E-07	0.02	1.1E-16	3.1E-05

^a Derived from the average soil radionuclide concentrations for the SLDS, as presented in Table B-1-1.

b Emission concentration is equal to the activity fraction times the gross alpha or gross beta airborne particulate concentrations listed in Table B-1-2.

Release rate based on 365-day period at measured flow rate (Table B-1-4) for each site, as determined from the average annual wind speed (4.446 m per second) and calculated site area (Table B-1-4). (Note: 1 mL = 1 cm³).

When data were not available or the average data were less than zero, the radionuclide was assumed to be in secular equilibrium with parent radionuclide. Conc. – concentration

St. Louis Downtown Site Annual	Environmental Monitoring [Pata and Analysis Report fo	or CY 2023	
7	THIS PAGE INTEN	TIONALLY LEFT	BLANK	
•				

ATTACHMENT B-2 CAP88-PC OUTPUT REPORTS

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
THE DAME INTERMEDIAL AT LAKE BY ANIA	
THIS PAGE INTENTIONALLY LEFT BLANK	

CAP88 OUTPUT RESULTS

Bike Path

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Mon Mar 18 08:33:17 2024

Facility: SLDS Bike Path

Address:

City: St. Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2023 DOSE Age Group: Adult

Comments: Air

Dataset Name: 2023 SLDS Bike P Dataset Date: Mar 18, 2024 08:33 AM

Wind File: C:\Users\randy\OneDrive\Documents\CAP88\Wind

Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg Lunq	2.12E-03 2.30E-03 2.07E-01 2.21E-03 2.37E-03 2.23E-03 2.21E-03 2.58E-03 4.70E-03 1.40E-02 2.43E-03 3.75E-03 1.15E-02 1.69E-02 2.24E-03 4.02E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03 2.21E-03
Effectiv	9.77E-03

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
INGESTION	4.55E-04
INHALATION	7.47E-03
AIR IMMERSION	7.58E-08
GROUND SURFACE	1.84E-03
INTERNAL	7.92E-03
EXTERNAL	1.84E-03
TOTAL	9.77E-03
IOIAH	2.111 03

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238 Th-234	1.17E-04 7.80E-06
Pa-234m	4.42E-05
Pa-234	8.72E-07
U-234	1.41E-04
Th-230	1.33E-03
Ra-226	1.49E-04
Rn-222	1.18E-07
Po-218	2.11E-12
Pb-214	7.72E-05
At-218	7.95E-12
Bi-214	4.51E-04
Rn-218 Po-214	4.60E-14
T1-210	2.50E-08 1.76E-07
Pb-210	3.79E-07
Bi-210	6.13E-06
Hg-206	4.95E-13
Po-210	1.59E-09
T1-206	1.43E-11
U-235	1.24E-05
Th-231	4.06E-07
Pa-231	1.94E-03
Ac-227	1.47E-03
Th-227	1.82E-05
Fr-223	1.72E-07
Ra-223	2.04E-05
Rn-219	8.82E-06
At-219	0.00E+00
Bi-215	3.96E-11
Po-215 Pb-211	2.69E-08
Bi-211	1.73E-05 7.13E-06
T1-207	8.97E-06
Po-211	3.43E-09
Th-232	6.88E-04
Ra-228	1.08E-03
Ac-228	4.56E-04
Th-228	9.29E-04
Ra-224	6.44E-05
Rn-220	3.14E-07
Po-216	7.59E-09
Pb-212	6.90E-05
Bi-212	8.06E-05
Po-212	0.00E+00
T1-208	5.56E-04
TOTAL	9.77E-03

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu Stomach Colon Liver LUNG Bone Skin Breast Ovary Bladder Kidneys Thyroid Leukemia	2.21E-11 8.07E-11 2.19E-10 1.82E-10 3.19E-09 1.52E-10 1.67E-11 9.34E-11 4.47E-11 5.28E-11 2.29E-11 6.48E-12 1.27E-10
Residual Total	2.98E-10 4.51E-09
TOTAL	4.51E-09

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime
Pathway	Fatal Cancer Risk
INGESTION	1.62E-10
INHALATION	3.39E-09
AIR IMMERSION	4.06E-14
GROUND SURFACE	9.50E-10
INTERNAL	3.55E-09
EXTERNAL	9.50E-10
TOTAL	4.51E-09

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238	1.22E-10
Th-234	6.88E-12
Pa-234m	7.74E-12
Pa-234	4.74E-13
U-234	1.49E-10
Th-230	7.18E-10
Ra-226	1.34E-10
Rn-222	6.45E-14
Po-218	9.44E-19
Pb-214	4.13E-11
At-218	9.79E-19
Bi-214	2.38E-10
Rn-218	2.52E-20
Po-214	1.37E-14
T1-210	9.41E-14
Pb-210	1.70E-13
Bi-210	6.80E-13
Hg-206	2.19E-19
Po-210	8.72E-16
T1-206	1.61E-18
U-235 Th-231 Pa-231 Ac-227	1.10E-11 1.93E-13 1.91E-10 4.06E-10 9.86E-12
Th-227	6.40E-12
Fr-223	6.40E-14
Ra-223	1.10E-11
Rn-219	4.83E-12
At-219	0.00E+00
Bi-215	1.77E-17
Po-215	1.48E-14
Pb-211	6.19E-12
Bi-211	3.90E-12
T1-207	1.15E-12
Po-211	1.88E-15
Th-232	3.05E-10
Ra-228	5.05E-10
Ac-228	2.43E-10
Th-228	9.43E-10
Ra-224	7.37E-11
Rn-220	1.72E-13
Po-216	4.17E-15
Pb-212	3.76E-11
Bi-212	3.11E-11
Po-212	0.00E+00
T1-208	3.03E-10
TOTAL	4.51E-09

Mon Mar 18 08:33:17 2024

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

	Distance (m)						
Direction	n 140	350	850	1000	1500		
N	9.8E-03	2.1E-03	6.5E-04	5.6E-04	4.4E-04		
NNW	5.1E-03	1.2E-03	4.9E-04	4.4E-04	3.8E-04		
NW	6.0E-03	1.4E-03	5.1E-04	4.6E-04	3.9E-04		
WNW	7.3E-03	1.6E-03	5.6E-04	4.9E-04	4.0E-04		
W	5.6E-03	1.3E-03	5.0E-04	4.5E-04	3.8E-04	School	
WSW	2.9E-03	7.8E-04	4.0E-04	3.8E-04	3.5E-04	Business (350)	
SW	3.9E-03	9.7E-04	4.4E-04	4.0E-04	3.6E-04	Business (140) Residence (850)	
SSW	4.8E-03	1.1E-03	4.7E-04	4.3E-04	3.7E-04	(111)	
S	4.2E-03	1.0E-03	4.5E-04	4.1E-04	3.6E-04		
SSE	3.0E-03	8.1E-04	4.1E-04	3.8E-04	3.5E-04		
SE	4.2E-03	1.0E-03	4.5E-04	4.2E-04	3.7E-04		
ESE	7.1E-03	1.6E-03	5.5E-04	4.9E-04	4.0E-04		
E	9.3E-03	2.0E-03	6.2E-04	5.4E-04	4.3E-04	Farm	
ENE	7.7E-03	1.7E-03	5.7E-04	5.0E-04	4.1E-04		
NE	4.8E-03	1.1E-03	4.7E-04	4.3E-04	3.7E-04		
NNE	4.1E-03	1.0E-03	4.5E-04	4.1E-04	3.6E-04		

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

Mon Mar 18 08:33:17 2024

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

	Distance (m)					
irection	n 140	350	850	1000	1500	
N	4.5E-09	9.3E-10	2.7E-10	2.3E-10	1.7E-10	
NNW	2.4E-09	5.3E-10	1.9E-10	1.7E-10	1.4E-10	
NW	2.8E-09	6.0E-10	2.1E-10	1.8E-10	1.5E-10	
WNW	3.4E-09	7.1E-10	2.3E-10	2.0E-10	1.5E-10	
W	2.6E-09	5.6E-10	2.0E-10	1.8E-10	1.4E-10	
WSW	1.3E-09	3.3E-10	1.5E-10	1.4E-10	1.3E-10	
SW	1.8E-09	4.2E-10	1.7E-10	1.5E-10	1.3E-10	
SSW	2.2E-09	4.9E-10	1.8E-10	1.6E-10	1.4E-10	
S	1.9E-09	4.5E-10	1.8E-10	1.6E-10	1.4E-10	
SSE	1.4E-09	3.5E-10	1.6E-10	1.5E-10	1.3E-10	
SE	1.9E-09	4.5E-10	1.8E-10	1.6E-10	1.4E-10	
ESE	3.3E-09	7.0E-10	2.2E-10	1.9E-10	1.5E-10	
E	4.3E-09	8.8E-10	2.5E-10	2.2E-10	1.7E-10	
ENE	3.6E-09	7.5E-10	2.3E-10	2.0E-10	1.6E-10	
NE	2.2E-09	5.0E-10	1.9E-10	1.7E-10	1.4E-10	
NNE	1.9E-09	4.4E-10	1.7E-10	1.6E-10	1.4E-10	

CAP88 OUTPUT RESULTS

PLANT 2

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Mon Mar 18 08:40:37 2024

Facility: SLDS Plant 2 Excavation

Address:

City: St. Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2023 DOSE Age Group: Adult

Comments: Air

Dataset Name: 2023 SLDS Plant

Dataset Date: Mar 18, 2024 08:40 AM

Wind File: C:\Users\randy\OneDrive\Documents\CAP88\Wind

Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg Lung	3.61E-02 3.84E-02 4.43E+00 3.73E-02 4.02E-02 3.77E-02 3.75E-02 4.10E-02 4.80E-02 1.12E-01 3.47E-01 4.07E-02 7.27E-02 3.62E-02 2.20E-01 9.68E-01 3.78E-02 7.70E-02 3.74E-02 3.86E-02 3.74E-02 3.73E-02 3.73E-02 3.70E-02 1.99E-01 6.94E-01
Effectiv	2.16E-01

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
	
INGESTION	4.57E-03
INHALATION	1.79E-01
AIR IMMERSION	1.58E-06
GROUND SURFACE	3.19E-02
INTERNAL	1.84E-01
EXTERNAL	3.19E-02
TOTAL	2.16E-01

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	2.51E-02
Th-234	1.49E-03
Pa-234m	9.35E-03
Pa-234	1.84E-04
U-234	3.04E-02
Th-230	5.30E-03
Ra-226	2.73E-03
Rn-222	2.18E-06
Po-218	3.89E-11
Pb-214	1.42E-03
At-218	1.46E-10
Bi-214	8.31E-03
Rn-218	8.48E-13
Po-214	4.61E-07
T1-210	3.25E-06
Pb-210	7.01E-06
Bi-210	1.13E-04
Hg-206	9.14E-12
Po-210	2.93E-08
T1-206	2.64E-10
U-235	2.16E-03
Th-231	7.00E-05
Pa-231	5.56E-02
Ac-227	4.21E-02
Th-227	5.11E-04
Fr-223	4.82E-06
Ra-223	5.72E-04
Rn-219	2.48E-04
At-219	0.00E+00
Bi-215	1.11E-09
Po-215	7.57E-07
Pb-211	4.86E-04
Bi-211	2.00E-04
T1-207	2.52E-04
Po-211	9.65E-08
Th-232	5.50E-03
Ra-228	7.30E-03
Ac-228	3.35E-03
Th-228	7.44E-03
Ra-224	5.12E-04
Rn-220	2.31E-06
Po-216	5.58E-08
Pb-212	5.08E-04
Bi-212	5.92E-04
Po-212	0.00E+00
T1-208	4.09E-03
TOTAL	2.16E-01

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu	3.38E-10
Stomach	1.15E-09
Colon	3.43E-09
Liver	4.19E-09
LUNG	8.83E-08
Bone	2.75E-09
Skin	9.57E-10
Breast	1.31E-09
Ovary	7.75E-10
Bladder	8.12E-10
Kidneys	5.21E-10
Thyroid	9.36E-11
Leukemia	1.79E-09
Residual	4.22E-09
Total	1.11E-07
TOTAL	1.11E-07

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime
Pathway	Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	1.67E-09 9.56E-08 7.11E-13 1.34E-08 9.73E-08 1.34E-08
TOTAL	1.11E-07

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238	2.63E-08
Th-234	1.27E-09
Pa-234m	1.64E-09
Pa-234	1.00E-10
U-234	3.21E-08
Th-230	2.86E-09
Ra-226	2.53E-09
Rn-222	1.19E-12
Po-218	1.74E-17
Pb-214	7.61E-10
At-218	1.80E-17
Bi-214	4.39E-09
Rn-218	4.64E-19
Po-214	2.53E-13
T1-210	1.73E-12
Pb-210	3.14E-12
Bi-210	1.26E-11
Hg-206	4.05E-18
Po-210	1.61E-14
T1-206	2.97E-17
U-235	1.93E-09
Th-231	3.31E-11
Pa-231	5.45E-09
Ac-227	1.16E-08
Th-227	2.77E-10
Fr-223	1.80E-12
Ra-223	3.09E-10
Rn-219	1.36E-10
At-219	0.00E+00
Bi-215	4.97E-16
Po-215	4.15E-13
Pb-211	1.74E-10
Bi-211	1.09E-10
T1-207	3.24E-11
Po-211	5.28E-14
Th-232 Ra-228 Ac-228 Th-228 Ra-224	2.45E-09 3.44E-09 1.79E-09 7.55E-09 5.89E-10
Rn-220	1.27E-12
Po-216	3.06E-14
Pb-212	2.76E-10
Bi-212	2.28E-10
Po-212	0.00E+00
T1-208 TOTAL	2.22E-09 1.11E-07

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

		Distance (m)					
Directio	on 15	200	330	540	2050		
N	2.2E-01	8.7E-03	5.1E-03	3.7E-03	2.9E-03	Business	
NNW	1.2E-01	5.8E-03	4.0E-03	3.2E-03	2.8E-03		
NW	1.1E-01	6.4E-03	4.2E-03	3.3E-03	2.8E-03	Business	
W	1.2E-01	7.2E-03	4.5E-03	3.5E-03	2.8E-03	School	
W	1.1E-01	6.1E-03	4.1E-03	3.3E-03	2.8E-03		
WSW	5.8E-02	4.4E-03	3.4E-03	3.0E-03	2.8E-03		
SW	6.3E-02	5.0E-03	3.7E-03	3.1E-03	2.8E-03		
SSW	7.3E-02	5.6E-03	3.9E-03	3.2E-03	2.8E-03	Residence	
S	1.0E-01	5.2E-03	3.7E-03	3.2E-03	2.8E-03		
SSE	7.9E-02	4.5E-03	3.4E-03	3.0E-03	2.8E-03		
SE	1.0E-01	5.2E-03	3.7E-03	3.2E-03	2.8E-03		
ESE	1.4E-01	7.1E-03	4.5E-03	3.4E-03	2.8E-03	Farm	
E	1.4E-01	8.4E-03	5.0E-03	3.6E-03	2.8E-03		
ENE	1.1E-01	7.4E-03	4.6E-03	3.5E-03	2.8E-03		
NE	9.3E-02	5.6E-03	3.9E-03	3.2E-03	2.8E-03		
NNE	8.6E-02	5.1E-03	3.7E-03	3.1E-03	2.8E-03		

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

	Distance (m)					
Directio	n 15	200	330	540	2050	
N	1.1E-07	4.1E-09	2.2E-09	1.5E-09	1.1E-09	
NNW	6.4E-08	2.6E-09	1.6E-09	1.3E-09	1.0E-09	
NW	5.7E-08	2.9E-09	1.7E-09	1.3E-09	1.0E-09	
WNW	6.2E-08	3.3E-09	1.9E-09	1.4E-09	1.0E-09	
W	5.6E-08	2.7E-09	1.7E-09	1.3E-09	1.0E-09	
WSW	3.0E-08	1.8E-09	1.3E-09	1.1E-09	1.0E-09	
SW	3.2E-08	2.2E-09	1.5E-09	1.2E-09	1.0E-09	
SSW	3.7E-08	2.5E-09	1.6E-09	1.2E-09	1.0E-09	
S	5.3E-08	2.3E-09	1.5E-09	1.2E-09	1.0E-09	
SSE	4.0E-08	1.9E-09	1.4E-09	1.2E-09	1.0E-09	
SE	5.3E-08	2.3E-09	1.5E-09	1.2E-09	1.0E-09	
ESE	7.0E-08	3.2E-09	1.9E-09	1.4E-09	1.0E-09	
E	7.1E-08	3.9E-09	2.2E-09	1.5E-09	1.1E-09	
ENE	5.4E-08	3.4E-09	2.0E-09	1.4E-09	1.0E-09	
NE	4.7E-08	2.5E-09	1.6E-09	1.2E-09	1.0E-09	
NNE	4.4E-08	2.2E-09	1.5E-09	1.2E-09	1.0E-09	

CAP88 OUTPUT RESULTS

PLANT 6 LOADOUT

DOSE AND RISK SUMMARIES

Non-Radon Individual Assessment Mon Mar 18 15:06:33 2024

Facility: SLDS Loadout

Address:

City: St. Louis

State: MO Zip: 63147

Source Category: Area Source Type: Area Emission Year: 2023 DOSE Age Group: Adult

Comments: Air

Dataset Name: 2023 SLDS Loadou Dataset Date: Mar 18, 2024 03:06 PM

Wind File: C:\Users\randy\OneDrive\Documents\CAP88\Wind

Files\13994.WND

SUMMARY Page 1

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem)
Adrenals UB_Wall Bone_Sur Brain Breasts St_Wall SI_Wall ULI_Wall LLI_Wall Kidneys Liver Muscle Ovaries Pancreas R_Marrow Skin Spleen Testes Thymus Thyroid GB_Wall Ht_Wall Uterus ET_Reg Lung	3.49E-01 3.72E-01 3.99E+01 3.60E-01 3.89E-01 3.64E-01 3.62E-01 3.96E-01 4.64E-01 1.04E+00 3.09E+00 3.94E-01 6.75E-01 3.49E-01 2.03E+00 8.61E+00 3.66E-01 7.17E-01 3.62E-01 3.74E-01 3.51E-01 3.58E-01 1.90E+00 6.49E+00
Effectiv	1.99E+00

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

	Selected Individual
Pathway	(mrem)
	
INGESTION	5.69E-02
INHALATION	1.63E+00
AIR IMMERSION	1.47E-05
GROUND SURFACE	3.12E-01
INTERNAL	1.68E+00
EXTERNAL	3.12E-01
TOTAL	1.99E+00

SUMMARY Page 2

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem)
U-238	2.18E-01
Th-234	1.33E-02
Pa-234m	8.09E-02
Pa-234	1.60E-03
U-234	2.63E-01
Th-230	6.83E-02
Ra-226	2.97E-02
Rn-222	2.25E-05
Po-218	4.02E-10
Pb-214	1.47E-02
At-218	1.51E-09
Bi-214	8.59E-02
Rn-218	8.76E-12
Po-214	4.76E-06
T1-210	3.35E-05
Pb-210	7.24E-05
Bi-210	1.17E-03
Hg-206	9.44E-11
Po-210	3.03E-07
T1-206	2.73E-09
U-235	1.88E-02
Th-231	6.09E-04
Pa-231	4.83E-01
Ac-227	3.66E-01
Th-227	4.45E-03
Fr-223	4.19E-05
Ra-223	4.98E-03
Rn-219	2.16E-03
At-219	0.00E+00
Bi-215	9.69E-09
Po-215	6.58E-06
Pb-211	4.23E-03
Bi-211	1.74E-03
T1-207	2.19E-03
Po-211	8.39E-07
Th-232	6.30E-02
Ra-228	8.26E-02
Ac-228	3.63E-02
Th-228	8.50E-02
Ra-224	5.83E-03
Rn-220	2.51E-05
Po-216	6.06E-07
Pb-212	5.51E-03
Bi-212	6.43E-03
Po-212	0.00E+00
T1-208 TOTAL	4.44E-02 1.99E+00

SUMMARY Page 3

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
Esophagu	3.33E-09
Stomach Colon	1.15E-08 3.47E-08
Liver	3.78E-08
LUNG	8.15E-07
Bone	2.57E-08
Skin	8.52E-09
Breast	1.32E-08
Ovary	7.35E-09
Bladder	8.00E-09
Kidneys	4.93E-09
Thyroid	9.35E-10
Leukemia	1.78E-08
Residual	4.25E-08
Total	1.03E-06
TOTAL	1.03E-06

PATHWAY RISK SUMMARY

	Selected Individual Total Lifetime					
Pathway	Fatal Cancer Risk					
INGESTION	2.08E-08					
INHALATION	8.76E-07					
AIR IMMERSION	6.70E-12					
GROUND SURFACE	1.34E-07					
INTERNAL	8.97E-07					
EXTERNAL	1.34E-07					
TOTAL	1.03E-06					

SUMMARY Page 4

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk
U-238 Th-234 Pa-234m Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218	2.27E-07 1.15E-08 1.42E-08 8.67E-10 2.78E-07 3.68E-08 2.66E-08 1.23E-11
Pb-214	7.86E-09
At-218	1.86E-16
Bi-214	4.54E-08
Rn-218	4.79E-18
Po-214	2.61E-12
T1-210	1.79E-11
Pb-210	3.24E-11
Bi-210	1.30E-10
Hg-206	4.19E-17
Po-210	1.66E-13
T1-206	3.07E-16
U-235	1.68E-08
Th-231	2.88E-10
Pa-231	4.74E-08
Ac-227	1.01E-07
Th-227	2.41E-09
Fr-223	1.56E-11
Ra-223	2.69E-09
Rn-219	1.18E-09
At-219	0.00E+00
Bi-215	4.32E-15
Po-215	3.61E-12
Pb-211	1.51E-09
Bi-211	9.52E-10
T1-207	2.82E-10
Po-211	4.60E-13
Th-232	2.80E-08
Ra-228	3.84E-08
Ac-228	1.94E-08
Th-228	8.63E-08
Ra-224	6.71E-09
Rn-220	1.37E-11
Po-216	3.33E-13
Pb-212	3.00E-09
Bi-212	2.48E-09
Po-212	0.00E+00
T1-208	2.42E-08
TOTAL	1.03E-06

SUMMARY Page 5

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT (mrem) (All Radionuclides and Pathways)

		Distance (m)											
Directio	 on 75	300	400	700	1850								
N	1.9E+00	2.3E-01	1.5E-01	7.8E-02	4.6E-02	Business							
NNW	1.4E+00	1.4E-01	9.6E-02	5.9E-02	4.3E-02								
NW	1.4E+00	1.5E-01	1.1E-01	6.2E-02	4.3E-02								
WNW	1.6E+00	1.8E-01	1.2E-01	6.7E-02	4.4E-02								
W	1.3E+00	1.4E-01	1.0E-01	6.0E-02	4.3E-02	School							
WSW	8.0E-01	9.0E-02	6.9E-02	4.9E-02	4.1E-02								
SW	8.8E-01	1.1E-01	8.1E-02	5.4E-02	4.2E-02	Resident							
SSW	1.0E+00	1.3E-01	9.1E-02	5.7E-02	4.2E-02								
S	9.4E-01	1.2E-01	8.4E-02	5.5E-02	4.2E-02								
SSE	7.9E-01	9.3E-02	7.1E-02	5.0E-02	4.1E-02								
SE	1.0E+00	1.2E-01	8.5E-02	5.5E-02	4.2E-02								
ESE	1.6E+00	1.7E-01	1.2E-01	6.7E-02	4.4E-02								
E	2.0E+00	2.2E-01	1.4E-01	7.5E-02	4.6E-02	Farm							
ENE	1.7E+00	1.9E-01	1.2E-01	6.9E-02	4.4E-02								
NE	1.2E+00	1.3E-01	9.1E-02	5.7E-02	4.2E-02								
NNE	1.2E+00	1.1E-01	8.3E-02	5.4E-02	4.2E-02								

Note: Highlighted EDE values (mrem) are applicable to the critical receptors as defined in the 2020 Radionuclide Emissions NESHAP Report (Appendix B) taking into account the distance and direction from the applicable site to each receptor. The highlighted value assumes 100 percent occupancy.

SUMMARY Page 6

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

		Distance (m)										
Direction	n 75	300	400	700	1850							
N	9.7E-07	1.1E-07	7.2E-08	3.4E-08	1.8E-08							
NNW	7.3E-07	6.4E-08	4.4E-08	2.5E-08	1.6E-08							
NW	7.3E-07	7.4E-08	4.9E-08	2.6E-08	1.7E-08							
WNW	8.1E-07	8.7E-08	5.7E-08	2.9E-08	1.7E-08							
W	6.5E-07	6.9E-08	4.6E-08	2.5E-08	1.6E-08							
WSW	4.1E-07	4.0E-08	3.0E-08	2.0E-08	1.5E-08							
SW	4.5E-07	5.1E-08	3.6E-08	2.2E-08	1.6E-08							
SSW	5.3E-07	6.0E-08	4.1E-08	2.4E-08	1.6E-08							
S	4.8E-07	5.4E-08	3.8E-08	2.3E-08	1.6E-08							
SSE	4.0E-07	4.2E-08	3.1E-08	2.0E-08	1.5E-08							
SE	5.4E-07	5.5E-08	3.8E-08	2.3E-08	1.6E-08							
ESE	8.3E-07	8.5E-08	5.5E-08	2.9E-08	1.7E-08							
E	1.0E-06	1.1E-07	6.8E-08	3.3E-08	1.8E-08							
ENE	8.9E-07	9.1E-08	5.9E-08	3.0E-08	1.7E-08							
NE	6.1E-07	6.1E-08	4.1E-08	2.4E-08	1.6E-08							
NNE	6.2E-07	5.3E-08	3.7E-08	2.2E-08	1.6E-08							

St. Louis Downtown Site Ar	nnual Environmental Monitoring Data and Analysis Report for CY 2023
	THIS PAGE INTENTIONALLY LEFT BLANK

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
APPENDIX C	
ENVIRONMENTAL THERMOLUMINESCENT DOSIMETER, ALPHA TRACK DETECTOR, AND PERIMETER AIR DATA	

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

Table C-1. Background Air Particulate Data Results for CY 2023

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG253322	BAP-001	01/03/23	Gross Alpha/Beta	Gross Alpha	9.52E-15	1.75E-15	4.29E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG253322	BAP-001	01/03/23	Gross Alpha/Beta	Gross Beta	3.63E-14	3.75E-15	1.26E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265146	BAP-001	01/09/23	Gross Alpha/Beta	Gross Alpha	6.65E-15	1.44E-15	4.40E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265146	BAP-001	01/09/23	Gross Alpha/Beta	Gross Beta	1.85E-14	2.38E-15	1.29E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265147	BAP-001	01/17/23	Gross Alpha/Beta	Gross Alpha	1.11E-14	1.71E-15	3.22E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265147	BAP-001	01/17/23	Gross Alpha/Beta	Gross Beta	4.06E-14	3.85E-15	9.48E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265148	BAP-001	01/23/23	Gross Alpha/Beta	Gross Alpha	7.62E-15	1.60E-15	4.70E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265148	BAP-001	01/23/23	Gross Alpha/Beta	Gross Beta	3.23E-14	3.53E-15	1.38E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265149	BAP-001	01/31/23	Gross Alpha/Beta	Gross Alpha	4.37E-15	9.78E-16	3.11E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265149	BAP-001	01/31/23	Gross Alpha/Beta	Gross Beta	2.07E-14	2.29E-15	9.16E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265150	BAP-001	02/04/23	Gross Alpha/Beta	Gross Alpha	4.46E-15	1.40E-15	6.50E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265150	BAP-001	02/04/23	Gross Alpha/Beta	Gross Beta	2.15E-14	3.04E-15	1.92E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265151	BAP-001	02/13/23	Gross Alpha/Beta	Gross Alpha	4.00E-15	1.00E-15	3.64E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265151	BAP-001	02/13/23	Gross Alpha/Beta	Gross Beta	2.12E-14	2.44E-15	1.07E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265152	BAP-001	02/21/23	Gross Alpha/Beta	Gross Alpha	3.99E-15	9.56E-16	3.31E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265152	BAP-001	02/21/23	Gross Alpha/Beta	Gross Beta	2.04E-14	2.31E-15	9.73E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265153	BAP-001	02/27/23	Gross Alpha/Beta	Gross Alpha	2.36E-15	8.88E-16	5.01E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265153	BAP-001	02/27/23	Gross Alpha/Beta	Gross Beta	1.74E-14	2.41E-15	1.48E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265154	BAP-001	03/06/23	Gross Alpha/Beta	Gross Alpha	3.25E-15	9.31E-16	3.95E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265154	BAP-001	03/06/23	Gross Alpha/Beta	Gross Beta	2.26E-14	2.61E-15	1.16E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265155	BAP-001	03/13/23	Gross Alpha/Beta	Gross Alpha	1.55E-15	5.91E-16	3.39E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265155	BAP-001	03/13/23	Gross Alpha/Beta	Gross Beta	1.33E-14	1.75E-15	9.99E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265156	BAP-001	03/20/23	Gross Alpha/Beta	Gross Alpha	3.26E-15	9.26E-16	3.89E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265156	BAP-001	03/20/23	Gross Alpha/Beta	Gross Beta	2.01E-14	2.40E-15	1.14E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265157	BAP-001	03/27/23	Gross Alpha/Beta	Gross Alpha	9.47E-16	5.21E-16	4.20E-16	μCi/mL	J	T04, T20	Background Air (Particulate Air)-Environmental Monitoring
BKG265157	BAP-001	03/27/23	Gross Alpha/Beta	Gross Beta	1.87E-14	2.35E-15	1.24E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265158	BAP-001	04/03/23	Gross Alpha/Beta	Gross Alpha	7.75E-15	1.58E-15	4.81E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265158	BAP-001	04/03/23	Gross Alpha/Beta	Gross Beta	2.33E-14	2.70E-15	9.49E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265159	BAP-001	04/10/23	Gross Alpha/Beta	Gross Alpha	7.34E-15	1.48E-15	4.44E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265159	BAP-001	04/10/23	Gross Alpha/Beta	Gross Beta	1.90E-14	2.28E-15	8.76E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265160	BAP-001	04/17/23	Gross Alpha/Beta	Gross Alpha	4.43E-15	1.15E-15	4.64E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265160	BAP-001	04/17/23	Gross Alpha/Beta	Gross Beta	1.50E-14	1.98E-15	9.14E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265161	BAP-001	04/24/23	Gross Alpha/Beta	Gross Alpha	3.39E-15	9.77E-16	4.47E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265161	BAP-001	04/24/23	Gross Alpha/Beta	Gross Beta	1.40E-14	1.87E-15	8.82E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265162	BAP-001	05/01/23	Gross Alpha/Beta	Gross Alpha	4.51E-15	1.17E-15	4.79E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265162	BAP-001	05/01/23	Gross Alpha/Beta	Gross Beta	1.92E-14	2.36E-15	9.44E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265163	BAP-001	05/08/23	Gross Alpha/Beta	Gross Alpha	3.19E-15	9.65E-16	4.65E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265163	BAP-001	05/08/23	Gross Alpha/Beta	Gross Beta	1.34E-14	1.85E-15	9.17E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265164	BAP-001	05/15/23	Gross Alpha/Beta	Gross Alpha	2.46E-15	8.44E-16	4.64E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265164	BAP-001	05/15/23	Gross Alpha/Beta	Gross Beta	1.39E-14	1.90E-15	9.14E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265165	BAP-001	05/22/23	Gross Alpha/Beta	Gross Alpha	4.98E-15	1.23E-15	4.72E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265165	BAP-001	05/22/23	Gross Alpha/Beta	Gross Beta	1.86E-14	2.29E-15	9.30E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265166	BAP-001	05/30/23	Gross Alpha/Beta	Gross Alpha	3.12E-15	8.85E-16	3.97E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2023 (Continued)

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG265166	BAP-001	05/30/23	Gross Alpha/Beta	Gross Beta	1.98E-14	2.27E-15	7.83E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265167	BAP-001	06/05/23	Gross Alpha/Beta	Gross Alpha	4.11E-15	1.22E-15	5.75E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265167	BAP-001	06/05/23	Gross Alpha/Beta	Gross Beta	2.32E-14	2.84E-15	1.14E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265168	BAP-001	06/12/23	Gross Alpha/Beta	Gross Alpha	4.39E-15	1.17E-15	4.88E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265168	BAP-001	06/12/23	Gross Alpha/Beta	Gross Beta	2.21E-14	2.61E-15	9.62E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265169	BAP-001	06/19/23	Gross Alpha/Beta	Gross Alpha	2.15E-15	8.17E-16	4.98E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265169	BAP-001	06/19/23	Gross Alpha/Beta	Gross Beta	2.36E-14	2.74E-15	9.82E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265170	BAP-001	06/26/23	Gross Alpha/Beta	Gross Alpha	2.56E-15	9.43E-16	5.57E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265170	BAP-001	06/26/23	Gross Alpha/Beta	Gross Beta	2.45E-14	2.92E-15	1.10E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265171	BAP-001	07/03/23	Gross Alpha/Beta	Gross Alpha	4.51E-15	1.08E-15	3.70E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265171	BAP-001	07/03/23	Gross Alpha/Beta	Gross Beta	1.60E-14	2.04E-15	1.11E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265172	BAP-001	07/10/23	Gross Alpha/Beta	Gross Alpha	7.03E-15	1.41E-15	3.89E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265172	BAP-001	07/10/23	Gross Alpha/Beta	Gross Beta	2.01E-14	2.41E-15	1.17E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265173	BAP-001	07/17/23	Gross Alpha/Beta	Gross Alpha	7.30E-15	1.59E-15	4.87E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265173	BAP-001	07/17/23	Gross Alpha/Beta	Gross Beta	2.81E-14	3.25E-15	1.46E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265174	BAP-001	07/24/23	Gross Alpha/Beta	Gross Alpha	5.66E-15	1.27E-15	4.03E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265174	BAP-001	07/24/23	Gross Alpha/Beta	Gross Beta	2.04E-14	2.46E-15	1.21E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265175	BAP-001	07/31/23	Gross Alpha/Beta	Gross Alpha	7.56E-15	1.43E-15	3.63E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265175	BAP-001	07/31/23	Gross Alpha/Beta	Gross Beta	2.99E-14	3.12E-15	1.09E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265176	BAP-001	08/07/23	Gross Alpha/Beta	Gross Alpha	3.79E-15	1.04E-15	4.17E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265176	BAP-001	08/07/23	Gross Alpha/Beta	Gross Beta	1.69E-14	2.21E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265177	BAP-001	08/14/23	Gross Alpha/Beta	Gross Alpha	4.31E-15	1.08E-15	3.88E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265177	BAP-001	08/14/23	Gross Alpha/Beta	Gross Beta	2.15E-14	2.52E-15	1.16E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265178	BAP-001	08/21/23	Gross Alpha/Beta	Gross Alpha	3.35E-15	9.20E-16	3.69E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265178	BAP-001	08/21/23	Gross Alpha/Beta	Gross Beta	1.84E-14	2.24E-15	1.10E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265179	BAP-001	08/28/23	Gross Alpha/Beta	Gross Alpha	7.15E-15	1.42E-15	3.86E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265179	BAP-001	08/28/23	Gross Alpha/Beta	Gross Beta	3.97E-14	3.94E-15	1.16E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265180	BAP-001	09/05/23	Gross Alpha/Beta	Gross Alpha	2.28E-15	7.12E-16	3.29E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265180	BAP-001	09/05/23	Gross Alpha/Beta	Gross Beta	1.68E-14	2.02E-15	9.85E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265181	BAP-001	09/11/23	Gross Alpha/Beta	Gross Alpha	2.00E-15	7.77E-16	4.49E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265181	BAP-001	09/11/23	Gross Alpha/Beta	Gross Beta	1.45E-14	2.08E-15	1.35E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265182	BAP-001	09/18/23	Gross Alpha/Beta	Gross Alpha	2.62E-15	8.37E-16	3.96E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265182	BAP-001	09/18/23	Gross Alpha/Beta	Gross Beta	2.89E-14	3.12E-15	1.19E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265183	BAP-001	09/25/23	Gross Alpha/Beta	Gross Alpha	2.92E-15	8.60E-16	3.72E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265183	BAP-001	09/25/23	Gross Alpha/Beta	Gross Beta	4.16E-14	4.05E-15	1.12E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265184	BAP-001	10/02/23	Gross Alpha/Beta	Gross Alpha	1.35E-14	2.11E-15	5.31E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265184	BAP-001	10/02/23	Gross Alpha/Beta	Gross Beta	4.04E-14	4.03E-15	1.23E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265185	BAP-001	10/10/23	Gross Alpha/Beta	Gross Alpha	7.97E-15	1.52E-15	5.07E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265185	BAP-001	10/10/23	Gross Alpha/Beta	Gross Beta	2.65E-14	2.91E-15	1.17E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265186	BAP-001	10/16/23	Gross Alpha/Beta	Gross Alpha	5.95E-15	1.30E-15	5.18E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265186	BAP-001	10/16/23	Gross Alpha/Beta	Gross Beta	1.97E-14	2.39E-15	1.20E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265187	BAP-001	10/23/23	Gross Alpha/Beta	Gross Alpha	8.92E-15	1.74E-15	5.99E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265187	BAP-001	10/23/23	Gross Alpha/Beta	Gross Beta	3.02E-14	3.35E-15	1.39E-15	μCi/mL	+ =		Background Air (Particulate Air)-Environmental Monitoring
BKG265188	BAP-001	10/23/23	Gross Alpha/Beta	Gross Alpha	4.27E-15	1.06E-15	4.86E-16	μCi/mL	 -		Background Air (Particulate Air)-Environmental Monitoring
DKU203188	DAT-UUI	10/30/23	Gioss Aipna/Beta	Gross Aipha	4.2/E-13	1.00E-13	4.00E-10	μCI/IIIL	_		Daviground An (Farticulate Air)-Environmental Monitoring

Table C-1. Background Air Particulate Data Results for CY 2023 (Continued)

Sample Name	Station Name	Collect Date	Method	Analyte	Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event
BKG265188	BAP-001	10/30/23	Gross Alpha/Beta	Gross Beta	2.04E-14	2.40E-15	1.13E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265189	BAP-001	11/06/23	Gross Alpha/Beta	Gross Alpha	9.15E-15	1.69E-15	5.38E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265189	BAP-001	11/06/23	Gross Alpha/Beta	Gross Beta	3.98E-14	3.99E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265190	BAP-001	11/13/23	Gross Alpha/Beta	Gross Alpha	5.36E-15	1.22E-15	5.13E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265190	BAP-001	11/13/23	Gross Alpha/Beta	Gross Beta	2.36E-14	2.69E-15	1.19E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265191	BAP-001	11/20/23	Gross Alpha/Beta	Gross Alpha	4.66E-15	1.18E-15	5.52E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265191	BAP-001	11/20/23	Gross Alpha/Beta	Gross Beta	2.82E-14	3.12E-15	1.28E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265192	BAP-001	11/27/23	Gross Alpha/Beta	Gross Alpha	4.61E-15	1.16E-15	5.38E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265192	BAP-001	11/27/23	Gross Alpha/Beta	Gross Beta	2.73E-14	3.02E-15	1.25E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265193	BAP-001	12/04/23	Gross Alpha/Beta	Gross Alpha	5.71E-15	1.36E-15	5.94E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265193	BAP-001	12/04/23	Gross Alpha/Beta	Gross Beta	3.42E-14	3.65E-15	1.38E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265194	BAP-001	12/11/23	Gross Alpha/Beta	Gross Alpha	4.51E-15	1.12E-15	5.13E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265194	BAP-001	12/11/23	Gross Alpha/Beta	Gross Beta	3.61E-14	3.66E-15	1.19E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265195	BAP-001	12/18/23	Gross Alpha/Beta	Gross Alpha	2.88E-15	9.04E-16	5.34E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265195	BAP-001	12/18/23	Gross Alpha/Beta	Gross Beta	3.14E-14	3.33E-15	1.24E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265196	BAP-001	12/26/23	Gross Alpha/Beta	Gross Alpha	2.33E-15	7.76E-16	4.84E-16	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring
BKG265196	BAP-001	12/26/23	Gross Alpha/Beta	Gross Beta	2.93E-14	3.09E-15	1.12E-15	μCi/mL	=		Background Air (Particulate Air)-Environmental Monitoring

VOa.

Validation Reason Codes:

^{= -} Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Table C-2. TLD (External Gamma Radiation) Results for CY 2023

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS266491	BA-1	04/03/23	Radiological	External gamma radiation	14.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
HIS267896	BA-1	07/05/23	Radiological	External gamma radiation	18.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
HIS270072	BA-1	10/02/23	Radiological	External gamma radiation	18.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
HIS273266	BA-1	01/02/24	Radiological	External gamma radiation	16.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266498	DA-3	04/03/23	Radiological	External gamma radiation	15.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267899	DA-3	07/05/23	Radiological	External gamma radiation	18.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270079	DA-3	10/02/23	Radiological	External gamma radiation	18.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273274	DA-3	01/02/24	Radiological	External gamma radiation	19	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266499	DA-7	04/03/23	Radiological	External gamma radiation	16.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267900	DA-7	07/05/23	Radiological	External gamma radiation	20.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270080	DA-7	10/02/23	Radiological	External gamma radiation	21.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273275	DA-7	01/02/24	Radiological	External gamma radiation	21.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266500	DA-8	04/03/23	Radiological	External gamma radiation	16.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267901	DA-8	07/05/23	Radiological	External gamma radiation	23.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270081	DA-8	10/02/23	Radiological	External gamma radiation	19.9	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273276	DA-8	01/02/24	Radiological	External gamma radiation	21	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266500-1	DA-8dup	04/03/23	Radiological	External gamma radiation	19.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267901-1	DA-8dup	07/05/23	Radiological	External gamma radiation	22	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270081-1	DA-8dup	10/02/23	Radiological	External gamma radiation	22	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273276-1	DA-8dup	01/02/24	Radiological	External gamma radiation	22.3	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266501	DA-9	04/03/23	Radiological	External gamma radiation	16.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267902	DA-9	07/05/23	Radiological	External gamma radiation	18.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270082	DA-9	10/02/23	Radiological	External gamma radiation	16.4	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273278	DA-9	01/02/24	Radiological	External gamma radiation	20.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266502	DA-10	04/03/23	Radiological	External gamma radiation	19.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267903	DA-10	07/05/23	Radiological	External gamma radiation	20.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270083	DA-10	10/02/23	Radiological	External gamma radiation	19.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273282	DA-10	01/02/24	Radiological	External gamma radiation	21.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266503	DA-11	04/03/23	Radiological	External gamma radiation	17.5	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267904	DA-11	07/05/23	Radiological	External gamma radiation	18	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270084	DA-11	10/02/23	Radiological	External gamma radiation	18.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273283	DA-11	01/02/24	Radiological	External gamma radiation	19.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266504	DA-12	04/03/23	Radiological	External gamma radiation	18.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267905	DA-12	07/05/23	Radiological	External gamma radiation	19.6	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270085	DA-12	10/02/23	Radiological	External gamma radiation	19.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273284	DA-12	01/02/24	Radiological	External gamma radiation	18.2	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023
SLD266505	DA-14	04/03/23	Radiological	External gamma radiation	15.1	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-1Q2023
SLD267906	DA-14	07/05/23	Radiological	External gamma radiation	17.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-2Q2023
SLD270086	DA-14	10/02/23	Radiological	External gamma radiation	18.8	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-3Q2023
SLD273285	DA-14	01/02/24	Radiological	External gamma radiation	17.7	0	0.1	mrem	J	Y01	Environmental Monitoring (TLDs)-4Q2023

VQ

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample. Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

Table C-3. Perimeter Air Data Results for CY 2023

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD272910	City Property	12/18/23	Gross Alpha/Beta	Gross Alpha	7.81E-15	7.56E-15	1.03E-14	μCi/mL	UJ	T04, T05	City Property (General Area)-Perimeter Air
SLD272910	City Property	12/18/23	Gross Alpha/Beta	Gross Beta	2.45E-14	1.60E-14	2.40E-14	μCi/mL	J	T04, T20	City Property (General Area)-Perimeter Air
SLD272914	City Property	12/19/23	Gross Alpha/Beta	Gross Alpha	4.04E-15	6.15E-15	1.03E-14	μCi/mL	UJ	T06	City Property (General Area)-Perimeter Air
SLD272914	City Property	12/19/23	Gross Alpha/Beta	Gross Beta	4.10E-14	1.77E-14	2.39E-14	μCi/mL	=		City Property (General Area)-Perimeter Air
SLD272915	City Property	12/20/23	Gross Alpha/Beta	Gross Alpha	6.87E-15	7.47E-15	1.08E-14	μCi/mL	UJ	T06	City Property (General Area)-Perimeter Air
SLD272915	City Property	12/20/23	Gross Alpha/Beta	Gross Beta	4.65E-14	1.90E-14	2.51E-14	μCi/mL	=		City Property (General Area)-Perimeter Air
SLD272922	City Property	12/21/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	1.03E-14	1.40E-14	μCi/mL	UJ	T04, T05	City Property (General Area)-Perimeter Air
SLD272922	City Property	12/21/23	Gross Alpha/Beta	Gross Beta	3.54E-14	2.20E-14	3.25E-14	μCi/mL	J	T04, T20	City Property (General Area)-Perimeter Air
SLD272926	City Property	12/26/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	1.34E-14	2.07E-14	μCi/mL	UJ	T06	City Property (General Area)-Perimeter Air
SLD272926	City Property	12/26/23	Gross Alpha/Beta	Gross Beta	3.64E-14	3.07E-14	4.79E-14	μCi/mL	UJ	T04, T05	City Property (General Area)-Perimeter Air
SLD268816	GUNTHER SALT	09/18/23	Gross Alpha/Beta	Gross Alpha	1.26E-16	2.17E-15	5.47E-15	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268816	GUNTHER SALT	09/18/23	Gross Alpha/Beta	Gross Beta	8.26E-15	9.04E-15	1.46E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268820	GUNTHER SALT	09/19/23	Gross Alpha/Beta	Gross Alpha	4.47E-15	1.34E-14	2.78E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268820	GUNTHER SALT	09/19/23	Gross Alpha/Beta	Gross Beta	8.57E-14	5.07E-14	7.43E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD268824	GUNTHER SALT	09/20/23	Gross Alpha/Beta	Gross Alpha	4.27E-15	1.28E-14	2.65E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268824	GUNTHER SALT	09/20/23	Gross Alpha/Beta	Gross Beta	4.70E-14	4.46E-14	7.09E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD268828	GUNTHER SALT	09/21/23	Gross Alpha/Beta	Gross Alpha	1.56E-14	1.14E-14	1.23E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD268828	GUNTHER SALT	09/21/23	Gross Alpha/Beta	Gross Beta	6.50E-14	2.53E-14	3.29E-14	μCi/mL	=		Gunther Salt (General Area)-Perimeter Air
SLD268832	GUNTHER SALT	09/25/23	Gross Alpha/Beta	Gross Alpha	2.25E-14	1.90E-14	2.27E-14	μCi/mL	UJ	T04, T05	Gunther Salt (General Area)-Perimeter Air
SLD268832	GUNTHER SALT	09/25/23	Gross Alpha/Beta	Gross Beta	7.81E-14	4.23E-14	6.08E-14	μCi/mL	J	T04, T20	Gunther Salt (General Area)-Perimeter Air
SLD268841	GUNTHER SALT	09/27/23	Gross Alpha/Beta	Gross Alpha	1.86E-14	2.66E-14	4.27E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268841	GUNTHER SALT	09/27/23	Gross Alpha/Beta	Gross Beta	6.44E-14	7.06E-14	1.14E-13	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268846	GUNTHER SALT	09/28/23	Gross Alpha/Beta	Gross Alpha	5.89E-15	1.06E-14	1.85E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268846	GUNTHER SALT	09/28/23	Gross Alpha/Beta	Gross Beta	2.70E-14	3.01E-14	4.90E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268854	GUNTHER SALT	10/03/23	Gross Alpha/Beta	Gross Alpha	6.65E-15	9.87E-15	1.63E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268854	GUNTHER SALT	10/03/23	Gross Alpha/Beta	Gross Beta	2.90E-15	2.16E-14	3.84E-14	μCi/mL	UJ	T06	Gunther Salt (General Area)-Perimeter Air
SLD268890	MISSISSIPPI RIVER	10/18/23	Gross Alpha/Beta	Gross Alpha	9.42E-15	1.93E-14	3.60E-14	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD268890	MISSISSIPPI RIVER	10/18/23	Gross Alpha/Beta	Gross Beta	3.43E-14	4.69E-14	7.76E-14	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD268937	MISSISSIPPI RIVER	11/14/23	Gross Alpha/Beta	Gross Alpha	9.24E-15	1.80E-14	3.26E-14	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD268937	MISSISSIPPI RIVER	11/14/23	Gross Alpha/Beta	Gross Beta	2.16E-14	4.11E-14	6.96E-14	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD272906	MISSISSIPPI RIVER	12/14/23	Gross Alpha/Beta	Gross Alpha	-1.34E-14	2.68E-14	8.20E-14	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD272906	MISSISSIPPI RIVER	12/14/23	Gross Alpha/Beta	Gross Beta	4.27E-14	1.02E-13	1.75E-13	μCi/mL	UJ	T06	Mississippi River (General Area)-Perimeter Air
SLD265530	P6WH LOADOUT	01/03/23	Gross Alpha/Beta	Gross Alpha	-1.91E-15	2.31E-15	9.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265530	P6WH LOADOUT	01/03/23	Gross Alpha/Beta	Gross Beta	1.42E-14	1.35E-14	2.15E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265531	P6WH LOADOUT	01/03/23	Gross Alpha/Beta	Gross Alpha	5.86E-15	6.38E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265531	P6WH LOADOUT	01/03/23	Gross Alpha/Beta	Gross Beta	-4.88E-15	1.16E-14	2.20E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265532	P6WH LOADOUT	01/04/23	Gross Alpha/Beta	Gross Alpha	1.42E-15	4.59E-15	9.37E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265532		01/04/23	•	•	3.15E-14		9.37E-13 2.23E-14	•	O)	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265533	P6WH LOADOUT P6WH LOADOUT	01/04/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	-8.34E-16	1.58E-14 3.23E-15	9.20E-15	μCi/mL	UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265533	P6WH LOADOUT P6WH LOADOUT	01/04/23	Gross Alpha/Beta	Gross Alpha	-8.34E-16 1.45E-14	1.38E-14	9.20E-13 2.19E-14	μCi/mL μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265534	P6WH LOADOUT P6WH LOADOUT	01/04/23	1	Gross Alpha	2.60E-16	3.67E-15	8.61E-15	μCi/mL μCi/mL		T04, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT P6WH LOADOUT		Gross Alpha/Beta	Gross Alpha	2.00E-16 2.09E-14				UJ		,
SLD265534		01/04/23	Gross Alpha/Beta	Gross Beta		1.37E-14	2.05E-14	μCi/mL	J TTT	T04, T20	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265535	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Alpha	-7.65E-16	2.97E-15	8.44E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265535	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Beta	1.13E-14	1.24E-14	2.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265536	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Alpha	2.45E-15	4.92E-15	9.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265536	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Beta	2.32E-14	1.44E-14	2.14E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265537	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Alpha	2.38E-15	4.79E-15	8.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265537	P6WH LOADOUT	01/05/23	Gross Alpha/Beta	Gross Beta	3.08E-14	1.49E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265538	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Alpha	5.84E-15	6.35E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265538	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Beta	4.59E-14	1.70E-14	2.19E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265539	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Alpha	4.60E-15	5.78E-15	8.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265539	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Beta	4.89E-14	1.70E-14	2.13E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265540	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Alpha	2.54E-16	3.58E-15	8.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265540	P6WH LOADOUT	01/09/23	Gross Alpha/Beta	Gross Beta	4.39E-14	1.58E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265541	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Alpha	5.92E-15	6.44E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265541	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Beta	6.47E-14	1.90E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265542	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Alpha	5.78E-15	6.29E-15	9.12E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265542	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Beta	7.03E-14	1.93E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265543	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Alpha	7.42E-15	6.54E-15	8.47E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265543	P6WH LOADOUT	01/10/23	Gross Alpha/Beta	Gross Beta	6.73E-14	1.81E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265544	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Alpha	6.98E-15	6.76E-15	9.24E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265544	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Beta	6.48E-14	1.89E-14	2.20E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265545	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Alpha	6.00E-15	6.53E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265545	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Beta	5.09E-14	1.79E-14	2.25E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265546	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Alpha	4.42E-15	5.56E-15	8.61E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265546	P6WH LOADOUT	01/11/23	Gross Alpha/Beta	Gross Beta	6.78E-14	1.83E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265547	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Alpha	2.46E-15	4.94E-15	9.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265547	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Beta	9.92E-14	2.18E-14	2.15E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265548	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Alpha	6.59E-15	6.39E-15	8.72E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265548	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Beta	1.08E-13	2.22E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265549	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Alpha	4.46E-15	5.61E-15	8.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265549	P6WH LOADOUT	01/12/23	Gross Alpha/Beta	Gross Beta	9.87E-14	2.13E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265562	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Alpha	2.40E-15	4.57E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265562	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Beta	7.76E-14	1.88E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265563	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Alpha	6.59E-15	6.14E-15	7.86E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265563	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Beta	7.53E-14	1.81E-14	1.67E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265564	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Alpha	4.29E-15	5.14E-15	7.60E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265564	P6WH LOADOUT	01/17/23	Gross Alpha/Beta	Gross Beta	5.64E-14	1.57E-14	1.62E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265565	P6WH LOADOUT	01/18/23	Gross Alpha/Beta	Gross Alpha	1.07E-14	7.85E-15	8.56E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265565	P6WH LOADOUT	01/18/23	Gross Alpha/Beta	Gross Beta	5.29E-14	1.66E-14	1.82E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265566	P6WH LOADOUT	01/19/23	Gross Alpha/Beta	Gross Alpha	3.44E-15	4.96E-15	8.03E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265566	P6WH LOADOUT	01/19/23	Gross Alpha/Beta	Gross Beta	2.73E-14	1.29E-14	1.71E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265567	P6WH LOADOUT	01/19/23	Gross Alpha/Beta	Gross Alpha	5.45E-15	5.67E-15	7.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265567	P6WH LOADOUT	01/19/23	Gross Alpha/Beta	Gross Beta	8.34E-14	1.87E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265568	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Alpha	1.24E-14	8.12E-15	8.14E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265568	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Beta	6.12E-14	1.70E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265569	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Alpha	1.22E-14	7.98E-15	8.00E-15	μCi/mL	ī	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265569	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Beta	5.15E-14	1.57E-14	1.70E-14	μCi/mL	=	107, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265570	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Alpha	5.13E-14 5.27E-15	5.48E-15	7.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265570	P6WH LOADOUT	01/23/23	Gross Alpha/Beta	Gross Beta	5.78E-14	1.58E-14	1.60E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265571	P6WH LOADOUT	01/23/23			1.18E-15	3.67E-15	7.63E-15		 UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD2033/1	POWIT LUADUUI	01/24/23	Gross Alpha/Beta	Gross Alpha	1.10E-13	3.0/E-13	7.03E-13	μCi/mL	UJ	100	Fiant 0 w fi LOADOU I (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265571	P6WH LOADOUT	01/24/23	Gross Alpha/Beta	Gross Beta	4.64E-14	1.47E-14	1.62E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265572	P6WH LOADOUT	01/24/23	Gross Alpha/Beta	Gross Alpha	2.41E-15	4.59E-15	8.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265572	P6WH LOADOUT	01/24/23	Gross Alpha/Beta	Gross Beta	3.56E-14	1.43E-14	1.76E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265573	P6WH LOADOUT	01/24/23	Gross Alpha/Beta	Gross Alpha	1.05E-14	7.67E-15	8.37E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265573	P6WH LOADOUT	01/24/23	Gross Alpha/Beta	Gross Beta	5.76E-14	1.69E-14	1.78E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265577	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Alpha	4.66E-15	5.58E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265577	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Beta	1.69E-14	1.19E-14	1.76E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265578	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Alpha	1.31E-16	3.01E-15	7.63E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265578	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Beta	2.38E-14	1.20E-14	1.62E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265579	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Alpha	-1.03E-15	2.44E-15	8.56E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265579	P6WH LOADOUT	01/26/23	Gross Alpha/Beta	Gross Beta	-1.28E-16	9.79E-15	1.82E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265580	P6WH LOADOUT	01/31/23	Gross Alpha/Beta	Gross Alpha	1.23E-15	3.84E-15	8.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265580	P6WH LOADOUT	01/31/23	Gross Alpha/Beta	Gross Beta	2.14E-14	1.22E-14	1.70E-14	μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265581	P6WH LOADOUT	01/31/23			3.24E-15	4.68E-15	7.57E-15	μCi/mL	UJ	T04, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
		+	Gross Alpha/Beta	Gross Alpha				-	=	100	, , ,
SLD265581	P6WH LOADOUT	01/31/23	Gross Alpha/Beta	Gross Beta	3.92E-14	1.38E-14	1.61E-14	μCi/mL		T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265582	P6WH LOADOUT	01/31/23 01/31/23	Gross Alpha/Beta	Gross Alpha	1.39E-16	3.21E-15	8.14E-15	μCi/mL	UJ =	T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265582 SLD265583	P6WH LOADOUT P6WH LOADOUT	02/01/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Beta Gross Alpha	2.76E-14 2.33E-15	1.31E-14 4.43E-15	1.73E-14 8.00E-15	μCi/mL μCi/mL	 UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265583	P6WH LOADOUT	02/01/23	Gross Alpha/Beta	Gross Beta	3.86E-14	1.43E-14	1.70E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265584	P6WH LOADOUT	02/01/23	Gross Alpha/Beta	Gross Alpha	4.79E-15	5.74E-15	8.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265584	P6WH LOADOUT	02/01/23	Gross Alpha/Beta	Gross Beta	3.64E-14	1.46E-14	1.80E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265585	P6WH LOADOUT	02/01/23	Gross Alpha/Beta	Gross Alpha	4.26E-15	5.10E-15	7.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265585	P6WH LOADOUT	02/01/23	Gross Alpha/Beta	Gross Beta	3.30E-14	1.30E-14	1.60E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265587	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Alpha	6.38E-15	5.71E-15	7.00E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265587	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Beta	6.59E-14	1.75E-14	1.92E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265588	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Alpha	4.65E-15	5.25E-15	7.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265588	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Beta	5.10E-14	1.67E-14	2.04E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265589	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Alpha	3.77E-15	5.04E-15	7.81E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265589	P6WH LOADOUT	02/02/23	Gross Alpha/Beta	Gross Beta	5.79E-14	1.80E-14	2.15E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265591	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Alpha	1.36E-15	3.47E-15	6.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265591	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Beta	4.50E-14	1.53E-14	1.90E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265592	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Alpha	6.75E-15	6.04E-15	7.40E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265592	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Beta	4.14E-14	1.57E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265593	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Alpha	6.90E-15	6.17E-15	7.56E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265593	P6WH LOADOUT	02/06/23	Gross Alpha/Beta	Gross Beta	5.33E-14	1.72E-14	2.08E-14	μCi/mL	=	TO 4 TO 5	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265594	P6WH LOADOUT	02/07/23	Gross Alpha/Beta	Gross Alpha	6.90E-15	6.17E-15	7.56E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265594	P6WH LOADOUT	02/07/23	Gross Alpha/Beta	Gross Beta	6.36E-14	1.82E-14	2.08E-14	μCi/mL	=	T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265595 SLD265595	P6WH LOADOUT P6WH LOADOUT	02/07/23 02/07/23	Gross Alpha/Beta	Gross Alpha Gross Beta	3.64E-15 6.20E-14	4.86E-15 1.80E-14	7.53E-15 2.07E-14	μCi/mL μCi/mL	UJ =	T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD265596	P6WH LOADOUT	02/07/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha	6.20E-14 4.28E-15	4.82E-15	6.83E-15	μCi/mL μCi/mL	 UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265596	P6WH LOADOUT	02/07/23	Gross Alpha/Beta	Gross Alpha Gross Beta	7.17E-14	1.78E-14	1.88E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265598	P6WH LOADOUT	02/07/23	Gross Alpha/Beta	Gross Alpha	4.53E-15	5.11E-15	7.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265598	P6WH LOADOUT	02/08/23	Gross Alpha/Beta	Gross Beta	5.24E-14	1.66E-14	1.99E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265599	P6WH LOADOUT	02/08/23	Gross Alpha/Beta	Gross Alpha	4.02E-16	3.09E-15	7.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265599	P6WH LOADOUT	02/08/23	Gross Alpha/Beta	Gross Beta	4.47E-14	1.62E-14	2.06E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265600	P6WH LOADOUT	02/08/23	Gross Alpha/Beta	Gross Alpha	4.24E-15	4.79E-15	6.77E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265600	P6WH LOADOUT	02/08/23	Gross Alpha/Beta	Gross Beta	4.53E-14	1.51E-14	1.86E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265602	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Alpha	3.77E-15	4.33E-15	5.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265602	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Beta	1.40E-14	1.20E-14	1.88E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265603	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Alpha	-1.19E-15	4.75E-16	6.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265603	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Beta	1.04E-14	1.31E-14	2.15E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265604	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Alpha	5.14E-15	5.15E-15	6.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265604	P6WH LOADOUT	02/09/23	Gross Alpha/Beta	Gross Beta	1.19E-14	1.27E-14	2.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265607	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Alpha	4.24E-15	4.87E-15	6.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265607	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Beta	3.36E-14	1.54E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265608	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Alpha	9.70E-16	3.03E-15	6.56E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265608	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Beta	2.82E-14	1.46E-14	2.07E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265609	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Alpha	4.97E-15	4.98E-15	6.26E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265609	P6WH LOADOUT	02/13/23	Gross Alpha/Beta	Gross Beta	1.73E-14	1.29E-14	1.97E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265611	P6WH LOADOUT	02/14/23	Gross Alpha/Beta	Gross Alpha	9.87E-15	7.06E-15	6.87E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265611	P6WH LOADOUT	02/14/23	Gross Alpha/Beta	Gross Beta	4.28E-14	1.66E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265612	P6WH LOADOUT	02/14/23	Gross Alpha/Beta	Gross Alpha	5.14E-15	5.15E-15	6.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265612	P6WH LOADOUT	02/14/23	Gross Alpha/Beta	Gross Beta	5.76E-14	1.73E-14	2.04E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265614	P6WH LOADOUT	02/15/23	Gross Alpha/Beta	Gross Alpha	4.09E-15	4.81E-15	6.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265614	P6WH LOADOUT	02/15/23	Gross Alpha/Beta	Gross Beta	4.87E-14	1.66E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265615	P6WH LOADOUT	02/15/23	Gross Alpha/Beta	Gross Alpha	8.67E-16	2.98E-15	6.59E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265615	P6WH LOADOUT	02/15/23	Gross Alpha/Beta	Gross Beta	5.74E-14	1.72E-14	2.01E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265617	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Alpha	8.98E-16	3.09E-15	6.82E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265617	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Beta	2.39E-14	1.42E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265618	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Alpha	2.99E-15	4.25E-15	6.67E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265618	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Beta	2.67E-14	1.42E-14	2.03E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265619	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Alpha	2.15E-15	4.09E-15	7.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265619	P6WH LOADOUT	02/16/23	Gross Alpha/Beta	Gross Beta	3.71E-14	1.66E-14	2.26E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265620	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Alpha	5.35E-15	5.46E-15	7.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265620	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Beta	3.30E-14	1.55E-14	2.14E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265621	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Alpha	8.74E-16	3.00E-15	6.65E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265621	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Beta	1.13E-14	1.25E-14	2.03E-14	μCi/mL	UI	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265622	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Alpha	2.80E-15	3.99E-15	6.26E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265622	P6WH LOADOUT	02/21/23	Gross Alpha/Beta	Gross Beta	1.38E-14	1.21E-14	1.91E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265624	P6WH LOADOUT	02/22/23	Gross Alpha/Beta	Gross Alpha	-1.78E-16	2.19E-15	6.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265624	P6WH LOADOUT	02/22/23	Gross Alpha/Beta	Gross Beta	1.01E-14	1.26E-14	2.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265625	P6WH LOADOUT	02/22/23	Gross Alpha/Beta	Gross Alpha	4.80E-15	4.90E-15	6.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265625	P6WH LOADOUT	02/22/23	Gross Alpha/Beta	Gross Beta	7.51E-15	1.15E-14	1.92E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
			•					•		T06	
SLD265626 SLD265626	P6WH LOADOUT P6WH LOADOUT	02/22/23	Gross Alpha/Beta	Gross Alpha	3.67E-15 2.00E-14	4.31E-15 1.25E-14	6.07E-15 1.85E-14	μCi/mL μCi/mL	UJ J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Beta						•	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265628	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Alpha	6.19E-15	6.19E-15	8.45E-15	μCi/mL	UJ –	T04, T05	, ,
SLD265628	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Beta	3.09E-14	1.48E-14	2.04E-14	μCi/mL	=	TOC	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265629	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Alpha	7.55E-16	3.75E-15	8.30E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265629	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Beta	2.09E-14	1.35E-14	2.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265630	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Alpha	-3.12E-16	3.10E-15	8.34E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265630	P6WH LOADOUT	02/23/23	Gross Alpha/Beta	Gross Beta	2.98E-14	1.45E-14	2.01E-14	μCi/mL	=	TDC 6	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265632	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Alpha	1.89E-15	4.47E-15	8.60E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265632	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Beta	1.74E-14	1.35E-14	2.08E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265633	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Alpha	-2.46E-15	6.90E-16	8.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265633	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Beta	1.08E-14	1.25E-14	2.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265634	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Alpha	4.81E-15	5.46E-15	7.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265634	P6WH LOADOUT	02/27/23	Gross Alpha/Beta	Gross Beta	1.74E-14	1.26E-14	1.92E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265636	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Alpha	7.80E-15	7.25E-15	9.80E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265636	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Beta	4.17E-14	1.68E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265637	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Alpha	-1.35E-16	3.82E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265637	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Beta	4.11E-14	1.61E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265638	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Alpha	1.94E-15	4.69E-15	8.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265638	P6WH LOADOUT	02/28/23	Gross Alpha/Beta	Gross Beta	3.34E-14	1.49E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265640	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Alpha	6.29E-15	6.49E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265640	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Beta	3.73E-14	1.56E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265641	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Alpha	3.96E-15	5.47E-15	8.83E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265641	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Beta	3.50E-14	1.49E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265642	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Alpha	2.00E-15	4.83E-15	9.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265642	P6WH LOADOUT	03/01/23	Gross Alpha/Beta	Gross Beta	5.34E-14	1.72E-14	2.09E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265643	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Alpha	4.28E-15	5.91E-15	9.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265643	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Beta	3.64E-14	1.59E-14	2.16E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265644	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Alpha	1.08E-14	7.97E-15	9.46E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265644	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Beta	2.01E-14	1.41E-14	2.14E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265645	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Alpha	3.88E-15	5.36E-15	8.65E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265645	P6WH LOADOUT	03/02/23	Gross Alpha/Beta	Gross Beta	2.53E-14	1.37E-14	1.96E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265646	P6WH LOADOUT	03/06/23	Gross Alpha/Beta	Gross Alpha	5.22E-15	6.12E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265646	P6WH LOADOUT	03/06/23	Gross Alpha/Beta	Gross Beta	2.10E-14	1.40E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265647	P6WH LOADOUT	03/06/23	Gross Alpha/Beta	Gross Alpha	9.70E-16	4.51E-15	9.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265647	P6WH LOADOUT	03/06/23	Gross Alpha/Beta	Gross Beta	3.23E-14	1.56E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265648	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Alpha	8.62E-16	4.01E-15	8.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265648	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Beta	1.68E-14	1.26E-14	1.93E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265649	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Alpha	4.10E-15	5.65E-15	9.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265649	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Beta	3.28E-14	1.50E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265650	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Alpha	-1.17E-15	3.05E-15	9.02E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265650	P6WH LOADOUT	03/07/23	Gross Alpha/Beta	Gross Beta	1.58E-14	1.31E-14	2.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265652	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Alpha	-2.24E-15	2.24E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265652	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Beta	1.79E-14	1.34E-14	2.06E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265653	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Alpha	4.08E-15	5.63E-15	9.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265653	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Beta	3.20E-14	1.49E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265654	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Alpha	1.90E-15	4.59E-15	8.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265654	P6WH LOADOUT	03/08/23	Gross Alpha/Beta	Gross Beta	1.73E-14	1.29E-14	1.99E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265656	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Alpha	2.11E-15	5.10E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265656	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Beta	1.63E-14	1.40E-14	2.20E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265657	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Alpha	-1.41E-16	4.00E-15	9.76E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265657	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Beta	4.15E-14	1.67E-14	2.21E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265658	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Alpha	1.45E-14	8.74E-15	9.06E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265658	P6WH LOADOUT	03/09/23	Gross Alpha/Beta	Gross Beta	3.85E-14	1.55E-14	2.05E-14	μCi/mL	=	- ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265660	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Alpha	-6.32E-16	2.41E-15	8.02E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265660	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Beta	2.68E-14	1.36E-14	1.84E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265661	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Alpha	-1.89E-15	6.37E-16	8.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265661	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Beta	1.85E-14	1.30E-14	1.93E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265662	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Alpha	5.25E-15	5.81E-15	8.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265662	P6WH LOADOUT	03/13/23	Gross Alpha/Beta	Gross Beta	1.47E-14	1.21E-14	1.86E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265664	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Alpha	-6.61E-16	2.52E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265664	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Beta	2.08E-14	1.33E-14	1.93E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265665	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Alpha	1.76E-15	4.22E-15	8.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265665	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Beta	2.45E-14	1.36E-14	1.90E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265666	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Alpha	6.15E-15	6.01E-15	7.75E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265666	P6WH LOADOUT	03/14/23	Gross Alpha/Beta	Gross Beta	1.48E-14	1.17E-14	1.78E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265668	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Alpha	4.30E-15	5.60E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265668	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Beta	3.17E-14	1.49E-14	1.96E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265669	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Alpha	9.06E-15	7.34E-15	8.35E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265669	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Beta	1.60E-14	1.26E-14	1.92E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265670	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Alpha	5.28E-16	3.31E-15	7.92E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265670	P6WH LOADOUT	03/15/23	Gross Alpha/Beta	Gross Beta	1.51E-14	1.20E-14	1.82E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265672	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Alpha	-2.58E-15	9.84E-15	3.28E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265672	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Beta	9.73E-15	4.21E-14	7.53E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265673	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Alpha	1.77E-15	4.25E-15	8.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265673	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Beta	1.99E-14	1.31E-14	1.92E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265674	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Alpha	1.83E-15	1.15E-14	2.74E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265674	P6WH LOADOUT	03/16/23	Gross Alpha/Beta	Gross Beta	1.59E-14	3.64E-14	6.29E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265675	P6WH LOADOUT	03/20/23	Gross Alpha/Beta	Gross Alpha	6.29E-15	6.14E-15	7.92E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265675	P6WH LOADOUT	03/20/23	Gross Alpha/Beta	Gross Beta	2.79E-14	1.36E-14	1.82E-14	μCi/mL	=	, , , ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265676	P6WH LOADOUT	03/20/23	Gross Alpha/Beta	Gross Alpha	6.34E-15	6.19E-15	7.99E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265676	P6WH LOADOUT	03/20/23	Gross Alpha/Beta	Gross Beta	3.88E-14	1.50E-14	1.83E-14	μCi/mL	=	, , , ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265677	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Alpha	7.81E-15	6.89E-15	8.31E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265677	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Beta	3.56E-14	1.50E-14	1.91E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265678	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Alpha	2.93E-15	4.81E-15	8.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265678	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Beta	3.44E-14	1.47E-14	1.88E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265679	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Alpha	5.02E-16	3.15E-15	7.53E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265679	P6WH LOADOUT	03/21/23	Gross Alpha/Beta	Gross Beta	3.58E-14	1.40E-14	1.73E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265681	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Alpha	8.18E-15	7.22E-15	8.70E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265681	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Beta	3.98E-14	1.60E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265682	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Alpha	7.91E-15	6.99E-15	8.42E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265682	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Beta	3.21E-14	1.48E-14	1.93E-14	μCi/mL	=	10.,100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265683	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Alpha	3.97E-15	5.17E-15	7.88E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265683	P6WH LOADOUT	03/22/23	Gross Alpha/Beta	Gross Beta	3.15E-14	1.40E-14	1.81E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265684	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Alpha	2.18E-15	4.32E-15	7.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265684	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Beta	2.36E-14	1.43E-14	2.12E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265685	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Alpha	1.06E-15	3.56E-15	7.51E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265685	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Beta	3.01E-14	1.44E-14	2.01E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265686	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Alpha	1.99E-15	3.94E-15	7.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265686	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Beta	1.22E-14	1.21E-14	1.93E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265687	P6WH LOADOUT	03/23/23	Gross Alpha/Beta	Gross Alpha	7.36E-15	6.32E-15	7.74E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265687	P6WH LOADOUT	03/27/23	Gross Alpha/Beta	Gross Beta	3.10E-14	1.48E-14	2.07E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
			•							T06	,
SLD265688	P6WH LOADOUT	03/27/23	Gross Alpha/Beta	Gross Alpha	5.38E-15	5.70E-15	7.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265688	P6WH LOADOUT	03/27/23	Gross Alpha/Beta	Gross Beta	4.05E-14	1.60E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265689	P6WH LOADOUT	03/27/23	Gross Alpha/Beta	Gross Alpha	8.69E-15	6.44E-15	7.12E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265689	P6WH LOADOUT	03/27/23	Gross Alpha/Beta	Gross Beta	3.95E-14	1.48E-14	1.91E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265690	P6WH LOADOUT	03/28/23	Gross Alpha/Beta	Gross Alpha	1.08E-15	3.65E-15	7.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265690	P6WH LOADOUT	03/28/23	Gross Alpha/Beta	Gross Beta	4.01E-14	1.57E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265691	P6WH LOADOUT	03/28/23	Gross Alpha/Beta	Gross Alpha	9.02E-15	6.68E-15	7.39E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265691	P6WH LOADOUT	03/28/23	Gross Alpha/Beta	Gross Beta	3.34E-14	1.45E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265694	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Alpha	3.97E-15	4.85E-15	7.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265694	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Beta	4.03E-14	1.51E-14	1.95E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265695	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Alpha	7.59E-15	6.52E-15	7.98E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265695	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Beta	1.00E-13	2.18E-14	2.14E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265696	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Alpha	6.29E-15	5.93E-15	7.70E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265696	P6WH LOADOUT	03/29/23	Gross Alpha/Beta	Gross Beta	7.31E-14	1.88E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265697	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Alpha	1.14E-15	3.84E-15	8.09E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265697	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Beta	4.49E-14	1.68E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265698	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Alpha	1.11E-15	3.75E-15	7.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265698	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Beta	3.10E-14	1.51E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265699	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Alpha	4.06E-15	4.97E-15	7.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265699	P6WH LOADOUT	03/30/23	Gross Alpha/Beta	Gross Beta	2.99E-14	1.43E-14	1.99E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265700	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Alpha	1.49E-15	4.14E-15	8.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265700	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Beta	1.98E-14	1.31E-14	1.96E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265701	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Alpha	1.61E-15	4.48E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265701	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Beta	1.22E-14	1.31E-14	2.11E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265702	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Alpha	6.89E-15	8.26E-15	1.25E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265702	P6WH LOADOUT	04/03/23	Gross Alpha/Beta	Gross Beta	2.99E-14	1.98E-14	2.96E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265703	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Alpha	2.87E-15	5.28E-15	9.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265703	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Beta	2.18E-14	1.48E-14	2.23E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265704	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Alpha	2.67E-15	4.91E-15	8.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265704	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Beta	1.82E-14	1.36E-14	2.08E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265705	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Alpha	1.75E-15	4.87E-15	9.68E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265705	P6WH LOADOUT	04/04/23	Gross Alpha/Beta	Gross Beta	2.70E-14	1.58E-14	2.30E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265706	P6WH LOADOUT	04/05/23	Gross Alpha/Beta	Gross Alpha	7.13E-15	6.69E-15	8.90E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265706	P6WH LOADOUT	04/05/23	Gross Alpha/Beta	Gross Beta	1.50E-14	1.34E-14	2.11E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265707	P6WH LOADOUT	04/05/23	Gross Alpha/Beta	Gross Alpha	6.03E-15	6.30E-15	8.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265707	P6WH LOADOUT	04/05/23	Gross Alpha/Beta	Gross Beta	2.77E-14	1.48E-14	2.11E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265708	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Alpha	1.34E-15	4.19E-15	8.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265708	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Beta	3.09E-14	1.41E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265709	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Alpha	-9.99E-16	2.37E-15	8.34E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265709	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Beta	4.59E-14	1.54E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265710	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Alpha	2.37E-15	4.50E-15	8.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265710	P6WH LOADOUT	04/06/23	Gross Alpha/Beta	Gross Beta	2.52E-14	1.27E-14	1.71E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265711	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Alpha	6.06E-15	6.31E-15	8.63E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265711	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Beta	3.52E-14	1.45E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265712	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Alpha	1.28E-15	4.01E-15	8.34E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265712	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Beta	3.92E-14	1.47E-14	1.75E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265713	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Alpha	5.52E-15	5.75E-15	7.87E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265713	P6WH LOADOUT	04/10/23	Gross Alpha/Beta	Gross Beta	5.11E-14	1.54E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265714	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Alpha	7.11E-15	6.62E-15	8.48E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265714	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Beta	4.07E-14	1.50E-14	1.78E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265715	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Alpha	1.28E-15	3.99E-15	8.30E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265715	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Beta	4.50E-14	1.53E-14	1.74E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265716	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Alpha	9.79E-15	7.18E-15	7.84E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265716	P6WH LOADOUT	04/11/23	Gross Alpha/Beta	Gross Beta	3.27E-14	1.33E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265717	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Alpha	7.86E-15	6.68E-15	8.06E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265717	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Beta	4.22E-14	1.47E-14	1.69E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265718	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Alpha	3.66E-15	5.29E-15	8.56E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265718	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Beta	2.65E-14	1.34E-14	1.80E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265719	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Alpha	7.40E-15	6.89E-15	8.83E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265719	P6WH LOADOUT	04/12/23	Gross Alpha/Beta	Gross Beta	1.63E-14	1.24E-14	1.86E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265720	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Alpha	8.42E-15	7.15E-15	8.63E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265720	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Beta	3.83E-14	1.49E-14	1.81E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265721	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Alpha	6.11E-15	6.36E-15	8.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265721	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Beta	3.24E-14	1.43E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265722	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Alpha	4.52E-15	5.41E-15	8.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265722	P6WH LOADOUT	04/13/23	Gross Alpha/Beta	Gross Beta	3.26E-14	1.35E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265724	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Alpha	-2.69E-15	8.29E-16	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265724	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Beta	3.23E-15	1.58E-14	2.78E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265725	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Alpha	3.21E-15	4.64E-15	7.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265725	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Beta	1.40E-14	1.26E-14	1.99E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265726	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Alpha	2.05E-15	3.90E-15	7.05E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265726	P6WH LOADOUT	04/17/23	Gross Alpha/Beta	Gross Beta	3.16E-14	1.38E-14	1.87E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265728	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Alpha	2.25E-16	5.19E-15	1.32E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265728	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Beta	2.35E-14	2.20E-14	3.48E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265729	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Alpha	1.28E-16	2.96E-15	7.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265729	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Beta	1.53E-14	1.28E-14	1.99E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265730	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Alpha	2.08E-15	3.95E-15	7.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265730	P6WH LOADOUT	04/18/23	Gross Alpha/Beta	Gross Beta	1.21E-14	1.19E-14	1.89E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265732	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Alpha	6.78E-15	6.31E-15	8.09E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265732	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Beta	2.57E-14	1.47E-14	2.14E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265733	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Alpha	2.25E-15	4.28E-15	7.73E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265733	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Beta	5.14E-14	1.68E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265734	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Alpha	2.09E-15	3.98E-15	7.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265734	P6WH LOADOUT	04/19/23	Gross Alpha/Beta	Gross Beta	3.03E-14	1.39E-14	1.91E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265736	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Alpha	9.00E-15	7.06E-15	8.09E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265736	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Beta	2.99E-14	1.52E-14	2.14E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265737	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Alpha	1.69E-16	3.91E-15	9.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265737	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Beta	2.54E-14	1.74E-14	2.62E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265738	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Alpha	2.70E-15	5.13E-15	9.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265738	P6WH LOADOUT	04/20/23	Gross Alpha/Beta	Gross Beta	2.78E-14	1.67E-14	2.46E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265740	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Alpha	-6.14E-16	3.29E-15	9.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265740	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Beta	3.47E-14	1.59E-14	2.18E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265741	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Alpha	4.89E-16	3.76E-15	8.61E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265741	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Beta	2.66E-14	1.43E-14	2.06E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265742	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Alpha	2.43E-15	4.47E-15	7.97E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265742	P6WH LOADOUT	04/24/23	Gross Alpha/Beta	Gross Beta	2.40E-14	1.32E-14	1.90E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265744	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Alpha	1.50E-15	4.18E-15	8.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265744	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Beta	4.08E-14	1.54E-14	1.99E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265745	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Alpha	4.35E-16	3.35E-15	7.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265745	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Beta	2.97E-14	1.34E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265746	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Alpha	4.66E-15	5.58E-15	8.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265746	P6WH LOADOUT	04/25/23	Gross Alpha/Beta	Gross Beta	4.33E-14	1.58E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265748	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Alpha	-1.58E-15	2.16E-15	8.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265748	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Beta	3.67E-14	1.49E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265749	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Alpha	-5.66E-16	3.03E-15	8.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265749	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Beta	1.94E-14	1.33E-14	2.01E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265750	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Alpha	3.33E-15	4.76E-15	7.75E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265750	P6WH LOADOUT	04/26/23	Gross Alpha/Beta	Gross Beta	1.85E-14	1.23E-14	1.85E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265752	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Alpha	3.78E-15	5.40E-15	8.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265752	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Beta	3.97E-14	1.60E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265753	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Alpha	2.64E-15	4.85E-15	8.64E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265753	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Beta	5.06E-14	1.68E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265754	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Alpha	3.60E-15	5.15E-15	8.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265754	P6WH LOADOUT	04/27/23	Gross Alpha/Beta	Gross Beta	1.34E-14	1.26E-14	2.00E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265756	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Alpha	2.46E-15	4.53E-15	8.07E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265756	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Beta	1.80E-14	1.27E-14	1.93E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265757	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Alpha	4.85E-16	3.73E-15	8.53E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265757	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Beta	1.50E-14	1.30E-14	2.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265758	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Alpha	-6.00E-16	3.21E-15	8.92E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265758	P6WH LOADOUT	05/01/23	Gross Alpha/Beta	Gross Beta	2.48E-14	1.46E-14	2.13E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265760	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Alpha	4.60E-17	3.94E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265760	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Beta	1.68E-14	1.38E-14	2.16E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265761	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Alpha	2.19E-15	4.85E-15	9.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265761	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Beta	1.62E-14	1.33E-14	2.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265762	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Alpha	3.26E-15	5.30E-15	9.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265762	P6WH LOADOUT	05/02/23	Gross Alpha/Beta	Gross Beta	1.68E-14	1.34E-14	2.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265764	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Alpha	1.17E-15	4.57E-15	9.53E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265764	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Beta	7.68E-15	1.29E-14	2.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265765	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Alpha	1.17E-15	4.55E-15	9.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265765	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Beta	2.54E-14	1.48E-14	2.17E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265766	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Alpha	4.90E-17	4.14E-15	9.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265766	P6WH LOADOUT	05/03/23	Gross Alpha/Beta	Gross Beta	5.58E-16	1.26E-14	2.27E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265768	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Alpha	3.48E-15	5.67E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265768	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Beta	3.11E-14	1.57E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265769	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Alpha	4.52E-15	5.98E-15	9.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265769	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Beta	2.12E-14	1.44E-14	2.17E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265770	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Alpha	4.38E-15	5.80E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265770	P6WH LOADOUT	05/04/23	Gross Alpha/Beta	Gross Beta	2.53E-14	1.44E-14	2.10E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265771	P6WH LOADOUT	05/08/23	Gross Alpha/Beta	Gross Alpha	3.65E-15	3.28E-15	4.77E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265771	P6WH LOADOUT	05/08/23	Gross Alpha/Beta	Gross Beta	2.20E-14	8.52E-15	1.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265773	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Alpha	1.43E-16	4.05E-15	9.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265773	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Beta	1.63E-14	1.12E-14	1.65E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265774 P	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Alpha	1.57E-16	4.42E-15	1.05E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265774 P	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Beta	4.84E-15	1.04E-14	1.80E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265775 P	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Alpha	2.67E-15	5.70E-15	1.06E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265775 P	P6WH LOADOUT	05/09/23	Gross Alpha/Beta	Gross Beta	2.02E-14	1.26E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265778 P	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Alpha	4.63E-15	5.99E-15	9.42E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265778 P	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Beta	2.21E-14	1.18E-14	1.61E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265779 P	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Alpha	1.54E-16	4.34E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265779 F	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Beta	2.42E-14	1.29E-14	1.77E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265780 P	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Alpha	-2.29E-15	2.60E-15	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265780 P	P6WH LOADOUT	05/10/23	Gross Alpha/Beta	Gross Beta	2.41E-14	1.29E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265783 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Alpha	1.31E-15	4.71E-15	9.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265783 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Beta	2.85E-14	1.29E-14	1.67E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265784 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Alpha	-3.52E-15	8.88E-16	1.03E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265784 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Beta	2.11E-14	1.25E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265785 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Alpha	9.05E-15	8.11E-15	1.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265785 P	P6WH LOADOUT	05/11/23	Gross Alpha/Beta	Gross Beta	3.36E-14	1.44E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265788 P	P6WH LOADOUT	05/15/23	Gross Alpha/Beta	Gross Alpha	2.40E-15	5.12E-15	9.50E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265788 P	P6WH LOADOUT	05/15/23	Gross Alpha/Beta	Gross Beta	2.44E-14	1.21E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265789 P	P6WH LOADOUT	05/15/23	Gross Alpha/Beta	Gross Alpha	9.51E-15	7.84E-15	9.83E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265789 P	P6WH LOADOUT	05/15/23	Gross Alpha/Beta	Gross Beta	3.59E-14	1.39E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265792 P	P6WH LOADOUT	05/16/23	Gross Alpha/Beta	Gross Alpha	-9.85E-16	3.28E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265792 P	P6WH LOADOUT	05/16/23	Gross Alpha/Beta	Gross Beta	2.91E-14	1.27E-14	1.62E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265793 P	P6WH LOADOUT	05/16/23	Gross Alpha/Beta	Gross Alpha	4.93E-15	6.40E-15	1.01E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/16/23	Gross Alpha/Beta	Gross Beta	2.72E-14	1.30E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265796 P	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Alpha	3.96E-15	5.17E-15	8.04E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Beta	3.30E-14	1.54E-14	2.15E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265797 P	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Alpha	3.01E-15	4.87E-15	8.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265797 P	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Beta	4.50E-14	1.69E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Alpha	-1.30E-15	2.25E-15	8.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/17/23	Gross Alpha/Beta	Gross Beta	3.06E-14	1.55E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Alpha	2.05E-15	4.63E-15	8.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Beta	2.24E-14	1.55E-14	2.35E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Alpha	2.96E-15	4.78E-15	8.15E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
<u></u>	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Beta	2.07E-14	1.43E-14	2.18E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Alpha	8.31E-16	3.69E-15	8.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/18/23	Gross Alpha/Beta	Gross Beta	3.12E-14	1.53E-14	2.16E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Alpha	1.57E-14	8.83E-15	8.15E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Beta	7.51E-14	1.95E-14	2.18E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Alpha	2.87E-15	4.64E-15	7.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Beta	2.72E-14	1.46E-14	2.11E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Alpha	3.34E-15	5.40E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/22/23	Gross Alpha/Beta	Gross Beta	3.32E-14	1.72E-14	2.46E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Alpha	6.24E-15	6.15E-15	8.29E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Beta	3.88E-14	1.63E-14	2.22E-14	μCi/mL	=	- ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Alpha	7.99E-16	3.55E-15	7.77E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Beta	3.58E-14	1.53E-14	2.08E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Alpha	7.96E-15	7.09E-15	9.02E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

STD05708 POWIT LOADOLT 6952-32 Gross Applies Gross Cepts STD05708 Powit CADOLT Gross Applies Gross Applies Gross Applies STD05708 Powit CADOLT Gross Applies Gross Applies STD05708 Powit CADOLT Gross Applies Gross	Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
STOPONS PAWII LOADOUT 655427 Green Apha-Bree Green Select 1,375-14 1,487-15 1,275-15 1,475-1	SLD267080	P6WH LOADOUT	05/23/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.68E-14	2.41E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
S1927975 PSWII LOADOUT 052423 Gross Applane Gross Res 4311514 Local Lo	SLD267082	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Alpha	1.56E-14	9.87E-15	9.86E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SPANTRIST PAWII LOADOUT 052-23 Gross Aphabetas Gross Agha -1,344-15 -1,341-15 -1,071-15 -1,0	SLD267082	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Beta	3.37E-14	1.48E-14	1.90E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD27084 POWH LOADOUT 052423 Goos AlphaBeta Goos Beta 4378-14 1.578-14 1	SLD267083	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Alpha	6.61E-15	6.37E-15	8.43E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SD25984 PWH LOADOUT 052422 Gross AlphaBeta Gross Beta 4.47E/4 1.5E/-14 1	SLD267083	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Beta	4.31E-14	1.43E-14	1.62E-14	μCi/mL	II		Plant 6WH LOADOUT (General Area)-Perimeter Air
SD227086 POWILLOADOUT 0525223 Gross Appliedes Gross Alpha Construction Constructio	SLD267084	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Alpha	-1.34E-15	2.58E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SD207696 POWH LOADOUT 0525223 Gross AphaBete Gross Bets Apha 23E1-14 LSEE-14 LSCARL	SLD267084	P6WH LOADOUT	05/24/23	Gross Alpha/Beta	Gross Beta	4.47E-14	1.55E-14	1.80E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SUD20987 POWILLOADOUT 052523 Gross AphanBets Gross Alphan 2.111-15 4.441-15 8.791-15 1.001-16 Plant OWILLOADOUT (General Asep-Permeter Air SUD20988 POWILLOADOUT 052523 Gross AphanBets Gross Alphan 2.32E-15 4.91E-15 9.16E-15 p.Cim.L J TO6 Plant OWILLOADOUT (General Asep-Permeter Air SUD20988 POWILLOADOUT 052523 Gross AlphanBets Gross Alphan 2.32E-15 4.91E-15 9.16E-15 p.Cim.L J TO4, 720 Plant OWILLOADOUT (General Asep-Permeter Air SUD20989 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 1.12E-15 4.28E-15 9.20E-15 p.Cim.L J TO4, 720 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053023 Gross AlphanBets Gross Alphan 4.04E-15 5.38E-15 p.Cim.L J TO4 Plant OWILLOADOUT (General Asep-Permeter Air SUD20999 PoWILLOADOUT 053123 Gross Alphan 4.04E-15 4.	SLD267086	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Alpha	6.16E-15	6.68E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
St. St.	SLD267086	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Beta	2.93E-14	1.38E-14	1.82E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
S.1025/088 POWH LOADOUT 05/25/23 Gross Alpha flets Gross Alpha flets Gross Beta 2.28E-15 4.9EE-15 4.9EE	SLD267087	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Alpha	2.11E-15	4.44E-15	8.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
S.D.25798 POWII LOADOUT 05/35/23 Gross AlphaPlets Gross Bels 2.24E-14 1.26E-14 1.57E-14 1.57	SLD267087	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Beta	3.64E-14	1.34E-14	1.60E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SID26799 PSWH LOADOUT 053023 Gross AlphaPelas Gross Alpha 1.18F-1.5 4.28F-1.5 0.20F-1.5 0.20F-1.	SLD267088	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Alpha	2.32E-15	4.91E-15	9.16E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD26789 P6WH LOADOUT 053023 Gross Alpha Beta Gross Alpha Be	SLD267088	P6WH LOADOUT	05/25/23	Gross Alpha/Beta	Gross Beta	2.24E-14	1.26E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267896 P6WH LOADOUT 053022 Gross Alpha@eta Gross Alpha 4.6HC-15 S68C-15 S65C-15 S65C-	SLD267090	P6WH LOADOUT	05/30/23	Gross Alpha/Beta	Gross Alpha	1.12E-15	4.28E-15	9.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD26709 P6WILOADOUT 053023 Gross Alpha/Perimeter Air	SLD267090	P6WH LOADOUT	05/30/23		Gross Beta	3.89E-14	1.47E-14	1.77E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD26709 P6WH LOADOUT 053023 Gross AlphaBeta Gross Staph 2.51E-15 5.29E-15 9.27E-10 QC-10 T06 Plant GWH LOADOUT General Area)-Perimeter Air SLD267092 P6WH LOADOUT 053123 Gross AlphaBeta Gross Alpha 5.5E-15 5.29E-15 9.20E-14 p. Crimt. U T06 Plant GWH LOADOUT General Area)-Perimeter Air SLD267095 P6WH LOADOUT 053123 Gross AlphaBeta Gross Alpha 6.98E-15 Crimt. 4.50E-14 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267096 P6WH LOADOUT 053123 Gross AlphaBeta Gross Alpha 5.65E-15 6.4E-15 8.69E-15 p. Crimt. U T06 Plant GWH LOADOUT General Area)-Perimeter Air SLD267096 P6WH LOADOUT 053123 Gross AlphaBeta Gross Alpha 5.65E-15 6.4E-15 8.69E-15 p. Crimt. U T06 Plant GWH LOADOUT General Area)-Perimeter Air SLD267097 P6WH LOADOUT 053123 Gross AlphaBeta Gross Beta 4.65E-14 1.57E-14 1.57E-14 p. Crimt. U T06 Plant GWH LOADOUT General Area)-Perimeter Air SLD267097 P6WH LOADOUT 053123 Gross AlphaBeta Gross Beta 3.5E-14 9.0E-15 9.73E-15 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267099 P6WH LOADOUT 053123 Gross AlphaBeta Gross Beta 3.5E-14 9.0E-15 9.73E-15 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267099 P6WH LOADOUT 050123 Gross AlphaBeta Gross Beta 1.93E-14 1.67E-14 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267099 P6WH LOADOUT 050123 Gross AlphaBeta Gross Beta 1.93E-15 6.20E-15 7.77E-15 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267100 P6WH LOADOUT 050123 Gross AlphaBeta Gross Beta 1.93E-15 5.75E-15 p. Crimt. U T04,705 Plant GWH LOADOUT General Area)-Perimeter Air SLD267101 P6WH LOADOUT 050123 Gross AlphaBeta Gross Alpha & 2.24E-15 5.75E-15 p. Crimt. U T06 Plant GWH LOADOUT General Area)-Perimeter Air S	SLD267091	P6WH LOADOUT	05/30/23	Gross Alpha/Beta	Gross Alpha	4.64E-15	5.86E-15	8.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267092 P6WH LOADOUT 053/023 Gross Alpha/Beta Gross Alpha 2.51E.15 1.53E.14 1.53E.14 1.98E.14	SLD267091	P6WH LOADOUT	05/30/23	1	•	3.93E-14	1.45E-14	1.73E-14	μCi/mL	=		, , , , ,
SLD267092 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 3.77E-14 1.58E-14 1.70E-14 pC/imL T04, T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267095 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 3.82E-14 1.42E-14 1.71E-14 pC/imL T04, T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267096 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 4.68E-14 1.57E-14 pC/imL T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267097 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 4.68E-14 1.57E-14 pC/imL T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267097 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 4.68E-14 1.67E-14 pC/imL T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267097 P6WII LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 5.18E-14 1.67E-14 pC/imL T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267099 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 5.18E-14 1.67E-14 pC/imL T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267100 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 5.18E-14 1.67E-14 pC/imL U T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267100 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.25E-15 5.17E-15 7.05E-15 pC/imL U T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267100 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.25E-15 5.17E-15 7.05E-15 pC/imL U T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267101 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 2.23E-14 4.57E-14 2.23E-14 pC/imL U T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267101 P6WII LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 2.23E-14 4.57E-14 2.23E-14 pC/imL U T04 T05 Plant 6WII LOADOUT (General Area)-Perimeter Air SLD267101										UJ	T06	, ,
SED267096 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha Sept. S. 387-14 1.427-14 1.717-14 1.027m1. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267096 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha 5.65E-15 6.14E-15 8.69E-15 0.027m1. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267096 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha 5.65E-15 6.14E-15 8.69E-15 0.027m1. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267097 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha 1.28E-14 9.01E-15 9.73E-15 0.027m1. U. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267097 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha 1.28E-14 9.01E-15 9.73E-15 0.027m1. U. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 POWH LOADOUT 05/31/23 Gross AlphaBeta Gross Alpha 1.28E-15 6.02E-15 0.027m1. U. T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 POWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 1.93E-14 0.027m1. U. T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 POWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 1.93E-14 0.027m1. U. T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 PoWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 1.93E-14 1.56E-14 2.32E-14 0.027m1. U. T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 PoWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 2.49E-14 1.56E-14 2.32E-14 0.027m1. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 PoWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 2.49E-14 1.56E-14 2.27E-14 0.027m1. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 PoWH LOADOUT 06/01/23 Gross AlphaBeta Gross Beta 2.49E-14 1.47E-14 0.027m1. U. T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 PoWH LOA				•	•				•			,
SID267096 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Alpha S.65E-15 6.14E-15 8.69E-15 µCyml. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267096 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Alpha S.65E-15 1.59E-14 1.67E-14 µCyml. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267097 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Alpha 1.28E-14 9.01E-15 9.73E-15 µCyml. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267097 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Alpha 1.28E-14 9.01E-15 9.73E-15 µCyml. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 6.23E-15 6.20E-15 7.71E-15 µCyml. UI T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 1.28E-14 1.28E-14 µCyml. UI T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 1.28E-15 5.17E-15 7.05E-15 µCyml. UI T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.33E-14 µCyml. UI T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.33E-14 µCyml. UI T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.23E-15 3.98E-15 6.98E-15 µCyml. UI T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.23E-14 4.62F-14 µCyml. UI T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.25E-15 4.85E-15 4.65E-14 µCyml. UI T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha	SLD267095			•					•	UJ	T04, T05	, ,
SLD267096 P6WH LOADOUT 0531/23 Gross Alpha/Beta Gross Beta 4.65E-14 1.50E-14 1.67E-14 1.67E-					•						,	. /
SLD267097 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Beta 4.65E-14 1.50E-14 1.67E-14 1.67E										UJ	T06	, , ,
SLD267097 P6WH LOADOUT 0531/23 Gross Alpha/Beta Gross Alpha 1.28E-14 9.01E-15 9.73E-15 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 6.23E-15 6.20E-15 7.71E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 1.93E-14 1.62E-14 2.53E-14 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 1.93E-14 1.62E-14 2.53E-14 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.56E-14 2.32E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.53E-14 2.32E-15 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 2.32E-15 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 2.32E-15 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.47E-14 2.42E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.24E-14 1.47E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.47E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.39E-14 2.42E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOAD			+	*								, ,
SLD267097 P6WH LOADOUT 05/31/23 Gross Alpha/Beta Gross Beta 5.13E-14 1.67E-14 1.87E-14 pC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267099 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.77E-15 pC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.77E-15 pC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.77E-15 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.23E-15 3.88E-15 6.88E-15 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.17E-15 4.74E-15 4.64E-15 pC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Al				•						J	T04, T20	
SLD267099 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 6.23E-15 6.20E-15 7.71E-15 μC/imL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.17E-15 7.05E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.17E-15 7.05E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.25E-15 3.98E-15 6.98E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 0601/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.24F-14 1.47E-14 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.24F-14 1.47E-14 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.47E-15 4.47E-15 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.48E-14 μC/imL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 0605/23 Gross Alpha/Beta Gross Alpha 4.17E-15 4.47E-15 4.47E-1				•	•					=	,	` /
SLD267109 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 1.93E-14 1.62E-14 2.53E-14 µC/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.55E-15 7.75E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.55E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 2.29E-14 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-15 4.85E-15 6.61E-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.47E-14 2.17E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.21E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.28E-14 µC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6W				•						UJ	T04, T05	` /
SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.55E-15 5.17E-15 7.05E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.32E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.32E-15 A.38E-15 6.98E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 2.29E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 4.47E-14 2.17E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 4.47E-15 4.47				•	•							· · · · · · · · · · · · · · · · · · ·
SLD267100 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.56E-14 2.32E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.49E-14 1.53E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.47E-15 4.74E-15 6.46E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.49E-14 2.09E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.49E-14 2.09E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.49E-14 2.09E-14 μCi/mL J T04, T20 P				•					•			
SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 2.23E-15 3.98E-15 6.98E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.16E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.16E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.17E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 ∏Ci/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.23E-14 1.40E-14 2.42E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.23E-14 1.40E-14 2.33E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.59E-15 5.49E-15 5.49E-15 pCi/mL UJ T04, T20 Plant 6WH LOADOUT (General				•	•					J		,
SLD267101 P6WH LOADOUT 06/01/23 Gross Alpha/Beta Gross Beta 2.40E-14 1.53E-14 2.29E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 μCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta 4.17E-15 4.74E-15 6.61E-15 μCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 μCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 1.43E-14 2.12E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gro				•					•	UJ	·	` /
SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.27E-15 4.85E-15 6.61E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-15 4.7E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.17E-15 4.74E-15 4.66E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 7.36E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.59E-14 2.42E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 6.93E-15 6.35E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.40E-14 2.09E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.26E-15 6.98E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.26E-15 6.98E-15 µCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 1.57E-14 2.33E-14 µCi/mL UJ T				*	•					J		
SLD267102 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.47E-14 1.47E-14 2.17E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.17E-15 4.74E-15 6.46E-15 μC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 2.29E-14 1.43E-14 2.12E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 7.36E-15 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.03E-14 1.59E-14 2.42E-14 μC/mL U T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-1			+	*						UJ		, , , , , , , , , , , , , , , , , , , ,
SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 4.17E-15 4.74E-15 6.46E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 7.36E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μCi/mL U T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.40E-14 2.09E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.0										J		, ,
SLD267103 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.29E-14 1.43E-14 2.12E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μC/mL J T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.49E-14 2.09E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.49E-14 2.09E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.03E-14 7.36E-15 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 7.26E-15 6.98E-15 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Pe				•					•	UJ	·	, ,
SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Alpha 1.20E-14 8.03E-15 7.36E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μCi/mL UJ T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 6.93E-15 6.35E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.36E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.36E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.02E-14 7.26E-15				•	•					_		, ,
SLD267104 P6WH LOADOUT 06/05/23 Gross Alpha/Beta Gross Beta 2.22E-14 1.59E-14 2.42E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 6.93E-15 6.35E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.40E-14 2.09E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.36E-15 7.08E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td>, ,</td></t<>				•						J		, ,
SLD267107 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 6.93E-15 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267107 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.40E-14 2.09E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-15 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-15 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT O6/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT O6/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-15 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267111 P6WH LOADOUT O6/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-15 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (G				•	•					UJ	·	, ,
SLD267107 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.25E-14 1.40E-14 2.09E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.36E-15 7.08E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.02E-14 7.26E-15 6.98E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-15 6.98E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td>, ,</td></td<>				•						J		, ,
SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.03E-14 7.36E-15 7.08E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL J T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 5.97E-14				•	•					J		. /
SLD267108 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 2.58E-14 1.57E-14 2.33E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-15 6.98E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6				*						J		1
SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Alpha 1.02E-14 7.26E-15 6.98E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-15 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267111 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				•	•					J		,
SLD267109 P6WH LOADOUT 06/06/23 Gross Alpha/Beta Gross Beta 3.84E-14 1.68E-14 2.29E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 6.15E-15 5.49E-15 6.33E-15 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267111 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				1								
SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267111 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				1	•					=		,
SLD267110 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Beta 5.97E-14 1.76E-14 2.08E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD267111 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				•							T04, T05	, ,
SLD267111 P6WH LOADOUT 06/07/23 Gross Alpha/Beta Gross Alpha 1.02E-14 6.87E-15 6.30E-15 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				•	•				•		10., 100	. /
				•					•	J	T04 T20	, ,
NUI/N/III = PNWH I (IAUIIII = I UNIIII// S = Unit CANDO Anno Area Latrocc Retains $I = I = I = I = I = I = I = I = I = I $	SLD267111	P6WH LOADOUT	06/07/23	Gross Alpha/Beta	Gross Beta	7.05E-14	1.86E-14	2.07E-14	μCi/mL	=	107, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD267112	P6WH LOADOUT	06/07/23	Gross Alpha/Beta	Gross Alpha	6.88E-15	6.15E-15	7.08E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267112	P6WH LOADOUT	06/07/23	Gross Alpha/Beta	Gross Beta	5.58E-14	1.87E-14	2.33E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267114	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Alpha	1.04E-14	6.99E-15	6.41E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267114	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Beta	2.73E-14	1.46E-14	2.11E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267115	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Alpha	6.12E-15	5.47E-15	6.30E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267115	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Beta	2.03E-14	1.37E-14	2.07E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267116	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Alpha	1.57E-15	4.12E-15	8.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267116	P6WH LOADOUT	06/08/23	Gross Alpha/Beta	Gross Beta	9.26E-16	8.89E-15	1.63E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267118	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Alpha	1.05E-14	7.50E-15	7.89E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267118	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Beta	1.39E-14	1.04E-14	1.56E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267119	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Alpha	3.77E-16	3.25E-15	7.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267119	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Beta	1.26E-14	1.03E-14	1.57E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267120	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Alpha	5.12E-15	5.83E-15	8.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267120	P6WH LOADOUT	06/12/23	Gross Alpha/Beta	Gross Beta	1.75E-14	1.14E-14	1.64E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267123	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Alpha	5.16E-15	5.88E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267123	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Beta	2.35E-14	1.22E-14	1.65E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267124	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Alpha	-7.70E-16	2.39E-15	8.13E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267124	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Beta	1.36E-14	1.06E-14	1.60E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267125	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Alpha	-8.67E-16	2.69E-15	9.16E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267125	P6WH LOADOUT	06/13/23	Gross Alpha/Beta	Gross Beta	2.64E-14	1.35E-14	1.81E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267126	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Alpha	1.62E-15	4.25E-15	8.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267126	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Beta	2.24E-14	1.23E-14	1.68E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267127	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Alpha	1.53E-15	4.03E-15	8.10E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267127	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Beta	3.32E-14	1.31E-14	1.60E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267128	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Alpha	5.05E-15	5.75E-15	8.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267128	P6WH LOADOUT	06/14/23	Gross Alpha/Beta	Gross Beta	1.73E-14	1.12E-14	1.62E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267130	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Alpha	-7.83E-16	2.43E-15	8.28E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267130	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.32E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267131	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Alpha	2.73E-15	4.73E-15	8.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267131	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Beta	3.59E-14	1.36E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267132	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Alpha	6.62E-15	6.62E-15	8.74E-15	μCi/mL	U		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267132	P6WH LOADOUT	06/15/23	Gross Alpha/Beta	Gross Beta	3.73E-14	1.44E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267135	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Alpha	9.82E-15	7.63E-15	8.61E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267135	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Beta	3.10E-14	1.34E-14	1.70E-14	μCi/mL	=	·	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267136	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Alpha	4.86E-15	5.71E-15	8.32E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267136	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Beta	1.86E-14	1.15E-14	1.64E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267137	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Alpha	9.15E-15	7.68E-15	9.14E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267137	P6WH LOADOUT	06/19/23	Gross Alpha/Beta	Gross Beta	2.90E-14	1.37E-14	1.80E-14	μCi/mL	=	,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267139	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Alpha	1.08E-14	7.87E-15	8.46E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267139	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Beta	4.12E-14	1.44E-14	1.67E-14	μCi/mL	=	, -	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267140	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Alpha	3.67E-15	5.17E-15	8.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267140	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Beta	3.24E-14	1.32E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267141	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Alpha	7.74E-15	7.11E-15	8.97E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267141	P6WH LOADOUT	06/20/23	Gross Alpha/Beta	Gross Beta	4.60E-14	1.56E-14	1.77E-14	μCi/mL	=	- ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267143	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Alpha	2.36E-16	3.26E-15	8.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267143	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Beta	1.96E-14	1.14E-14	1.61E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267144	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Alpha	4.80E-15	5.63E-15	8.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD267144	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Beta	2.40E-14	1.21E-14	1.62E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267145	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Alpha	2.54E-16	3.51E-15	8.77E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267145	P6WH LOADOUT	06/21/23	Gross Alpha/Beta	Gross Beta	3.01E-14	1.35E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267147	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Alpha	8.56E-15	6.65E-15	7.51E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267147	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Beta	3.08E-14	1.21E-14	1.48E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267148	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Alpha	4.76E-15	5.59E-15	8.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267148	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Beta	3.20E-14	1.30E-14	1.61E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267149	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Alpha	3.75E-15	5.28E-15	8.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267149	P6WH LOADOUT	06/22/23	Gross Alpha/Beta	Gross Beta	3.60E-14	1.38E-14	1.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267151	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Alpha	9.37E-16	3.76E-15	8.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267151	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Beta	3.02E-14	1.48E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267152	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Alpha	-1.35E-16	3.12E-15	8.21E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267152	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Beta	1.54E-14	1.33E-14	2.08E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267153	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Alpha	6.79E-15	6.59E-15	8.78E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267153	P6WH LOADOUT	06/26/23	Gross Alpha/Beta	Gross Beta	2.52E-14	1.52E-14	2.23E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267155	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Alpha	5.36E-15	5.87E-15	8.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267155	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Beta	2.54E-14	1.46E-14	2.12E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267156	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Alpha	3.98E-15	5.07E-15	7.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267156	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Beta	2.44E-14	1.37E-14	1.98E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267157	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Alpha	2.12E-15	4.57E-15	8.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267157	P6WH LOADOUT	06/27/23	Gross Alpha/Beta	Gross Beta	2.83E-14	1.52E-14	2.18E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267159	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Alpha	1.51E-14	8.81E-15	8.28E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267159	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Beta	3.83E-14	1.58E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267160	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Alpha	1.99E-14	9.78E-15	8.00E-15	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267160	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Beta	5.04E-14	1.66E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267161	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Alpha	1.26E-14	7.99E-15	8.03E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267161	P6WH LOADOUT	06/28/23	Gross Alpha/Beta	Gross Beta	3.38E-14	1.50E-14	2.04E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267163	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Alpha	9.62E-16	3.86E-15	8.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267163	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Beta	3.87E-14	1.59E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267164	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Alpha	9.26E-15	6.98E-15	7.93E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267164	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Beta	3.14E-14	1.46E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267165	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Alpha	6.52E-15	6.33E-15	8.43E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267165	P6WH LOADOUT	06/29/23	Gross Alpha/Beta	Gross Beta	3.34E-14	1.55E-14	2.14E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267166	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Alpha	1.16E-14	7.76E-15	8.45E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267166	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Beta	3.24E-14	1.46E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267167	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Alpha	2.38E-15	4.70E-15	8.55E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267167	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Beta	4.47E-14	1.60E-14	2.02E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267168	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Alpha	4.82E-15	6.01E-15	9.25E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267168	P6WH LOADOUT	07/03/23	Gross Alpha/Beta	Gross Beta	3.84E-14	1.63E-14	2.19E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267171	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.69E-15	9.05E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267171	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Beta	3.75E-14	1.59E-14	2.14E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267172	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Alpha	3.11E-16	3.76E-15	8.78E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267172	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Beta	3.57E-14	1.54E-14	2.08E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267173	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Alpha	9.95E-15	8.04E-15	9.88E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267173	P6WH LOADOUT	07/05/23	Gross Alpha/Beta	Gross Beta	3.94E-14	1.72E-14	2.34E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267175	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Alpha	5.57E-15	6.01E-15	8.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267175	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Beta	3.59E-14	1.53E-14	2.05E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD267176	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Alpha	8.84E-15	7.14E-15	8.78E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267176	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Beta	3.30E-14	1.51E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267177	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Alpha	2.64E-15	5.21E-15	9.47E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267177	P6WH LOADOUT	07/06/23	Gross Alpha/Beta	Gross Beta	3.71E-14	1.64E-14	2.24E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267179	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Alpha	4.44E-15	5.53E-15	8.52E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267179	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Beta	4.45E-14	1.59E-14	2.02E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267180	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Alpha	1.49E-14	8.71E-15	8.59E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267180	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Beta	4.95E-14	1.65E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267181	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Alpha	3.75E-15	5.64E-15	9.38E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267181	P6WH LOADOUT	07/10/23	Gross Alpha/Beta	Gross Beta	4.40E-14	1.70E-14	2.22E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267183	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Alpha	1.19E-14	7.99E-15	8.70E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267183	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Beta	5.69E-14	1.74E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267184	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Alpha	1.09E-14	7.70E-15	8.70E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267184	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Beta	4.01E-14	1.57E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267185	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Alpha	8.23E-15	7.21E-15	9.30E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267185	P6WH LOADOUT	07/11/23	Gross Alpha/Beta	Gross Beta	6.08E-14	1.86E-14	2.20E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267187	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Alpha	8.16E-15	7.14E-15	9.21E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267187	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Beta	6.16E-14	1.85E-14	2.18E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267188	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Alpha	8.88E-15	7.17E-15	8.81E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267188	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Beta	3.93E-14	1.58E-14	2.09E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267189	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Alpha	2.55E-15	5.04E-15	9.17E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267189	P6WH LOADOUT	07/12/23	Gross Alpha/Beta	Gross Beta	4.93E-14	1.73E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267191	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Alpha	-3.15E-16	4.94E-15	1.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267191	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Beta	2.22E-14	1.42E-14	2.11E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267192	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Alpha	-3.21E-16	5.02E-15	1.15E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267192	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Beta	1.35E-14	1.34E-14	2.15E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267193	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Alpha	-5.08E-15	2.64E-15	1.23E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267193	P6WH LOADOUT	07/13/23	Gross Alpha/Beta	Gross Beta	2.43E-14	1.55E-14	2.31E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267195	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Alpha	6.06E-15	8.25E-15	1.34E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267195	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Beta	2.64E-14	1.69E-14	2.52E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267196	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Alpha	-2.85E-15	4.47E-15	1.30E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267196	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Beta	3.81E-14	1.76E-14	2.43E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267197	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Alpha	2.06E-15	6.49E-15	1.26E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267197	P6WH LOADOUT	07/17/23	Gross Alpha/Beta	Gross Beta	2.25E-14	1.56E-14	2.36E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267199	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Alpha	1.83E-15	5.76E-15	1.12E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267199	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Beta	2.67E-14	1.45E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267200	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Alpha	2.85E-15	6.04E-15	1.10E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267200	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Beta	3.56E-14	1.53E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267201	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Alpha	-6.67E-15	1.05E-14	3.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267201	P6WH LOADOUT	07/18/23	Gross Alpha/Beta	Gross Beta	2.64E-14	3.45E-14	5.68E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267203	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Alpha	7.39E-16	5.21E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267203	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Beta	1.74E-14	1.33E-14	2.04E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267204	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Alpha	6.30E-15	7.41E-15	1.15E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267204	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Beta	3.39E-14	1.56E-14	2.16E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267205	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Alpha	5.29E-15	7.20E-15	1.17E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267205	P6WH LOADOUT	07/19/23	Gross Alpha/Beta	Gross Beta	3.66E-14	1.61E-14	2.20E-14	μCi/mL	=	2.2	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD267207	P6WH LOADOUT	07/20/23	Gross Alpha/Beta	Gross Alpha	7.42E-16	5.23E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

SLD267208 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Alpha 5.00E-15 6.80E-15 1.11E-14 μCi/mL UJ T06 Planch SLD267208 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Beta 3.39E-14 1.52E-14 2.07E-14 μCi/mL = Planch SLD267209 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Alpha 3.04E-15 6.45E-15 1.17E-14 μCi/mL UJ T06 Planch	lant 6WH LOADOUT (General Area)-Perimeter Air lant 6WH LOADOUT (General Area)-Perimeter Air lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267208 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Beta 3.39E-14 1.52E-14 2.07E-14 μCi/mL = Pla SLD267209 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Alpha 3.04E-15 6.45E-15 1.17E-14 μCi/mL UJ T06 Pla	,
SLD267209 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Alpha 3.04E-15 6.45E-15 1.17E-14 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267209 P6WH LOADOUT 07/20/23 Gross Alpha/Beta Gross Beta 2.52E-14 1.50E-14 2.20E-14 uCi/mL J T04. T20 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
10021	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267211 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Alpha 8.11E-16 5.71E-15 1.19E-14 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267211 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Beta 4.60E-14 1.73E-14 2.24E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267212 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Alpha -1.42E-15 4.52E-15 1.15E-14 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267212 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Beta 4.00E-14 1.62E-14 2.15E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267213 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Alpha 5.49E-15 7.47E-15 1.22E-14 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267213 P6WH LOADOUT 07/24/23 Gross Alpha/Beta Gross Beta 4.69E-14 1.76E-14 2.28E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267215 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Alpha 2.77Ε-15 4.88Ε-15 8.56Ε-15 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267215 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Beta 5.31E-14 1.59E-14 1.68E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267216 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Alpha 1.37E-14 8.83E-15 8.60E-15 μCi/mL J T04, T20 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267216 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Beta 4.75E-14 1.53E-14 1.69E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267217 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Alpha 1.42E-14 9.16E-15 8.93E-15 μCi/mL J T04, T20 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267217 P6WH LOADOUT 07/25/23 Gross Alpha/Beta Gross Beta 3.70E-14 1.45E-14 1.75E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267218 P6WH LOADOUT 07/27/23 Gross Alpha/Beta Gross Alpha 5.79E-15 5.83E-15 7.76E-15 μCi/mL UJ T06 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD267218 P6WH LOADOUT 07/27/23 Gross Alpha/Beta Gross Beta 3.28E-14 1.27E-14 1.52E-14 μCi/mL = Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
SLD268710 P6WH LOADOUT 07/27/23 Gross Alpha/Beta Gross Alpha 9.66E-15 7.43E-15 8.27E-15 μCi/mL J T04, T20 Pla	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air
	lant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268729	P6WH LOADOUT	08/07/23	Gross Alpha/Beta	Gross Alpha	7.30E-15	6.61E-15	8.23E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268729	P6WH LOADOUT	08/07/23	Gross Alpha/Beta	Gross Beta	1.78E-14	1.13E-14	1.61E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268730	P6WH LOADOUT	08/07/23	Gross Alpha/Beta	Gross Alpha	1.55E-15	4.19E-15	8.49E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268730	P6WH LOADOUT	08/07/23	Gross Alpha/Beta	Gross Beta	2.35E-14	1.23E-14	1.66E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268732	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Alpha	4.12E-15	5.75E-15	9.33E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268732	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Beta	4.21E-14	1.60E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268733	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Alpha	1.93E-15	4.77E-15	9.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268733	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Beta	4.52E-14	1.60E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268734	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Alpha	-1.83E-16	3.89E-15	9.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268734	P6WH LOADOUT	08/08/23	Gross Alpha/Beta	Gross Beta	3.12E-14	1.51E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268736	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Alpha	6.11E-15	6.35E-15	9.10E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268736	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Beta	4.70E-14	1.61E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268737	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Alpha	7.48E-15	6.99E-15	9.50E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268737	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Beta	3.73E-14	1.57E-14	2.09E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268738	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Alpha	9.50E-16	4.63E-15	9.89E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268738	P6WH LOADOUT	08/09/23	Gross Alpha/Beta	Gross Beta	4.39E-14	1.68E-14	2.18E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268740	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	7.83E-15	9.33E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268740	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Beta	3.53E-14	1.53E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268741	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Alpha	6.14E-15	6.38E-15	9.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268741	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.47E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268742	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Alpha	6.41E-15	6.66E-15	9.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268742	P6WH LOADOUT	08/10/23	Gross Alpha/Beta	Gross Beta	2.14E-14	1.40E-14	2.10E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268744	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Alpha	-1.22E-15	3.06E-15	9.10E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268744	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Beta	2.24E-14	1.36E-14	2.00E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268745	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Alpha	8.77E-16	4.28E-15	9.14E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268745	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Beta	2.05E-14	1.35E-14	2.01E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268746	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Alpha	3.11E-15	5.45E-15	9.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268746	P6WH LOADOUT	08/14/23	Gross Alpha/Beta	Gross Beta	2.63E-14	1.46E-14	2.10E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268748	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Alpha	5.34E-15	6.31E-15	9.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268748	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Beta	1.66E-14	1.36E-14	2.11E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268749	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Alpha	-1.89E-16	4.02E-15	9.85E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268749	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Beta	1.49E-14	1.37E-14	2.17E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268750	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Alpha	-1.82E-16	3.86E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268750	P6WH LOADOUT	08/15/23	Gross Alpha/Beta	Gross Beta	4.13E-14	1.60E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268752	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	7.83E-15	9.33E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268752	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Beta	3.94E-14	1.57E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268753	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Alpha	9.58E-15	7.59E-15	9.42E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268753	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Beta	3.21E-14	1.50E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268754	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Alpha	1.00E-14	7.94E-15	9.85E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268754	P6WH LOADOUT	08/16/23	Gross Alpha/Beta	Gross Beta	3.22E-14	1.56E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268755	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Alpha	3.27E-16	3.23E-15	7.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268755	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Beta	4.11E-14	1.65E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268756	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Alpha	-1.92E-15	6.16E-16	7.96E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268756	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Beta	3.32E-14	1.57E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268757	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Alpha	1.52E-15	4.13E-15	8.35E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268757	P6WH LOADOUT	08/17/23	Gross Alpha/Beta	Gross Beta	4.68E-14	1.76E-14	2.28E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268760	P6WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Alpha	5.63E-15	5.67E-15	7.54E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

SLD268760 P6V		Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
5L5200700 10	WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Beta	7.87E-14	1.94E-14	2.06E-14	μCi/mL	11		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268761 P6V	WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Alpha	4.43E-15	5.09E-15	7.32E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268761 P6V	WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Beta	6.78E-14	1.81E-14	1.99E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268762 P6V	WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Alpha	5.75E-15	5.80E-15	7.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268762 P6V	WH LOADOUT	08/21/23	Gross Alpha/Beta	Gross Beta	8.19E-14	2.00E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268764 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Alpha	6.78E-15	6.14E-15	7.64E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268764 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Beta	6.27E-14	1.81E-14	2.08E-14	μCi/mL	11		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268765 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Alpha	9.71E-15	6.99E-15	7.41E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268765 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Beta	7.93E-14	1.93E-14	2.02E-14	μCi/mL	11		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268766 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Alpha	1.39E-15	3.76E-15	7.61E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268766 P6V	WH LOADOUT	08/22/23	Gross Alpha/Beta	Gross Beta	6.99E-14	1.87E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268768 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Alpha	1.58E-14	8.64E-15	7.46E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268768 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Beta	9.31E-14	2.04E-14	2.00E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268769 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Alpha	1.29E-14	8.00E-15	7.62E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268769 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Beta	1.17E-13	2.28E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268770 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Alpha	7.84E-15	6.58E-15	7.83E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268770 P6V	WH LOADOUT	08/23/23	Gross Alpha/Beta	Gross Beta	9.36E-14	2.11E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268772 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Alpha	1.09E-14	7.43E-15	7.66E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268772 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Beta	9.15E-14	2.06E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268773 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Alpha	1.55E-14	8.50E-15	7.33E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268773 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Beta	8.57E-14	1.96E-14	1.97E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268774 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Alpha	1.53E-14	8.72E-15	7.76E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268774 P6V	WH LOADOUT	08/24/23	Gross Alpha/Beta	Gross Beta	8.25E-14	1.99E-14	2.08E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Alpha	4.34E-15	5.10E-15	7.43E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268776 P6V	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Beta	3.51E-14	1.49E-14	1.99E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268777 P6V	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Alpha	3.20E-15	4.50E-15	7.18E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268777 P6V	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Beta	1.94E-14	1.29E-14	1.93E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268778 P6V	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Alpha	2.33E-15	4.26E-15	7.59E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268778 P6V	WH LOADOUT	08/28/23	Gross Alpha/Beta	Gross Beta	2.45E-14	1.40E-14	2.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Alpha	2.08E-16	2.87E-15	7.18E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Beta	4.35E-14	1.53E-14	1.93E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Alpha	7.25E-15	6.08E-15	7.24E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Beta	5.40E-14	1.65E-14	1.94E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268782 P6V	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Alpha	2.34E-15	4.28E-15	7.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268782 P6V	WH LOADOUT	08/29/23	Gross Alpha/Beta	Gross Beta	5.69E-14	1.73E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268784 P6V	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Alpha	5.74E-15	5.88E-15	7.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Beta	3.12E-14	1.52E-14	2.13E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Alpha	2.34E-15	4.28E-15	7.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Beta	2.93E-14	1.46E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Alpha	1.12E-14	7.64E-15	7.86E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/30/23	Gross Alpha/Beta	Gross Beta	2.13E-14	1.41E-14	2.11E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Alpha	2.30E-16	3.18E-15	7.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Beta	3.82E-14	1.60E-14	2.13E-14	μCi/mL	=	-	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Alpha	-1.88E-15	5.91E-16	7.56E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Beta	2.77E-14	1.43E-14	2.03E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Alpha	3.60E-15	5.07E-15	8.08E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
	WH LOADOUT	08/31/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.55E-14	2.17E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268792	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Alpha	7.73E-15	6.49E-15	7.72E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268792	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Beta	3.24E-14	1.50E-14	2.07E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268793	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Alpha	2.19E-16	3.02E-15	7.56E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268793	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Beta	1.98E-14	1.35E-14	2.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268794	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Alpha	2.42E-15	4.43E-15	7.90E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268794	P6WH LOADOUT	09/05/23	Gross Alpha/Beta	Gross Beta	1.37E-14	1.33E-14	2.12E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268796	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Alpha	4.47E-15	5.25E-15	7.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268796	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Beta	1.80E-14	1.34E-14	2.06E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268797	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Alpha	1.22E-15	3.54E-15	7.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268797	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Beta	2.03E-14	1.31E-14	1.95E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268798	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Alpha	1.29E-15	3.75E-15	7.69E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268798	P6WH LOADOUT	09/06/23	Gross Alpha/Beta	Gross Beta	2.35E-14	1.41E-14	2.06E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268800	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Alpha	7.80E-15	6.55E-15	7.79E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268800	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Beta	2.79E-14	1.47E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268801	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Alpha	4.40E-15	5.16E-15	7.52E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268801	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Beta	2.43E-14	1.39E-14	2.02E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268802	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Alpha	8.88E-15	6.90E-15	7.79E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268802	P6WH LOADOUT	09/07/23	Gross Alpha/Beta	Gross Beta	1.35E-14	1.31E-14	2.09E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268804	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Alpha	6.61E-15	6.54E-15	9.07E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268804	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Beta	4.94E-14	1.67E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268805	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Alpha	3.29E-15	5.21E-15	8.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268805	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Beta	5.22E-14	1.67E-14	2.01E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268806	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Alpha	7.94E-15	7.11E-15	9.36E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268806	P6WH LOADOUT	09/11/23	Gross Alpha/Beta	Gross Beta	4.32E-14	1.65E-14	2.12E-14	μCi/mL	=	101,100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268807	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Alpha	5.26E-15	1.12E-14	2.08E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268807	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Beta	5.19E-14	3.19E-14	4.71E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268808	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Alpha	6.39E-15	6.32E-15	8.76E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268808	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Beta	2.72E-14	1.40E-14	1.99E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268809	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Alpha	1.11E-14	7.97E-15	9.19E-15	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268809	P6WH LOADOUT	09/12/23	Gross Alpha/Beta	Gross Beta	3.55E-14	1.55E-14	2.09E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268810	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Alpha	4.42E-15	5.72E-15	8.99E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268810	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Beta	4.83E-14	1.65E-14	2.04E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268811	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Alpha	2.23E-15	4.75E-15	8.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268811	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Beta	5.13E-14	1.65E-14	2.00E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268812	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Alpha	9.13E-15	7.53E-15	9.44E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268812 SLD268812	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Beta	5.14E-14	1.74E-14	2.14E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268813	P6WH LOADOUT	09/13/23	Gross Alpha/Beta	Gross Alpha	9.73E-15	7.46E-15	8.95E-15	μCi/mL	_ T	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268813 SLD268813	P6WH LOADOUT	09/14/23	Gross Alpha/Beta	Gross Beta	5.35E-14	1.70E-14	2.03E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
			•					•		T04 T05	
SLD268814 SLD268814	P6WH LOADOUT P6WH LOADOUT	09/14/23 09/14/23	Gross Alpha/Beta	Gross Alpha Gross Beta	8.27E-15 4.01E-14	6.82E-15 1.51E-14	8.55E-15 1.94E-14	μCi/mL μCi/mL	UJ =	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta					•		T04	` /
SLD268815	P6WH LOADOUT	09/14/23	Gross Alpha/Beta	Gross Alpha	2.27E-15	4.83E-15	8.95E-15	μCi/mL	UJ	Т06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD268815	P6WH LOADOUT	09/14/23	Gross Alpha/Beta	Gross Beta	4.88E-14	1.65E-14	2.03E-14	μCi/mL	=	TOC	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268817	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Alpha	1.28E-15	4.63E-15	9.57E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268817	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Beta	5.50E-14	1.79E-14	2.17E-14	μCi/mL	=	T04 T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268818	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Alpha	9.05E-15	7.46E-15	9.36E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268818	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Beta	4.88E-14	1.70E-14	2.12E-14	μCi/mL	=	TDC 6	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268819	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Alpha	3.59E-15	5.70E-15	9.66E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268819	P6WH LOADOUT	09/18/23	Gross Alpha/Beta	Gross Beta	4.31E-14	1.68E-14	2.19E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268821	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Alpha	8.93E-15	7.36E-15	9.23E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268821	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Beta	6.36E-14	1.83E-14	2.09E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268822	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Alpha	3.47E-15	5.49E-15	9.32E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268822	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Beta	4.65E-14	1.67E-14	2.11E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268823	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Alpha	5.92E-15	6.60E-15	9.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268823	P6WH LOADOUT	09/19/23	Gross Alpha/Beta	Gross Beta	5.43E-14	1.80E-14	2.20E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268825	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Alpha	4.18E-15	5.32E-15	7.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268825	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Beta	4.87E-14	1.52E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268826	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Alpha	5.34E-15	5.80E-15	7.95E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268826	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Beta	5.14E-14	1.55E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268827	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Alpha	6.66E-16	3.53E-15	8.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268827	P6WH LOADOUT	09/20/23	Gross Alpha/Beta	Gross Beta	5.37E-14	1.62E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268829	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Alpha	5.16E-15	5.60E-15	7.68E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268829	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Beta	7.11E-14	1.73E-14	1.59E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268830	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Alpha	3.12E-15	4.96E-15	8.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268830	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Beta	5.60E-14	1.65E-14	1.72E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268831	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Alpha	5.31E-15	5.78E-15	7.91E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268831	P6WH LOADOUT	09/21/23	Gross Alpha/Beta	Gross Beta	5.26E-14	1.56E-14	1.64E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268833	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Alpha	1.82E-15	4.13E-15	7.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268833	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Beta	4.15E-14	1.44E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268834	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Alpha	1.76E-15	3.99E-15	7.71E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268834	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Beta	5.89E-14	1.60E-14	1.60E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268835	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Alpha	3.05E-15	4.85E-15	8.12E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268835	P6WH LOADOUT	09/25/23	Gross Alpha/Beta	Gross Beta	7.74E-14	1.85E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268837	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Alpha	4.16E-15	5.30E-15	7.95E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268837	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Beta	6.07E-14	1.65E-14	1.65E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268838	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Alpha	6.51E-15	6.27E-15	7.95E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268838	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Beta	3.42E-14	1.35E-14	1.65E-14	μCi/mL	=	. ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268839	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Alpha	3.08E-15	4.89E-15	8.20E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268839	P6WH LOADOUT	09/26/23	Gross Alpha/Beta	Gross Beta	3.82E-14	1.43E-14	1.70E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268842	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Alpha	6.28E-16	3.33E-15	7.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268842	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Beta	1.18E-14	1.05E-14	1.62E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268843	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Alpha	7.46E-15	6.50E-15	7.71E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268843	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Beta	4.29E-14	1.43E-14	1.60E-14	μCi/mL	=	, , , ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268844	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Alpha	3.91E-15	4.97E-15	7.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268844	P6WH LOADOUT	09/27/23	Gross Alpha/Beta	Gross Beta	3.27E-14	1.28E-14	1.54E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268847	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Alpha	1.32E-14	8.59E-15	8.02E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268847	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Beta	5.79E-14	1.67E-14	1.73E-14	μCi/mL	=	10.,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268848	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Alpha	5.61E-15	5.88E-15	7.77E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268848	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Beta	4.95E-14	1.55E-14	1.68E-14	μCi/mL	=	- 30	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268849	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.83E-15	7.63E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268849	P6WH LOADOUT	09/28/23	Gross Alpha/Beta	Gross Beta	5.15E-14	1.55E-14	1.65E-14	μCi/mL	=	10.,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268851	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Alpha	1.61E-14	9.20E-15	7.67E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268851	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Beta	6.82E-14	1.74E-14	1.65E-14	μCi/mL	=	101,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268852	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Alpha	9.22E-15	7.23E-15	7.80E-15	μCi/mL	ī	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
		10/02/23	•	•				•	=	107, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268852	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Beta	5.56E-14	1.62E-14	1.68E-14	μCi/mL			riani own loadout (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268853	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Alpha	8.79E-15	6.89E-15	7.44E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268853	P6WH LOADOUT	10/02/23	Gross Alpha/Beta	Gross Beta	7.87E-14	1.81E-14	1.61E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268856	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Alpha	8.03E-15	6.82E-15	7.80E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268856	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Beta	6.44E-14	1.71E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268857	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Alpha	6.74E-15	6.29E-15	7.70E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268857	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Beta	6.06E-14	1.66E-14	1.66E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268858	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Alpha	1.47E-14	8.73E-15	7.53E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268858	P6WH LOADOUT	10/03/23	Gross Alpha/Beta	Gross Beta	6.28E-14	1.66E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268860	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Alpha	1.16E-14	8.00E-15	7.80E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268860	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Beta	4.10E-14	1.45E-14	1.68E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268861	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Alpha	6.62E-15	6.18E-15	7.57E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268861	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Beta	3.76E-14	1.38E-14	1.63E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268862	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Alpha	8.25E-15	7.00E-15	8.02E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268862	P6WH LOADOUT	10/04/23	Gross Alpha/Beta	Gross Beta	4.36E-14	1.51E-14	1.73E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268863	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Alpha	6.82E-15	7.15E-15	9.45E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268863	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Beta	2.93E-14	1.51E-14	2.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268864	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Alpha	4.17E-15	6.21E-15	1.00E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268864	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Beta	3.40E-14	1.64E-14	2.17E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268865	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Alpha	7.82E-15	6.64E-15	7.60E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268865	P6WH LOADOUT	10/05/23	Gross Alpha/Beta	Gross Beta	2.72E-14	1.26E-14	1.64E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268866	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Alpha	3.16E-15	4.70E-15	7.60E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268866	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Beta	4.21E-14	1.44E-14	1.64E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268867	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Alpha	1.08E-14	7.41E-15	7.22E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268867	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Beta	4.07E-14	1.38E-14	1.56E-14	μCi/mL	=	101,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268868	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Alpha	9.52E-15	6.97E-15	7.13E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268868	P6WH LOADOUT	10/09/23	Gross Alpha/Beta	Gross Beta	4.55E-14	1.42E-14	1.54E-14	μCi/mL	=	101,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268871	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Alpha	4.01E-15	4.87E-15	7.05E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268871	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.25E-14	1.52E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268872	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Alpha	2.95E-15	4.39E-15	7.10E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268872	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Beta	3.80E-14	1.33E-14	1.53E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268873	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Alpha	7.78E-15	6.61E-15	7.57E-15	μCi/mL	ī	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268873	P6WH LOADOUT	10/10/23	Gross Alpha/Beta	Gross Beta	3.76E-14	1.38E-14	1.63E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268874	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Alpha	1.98E-15	4.06E-15	7.57E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268874	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Beta	5.18E-14	1.55E-14	1.63E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268875	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Alpha	1.07E-14	7.84E-15	8.02E-15	μCi/mL	ī	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268875	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Beta	4.06E-14	1.48E-14	1.73E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268876	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Alpha	4.42E-15	5.37E-15	7.77E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268876	P6WH LOADOUT	10/11/23	Gross Alpha/Beta	Gross Beta	5.68E-14	1.63E-14	1.68E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268877	P6WH LOADOUT	10/11/23	•		1.25E-14	8.15E-15	7.60E-15	•		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268877 SLD268877	P6WH LOADOUT	10/12/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Alpha Gross Beta	4.92E-14	1.52E-14	1.64E-14	μCi/mL μCi/mL		104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268878	P6WH LOADOUT	10/12/23	Gross Alpha/Beta	Gross Alpha	4.92E-14 5.90E-15	6.18E-15	8.17E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268878 SLD268878	P6WH LOADOUT	10/12/23	•	•	5.51E-14	1.66E-14	8.17E-13 1.76E-14	•	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
		10/12/23	Gross Alpha/Beta	Gross Beta				μCi/mL	UJ	T04	, , , , , , , , , , , , , , , , , , , ,
SLD268879	P6WH LOADOUT		Gross Alpha/Beta	Gross Alpha	2.09E-15	4.28E-15	7.98E-15	μCi/mL		T06	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD268879	P6WH LOADOUT	10/12/23	Gross Alpha/Beta	Gross Beta	3.90E-14	1.45E-14	1.72E-14	μCi/mL	=	TOC	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268881	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Alpha	5.81E-15	6.27E-15	9.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268881	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Beta	2.42E-14	1.33E-14	1.91E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268882	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Alpha	9.41E-16	4.67E-15	9.74E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268882	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Beta	3.70E-14	1.51E-14	2.00E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268883	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Alpha	5.91E-15	6.39E-15	9.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268883	P6WH LOADOUT	10/16/23	Gross Alpha/Beta	Gross Beta	3.03E-14	1.41E-14	1.95E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268884	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Alpha	3.97E-15	5.80E-15	9.62E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268884	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Beta	1.92E-14	1.31E-14	1.97E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268885	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Alpha	4.86E-15	6.00E-15	9.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268885	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Beta	4.14E-14	1.51E-14	1.93E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268886	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Alpha	1.34E-14	8.64E-15	9.82E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268886	P6WH LOADOUT	10/17/23	Gross Alpha/Beta	Gross Beta	5.31E-14	1.68E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268887	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Alpha	-1.08E-15	3.55E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268887	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Beta	3.85E-14	1.49E-14	1.94E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268888	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Alpha	4.00E-15	5.85E-15	9.70E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268888	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Beta	6.35E-14	1.76E-14	1.99E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268889	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Alpha	6.76E-15	6.55E-15	9.28E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268889	P6WH LOADOUT	10/18/23	Gross Alpha/Beta	Gross Beta	5.14E-14	1.59E-14	1.90E-14	μCi/mL	=	Í	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268891	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Alpha	2.68E-15	6.94E-15	1.33E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268891	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Beta	3.00E-14	1.84E-14	2.72E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268892	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Alpha	1.11E-14	9.84E-15	1.33E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268892	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Beta	4.18E-14	1.97E-14	2.74E-14	μCi/mL	=	, , , ,	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268893	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Alpha	2.82E-15	7.32E-15	1.40E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268893	P6WH LOADOUT	10/19/23	Gross Alpha/Beta	Gross Beta	3.53E-14	1.98E-14	2.87E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268894	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Alpha	-9.00E-17	4.39E-15	1.02E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268894	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Beta	2.17E-14	1.40E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268895	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Alpha	2.11E-15	5.46E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268895	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Beta	5.43E-14	1.76E-14	2.14E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268896	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Alpha	3.81E-15	5.57E-15	9.24E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268896	P6WH LOADOUT	10/23/23	Gross Alpha/Beta	Gross Beta	2.15E-14	1.29E-14	1.90E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268897	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Alpha	8.68E-15	7.03E-15	8.38E-15	μCi/mL	ı	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268897	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Beta	3.48E-14	1.56E-14	2.13E-14	μCi/mL	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268898	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Alpha	6.27E-15	6.09E-15	8.12E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268898	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Beta	4.26E-14	1.60E-14	2.06E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268899	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Alpha	7.21E-15	6.35E-15	7.98E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268899	P6WH LOADOUT	10/24/23	Gross Alpha/Beta	Gross Beta	5.18E-14	1.67E-14	2.03E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268900	P6WH LOADOUT	10/25/23	Gross Alpha/Beta	Gross Alpha	4.74E-15	5.19E-15	7.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268900	P6WH LOADOUT	10/25/23	Gross Alpha/Beta	Gross Beta	5.30E-14	1.60E-14	1.88E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268901	P6WH LOADOUT	10/25/23	Gross Alpha/Beta	Gross Alpha	5.63E-15	5.46E-15	7.28E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268901 SLD268901	P6WH LOADOUT	10/25/23	Gross Alpha/Beta	Gross Beta	4.24E-14	1.48E-14	1.85E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268901 SLD268902	P6WH LOADOUT	10/25/23	Gross Alpha/Beta	Gross Alpha	6.19E-15	5.45E-15	6.85E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268902 SLD268902	P6WH LOADOUT	10/25/23	•	•	3.42E-14	1.33E-14	1.74E-14	•	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268902 SLD268903	P6WH LOADOUT	10/25/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Beta Gross Alpha	8.45E-15	6.84E-15	8.15E-15	μCi/mL μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268903 SLD268903	P6WH LOADOUT	10/26/23	Gross Alpha/Beta	Gross Alpha Gross Beta	6.43E-13 4.34E-14	1.62E-14	2.07E-14	μCi/mL	J =	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268903 SLD268904	P6WH LOADOUT	10/26/23	•		4.34E-14 6.39E-15	6.20E-15	8.26E-15	·	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Alpha				μCi/mL	υJ		
SLD268904	P6WH LOADOUT	10/26/23	Gross Alpha/Beta	Gross Beta	2.68E-14	1.46E-14	2.10E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD268905	P6WH LOADOUT	10/26/23	Gross Alpha/Beta	Gross Alpha	7.41E-15	6.52E-15	8.19E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268905	P6WH LOADOUT	10/26/23	Gross Alpha/Beta	Gross Beta	3.68E-14	1.55E-14	2.08E-14	μCi/mL	=	T04 T07	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268906	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Alpha	6.17E-15	5.99E-15	7.98E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268906	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Beta	3.98E-14	1.55E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268907	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Alpha	4.16E-15	5.30E-15	8.15E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268907	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Beta	4.55E-14	1.64E-14	2.07E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268908	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Alpha	4.05E-15	5.17E-15	7.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268908	P6WH LOADOUT	10/30/23	Gross Alpha/Beta	Gross Beta	3.64E-14	1.51E-14	2.02E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268909	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Alpha	5.32E-15	5.83E-15	8.30E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268909	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Beta	4.28E-14	1.63E-14	2.11E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268910	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Alpha	3.07E-15	4.82E-15	8.12E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268910	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Beta	5.00E-14	1.67E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268911	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Alpha	3.98E-15	5.08E-15	7.81E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268911	P6WH LOADOUT	10/31/23	Gross Alpha/Beta	Gross Beta	4.49E-14	1.58E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268912	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Alpha	7.34E-15	6.46E-15	8.12E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268912	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Beta	3.51E-14	1.53E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268913	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Alpha	6.17E-15	5.99E-15	7.98E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268913	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Beta	4.98E-14	1.65E-14	2.03E-14	μCi/mL	=	Í	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268914	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Alpha	7.34E-15	6.46E-15	8.12E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268914	P6WH LOADOUT	11/01/23	Gross Alpha/Beta	Gross Beta	4.60E-14	1.63E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268915	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Alpha	2.41E-15	5.04E-15	9.31E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268915	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Beta	4.15E-14	1.64E-14	2.16E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268916	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Alpha	1.05E-14	8.01E-15	9.57E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268916	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Beta	2.66E-14	1.52E-14	2.22E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268917	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Alpha	3.59E-15	5.62E-15	9.48E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268917	P6WH LOADOUT	11/02/23	Gross Alpha/Beta	Gross Beta	4.44E-14	1.70E-14	2.20E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268918	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Alpha	5.65E-15	6.25E-15	9.15E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268918	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Beta	4.35E-14	1.64E-14	2.12E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268919	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Alpha	7.95E-15	7.08E-15	9.27E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268919	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Beta	4.48E-14	1.67E-14	2.15E-14	μCi/mL	=	101,100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268920	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Alpha	9.22E-15	7.56E-15	9.44E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268920	P6WH LOADOUT	11/06/23	Gross Alpha/Beta	Gross Beta	6.21E-14	1.86E-14	2.19E-14	μCi/mL	=	104, 105	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268921	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Alpha	5.81E-15	6.42E-15	9.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268921	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Beta	5.97E-14	1.83E-14	2.18E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268922	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Alpha	8.82E-15	7.23E-15	9.03E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268922	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Beta	5.87E-14	1.78E-14	2.09E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268923	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Alpha	4.60E-15	5.90E-15	9.23E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268923	P6WH LOADOUT	11/07/23	Gross Alpha/Beta	Gross Beta	5.79E-14	1.80E-14	2.14E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268925	P6WH LOADOUT	11/08/23	Gross Alpha/Beta	Gross Alpha	8.49E-15	6.96E-15	8.68E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268925	P6WH LOADOUT	11/08/23	Gross Alpha/Beta	Gross Beta	2.75E-14	1.42E-14	2.01E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268926	P6WH LOADOUT	11/08/23	Gross Alpha/Beta	Gross Alpha	4.39E-15	5.63E-15	8.80E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268926 SLD268926	P6WH LOADOUT	11/08/23	•			1.41E-14	2.04E-14	μCi/mL	I OJ		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268926 SLD268927	P6WH LOADOUT	11/08/23	Gross Alpha/Beta	Gross Alpha	2.51E-14 5.48E-15			•	J TTT	T04, T20 T06	
SLD268927 SLD268927	P6WH LOADOUT	11/08/23	Gross Alpha/Beta	Gross Alpha	5.48E-15 1.79E-14	6.06E-15 1.34E-14	8.87E-15 2.06E-14	μCi/mL μCi/mL	UJ UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
			Gross Alpha/Beta	Gross Beta						T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268928	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Alpha	3.44E-15	5.37E-15	9.07E-15	μCi/mL	UJ		, , ,
SLD268928	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Beta	2.45E-14	1.44E-14	2.10E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD268929	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Alpha	1.11E-14	7.94E-15	9.11E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268929	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Beta	2.05E-14	1.40E-14	2.11E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268930	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Alpha	6.46E-15	6.35E-15	8.76E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268930	P6WH LOADOUT	11/09/23	Gross Alpha/Beta	Gross Beta	2.44E-14	1.40E-14	2.03E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268931	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Alpha	3.56E-15	5.57E-15	9.40E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268931	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Beta	4.54E-14	1.69E-14	2.18E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268932	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Alpha	9.86E-15	7.52E-15	8.99E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268932	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Beta	3.93E-14	1.58E-14	2.08E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268933	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Alpha	4.62E-15	5.93E-15	9.27E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268933	P6WH LOADOUT	11/13/23	Gross Alpha/Beta	Gross Beta	4.48E-14	1.67E-14	2.15E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268934	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Alpha	1.78E-15	3.74E-15	7.03E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268934	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Beta	3.75E-14	1.55E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268935	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Alpha	4.96E-15	5.25E-15	7.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268935	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Beta	5.42E-14	1.71E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268936	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Alpha	8.12E-15	6.40E-15	6.97E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268936	P6WH LOADOUT	11/14/23	Gross Alpha/Beta	Gross Beta	3.79E-14	1.54E-14	2.04E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268938	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Alpha	8.33E-15	6.57E-15	7.16E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268938	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Beta	4.99E-14	1.69E-14	2.09E-14	μCi/mL	=	Í	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268939	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Alpha	1.32E-14	7.90E-15	6.88E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268939	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Beta	5.73E-14	1.72E-14	2.01E-14	μCi/mL	=	Í	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268940	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Alpha	1.44E-14	8.25E-15	6.94E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268940	P6WH LOADOUT	11/15/23	Gross Alpha/Beta	Gross Beta	7.38E-14	1.88E-14	2.03E-14	μCi/mL	=	, i	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268941	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Alpha	1.03E-14	7.11E-15	7.00E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268941	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Beta	5.22E-14	1.69E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268942	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Alpha	9.05E-15	6.66E-15	6.88E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268942	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Beta	4.80E-14	1.63E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268943	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Alpha	2.84E-15	4.29E-15	7.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268943	P6WH LOADOUT	11/16/23	Gross Alpha/Beta	Gross Beta	3.33E-14	1.50E-14	2.05E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268945	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Alpha	9.64E-15	7.09E-15	7.32E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268945	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Beta	3.06E-14	1.52E-14	2.14E-14	μCi/mL	=	10.,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268946	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Alpha	1.13E-14	7.40E-15	6.97E-15	μCi/mL	Ţ	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268946	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Beta	2.85E-14	1.44E-14	2.04E-14	μCi/mL	ı	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268947	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Alpha	1.77E-15	3.72E-15	7.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268947	P6WH LOADOUT	11/20/23	Gross Alpha/Beta	Gross Beta	6.43E-14	1.80E-14	2.05E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268948	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Alpha	1.85E-15	3.87E-15	7.29E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268948	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Beta	9.40E-15	1.29E-14	2.13E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268949	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Alpha	1.77E-15	3.72E-15	7.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268949	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Beta	2.45E-14	1.41E-14	2.05E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268950	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Alpha	3.88E-15	4.77E-15	6.97E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268950	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Beta	3.05E-14	1.46E-14	2.04E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268951	P6WH LOADOUT	11/21/23	Gross Alpha/Beta	Gross Alpha	1.92E-15	4.02E-15	7.57E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268951	P6WH LOADOUT	11/22/23	Gross Alpha/Beta	Gross Beta	4.69E-14	1.73E-14	2.21E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268951 SLD268952	P6WH LOADOUT	11/22/23	Gross Alpha/Beta	Gross Alpha	1.41E-14	8.41E-15	7.32E-15	μCi/mL		T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268952 SLD268952	P6WH LOADOUT	11/22/23	•	•	4.90E-14	1.71E-14	2.14E-14	•	=	104, 120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268952 SLD268953	P6WH LOADOUT	11/22/23	Gross Alpha/Beta Gross Alpha/Beta	Gross Beta Gross Alpha	4.90E-14 5.26E-15	5.57E-15	7.42E-15	μCi/mL μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268953 SLD268953	P6WH LOADOUT	11/22/23	Gross Alpha/Beta	Gross Alpha Gross Beta	3.20E-13 3.10E-14	1.55E-14	2.17E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
	P6WH LOADOUT	11/27/23	•		7.00E-16	3.01E-15	6.91E-15	·	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268954			Gross Alpha/Beta	Gross Alpha				μCi/mL		100	
SLD268954	P6WH LOADOUT	11/27/23	Gross Alpha/Beta	Gross Beta	3.69E-14	1.52E-14	2.02E-14	μCi/mL	=	TOC	Plant 6WH LOADOUT (General Area) Perimeter Air
SLD268955	P6WH LOADOUT	11/27/23	Gross Alpha/Beta	Gross Alpha	2.81E-15	4.25E-15	6.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268955	P6WH LOADOUT	11/27/23	Gross Alpha/Beta	Gross Beta	2.90E-14	1.44E-14	2.03E-14	μCi/mL	=	T04 T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268956	P6WH LOADOUT	11/27/23	Gross Alpha/Beta	Gross Alpha	9.09E-15	6.69E-15	6.91E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268956	P6WH LOADOUT	11/27/23	Gross Alpha/Beta	Gross Beta	2.69E-14	1.42E-14	2.02E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD268957	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	7.31E-15	7.19E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268957	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Beta	3.70E-14	1.57E-14	2.10E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268958	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.08E-15	6.97E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268958	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Beta	2.85E-14	1.44E-14	2.04E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268959	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Alpha	2.84E-15	4.29E-15	7.00E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD268959	P6WH LOADOUT	11/28/23	Gross Alpha/Beta	Gross Beta	4.88E-14	1.65E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272879	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Alpha	1.14E-14	7.50E-15	7.06E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272879	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Beta	4.86E-14	1.66E-14	2.06E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272880	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Alpha	7.91E-15	6.24E-15	6.79E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272880	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Beta	4.54E-14	1.59E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272881	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Alpha	4.92E-15	5.20E-15	6.94E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272881	P6WH LOADOUT	11/29/23	Gross Alpha/Beta	Gross Beta	6.85E-14	1.83E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272882	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Alpha	8.08E-15	6.37E-15	6.94E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272882	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Beta	5.58E-14	1.71E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272883	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Alpha	5.97E-15	5.62E-15	6.94E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272883	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Beta	5.91E-14	1.74E-14	2.03E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272884	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Alpha	8.05E-15	6.34E-15	6.91E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272884	P6WH LOADOUT	11/30/23	Gross Alpha/Beta	Gross Beta	8.01E-14	1.94E-14	2.02E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272885	P6WH LOADOUT	12/04/23	Gross Alpha/Beta	Gross Alpha	1.01E-14	6.99E-15	6.88E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272885	P6WH LOADOUT	12/04/23	Gross Alpha/Beta	Gross Beta	6.46E-14	1.79E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272886	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Alpha	1.01E-14	6.99E-15	6.88E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272886	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Beta	5.73E-14	1.72E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272887	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Alpha	3.78E-15	4.65E-15	6.79E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272887	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Beta	5.00E-14	1.63E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272888	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Alpha	1.74E-15	3.66E-15	6.88E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272888	P6WH LOADOUT	12/05/23	Gross Alpha/Beta	Gross Beta	3.34E-14	1.48E-14	2.01E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272889	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Alpha	9.84E-15	6.81E-15	6.70E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272889	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Beta	7.58E-14	1.86E-14	1.96E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272890	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Alpha	1.09E-14	7.12E-15	6.70E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272890	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Beta	8.55E-14	1.95E-14	1.96E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272891	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Alpha	8.90E-15	6.55E-15	6.76E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272891	P6WH LOADOUT	12/06/23	Gross Alpha/Beta	Gross Beta	1.01E-13	2.10E-14	1.98E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272892	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Alpha	7.00E-15	5.98E-15	6.91E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272892	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Beta	7.62E-14	1.90E-14	2.02E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272893	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Alpha	7.06E-15	6.03E-15	6.97E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272893	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Beta	6.88E-14	1.84E-14	2.04E-14	μCi/mL	=	10.,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272894	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Alpha	7.91E-15	6.24E-15	6.79E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272894	P6WH LOADOUT	12/07/23	Gross Alpha/Beta	Gross Beta	6.63E-14	1.79E-14	1.98E-14	μCi/mL	=	101,120	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272895	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Alpha	5.80E-16	4.36E-15	9.58E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272895	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Beta	3.90E-14	1.56E-14	2.05E-14	μCi/mL	=	100	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272896	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Alpha	2.69E-15	5.24E-15	9.46E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272896	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Beta	2.78E-14	1.43E-14	2.02E-14	μCi/mL	I	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272897	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Alpha	9.11E-15	7.46E-15	9.54E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272897	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Beta	3.48E-14	1.51E-14	2.04E-14	μCi/mL	=	104, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272898	P6WH LOADOUT	12/11/23	Gross Alpha/Beta	Gross Alpha	9.83E-15	8.05E-15	1.03E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272898 SLD272898	P6WH LOADOUT	12/12/23	Gross Alpha/Beta	Gross Beta	3.68E-14	1.62E-14	2.20E-14	μCi/mL	=	107, 103	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272899 SLD272899	P6WH LOADOUT	12/12/23	•		4.90E-15			·	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD2/2899	POWIT LUADUUT	12/12/23	Gross Alpha/Beta	Gross Alpha	4.90E-13	6.18E-15	9.67E-15	μCi/mL	UJ	100	Fiaill 0 w fi LUADUU I (General Area)-Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

SECTION POWER LOADOUT 121223 Gross Aphanthes Gross Agha 2.791.13 3.555.15 3.591.15 3.001.15 Comp. Aphanthes Gross Agha 2.791.13 3.555.15 3.591.15 3.001.15 Comp. Aphanthes Com	Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SIP77900 PGWII LOADDIT 191292 Gross Apha-Bran Gross Belts 4,3001-14 pCroft 7 Plane WII LOADDIT 191293 Gross Apha-Bran Gross Belts 4,3001-14 pCroft 1 pCroft 7 Plane WII LOADDIT 191292 Gross Apha-Bran Gross Belts 4,3001-14 pCroft 1 pCroft 1 Plane WII LOADDIT 191292 Gross Apha-Bran Gross Apha 1901-14 pCroft 1 1 Plane WII LOADDIT 191292 Gross Apha-Bran Gross Apha 1901-14 pCroft 1 Plane WII LOADDIT Gross Apha-Bran Gross Belts 1901-14 pCroft 1 Plane WII LOADDIT 191292 Gross Apha-Bran Gross Belts 1,3001-14 pCroft Proft Pr	SLD272899	P6WH LOADOUT	12/12/23	Gross Alpha/Beta	Gross Beta	5.17E-14	1.70E-14	2.07E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
S1972900	SLD272900	P6WH LOADOUT	12/12/23	Gross Alpha/Beta	Gross Alpha	2.79E-15	5.45E-15	9.84E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SECURITY SECURITY	SLD272900	P6WH LOADOUT	12/12/23	Gross Alpha/Beta	Gross Beta	5.61E-14	1.76E-14	2.10E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SD272903 PNWILOADOUT 1211/23 Gross Aphables Gross Apha SD27290 PNWILOADOUT 1211/23 Gross Aphables Gross Apha SD27290 PNWILOADOUT 1211/23 Gross Aphables Gross Apha SD27290 PNWILOADOUT SD27293 Gross Aphables Gross Aphables Gross Apha SD27290 PNWILOADOUT SD27293 Gross Aphables Gross Apha	SLD272901	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Alpha	-5.56E-16	4.30E-15	1.09E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
S1927290	SLD272901	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Beta	3.42E-14	1.66E-14	2.32E-14	μCi/mL	II		Plant 6WH LOADOUT (General Area)-Perimeter Air
SU1272903 POWILLOADOUT 213123 Gross Appha/bets Gross Alpha 6.25E.15 G. G. G. G. G. G. G. G	SLD272902	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Alpha	1.80E-15	5.29E-15	1.04E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SU272903 PONTILIDADOUT 221423 Gross Aphinables Gross Ben 3-421-14 1391-14 1531-14 1571-1	SLD272902	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Beta	4.69E-14	1.75E-14	2.23E-14	μCi/mL	Ш		Plant 6WH LOADOUT (General Area)-Perimeter Air
SU372994 POWILLOADOUT 214423 Gross AlphaBets Gross AlphaBets Gross AlphaBets Su372905 POWILLOADOUT 214423 Gross AlphaBets Gross AlphaB	SLD272903	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Alpha	6.25E-15	6.10E-15	8.55E-15	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
St. St.	SLD272903	P6WH LOADOUT	12/13/23	Gross Alpha/Beta	Gross Beta	3.42E-14	1.39E-14	1.83E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SU272905 POWH LOADOUT 12/423 Gross Aplantlets Gross Aplantlets Gross Bata 4.511-41	SLD272904	P6WH LOADOUT	12/14/23	Gross Alpha/Beta	Gross Alpha	3.93E-15	5.94E-15	9.93E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SUD272907 POWIT LOADOUT 12/14/23 Gross AlphaPleta Gross Beta 4.51E-14 1.62E-14 1.62	SLD272904	P6WH LOADOUT	12/14/23	Gross Alpha/Beta	Gross Beta	4.67E-14	1.68E-14	2.12E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
S.D.272907 PSWH LOADOUT 12/18/23 Gross Apha-Betta Gross Julia -1.0F.15 2.43F-15 S.72F-15 G. (vint. U) 106 Plant oWH LOADOUT (General Area)-Perimeter Air SLO272908 PSWH LOADOUT 12/18/23 Gross Apha-Betta Gross Julia 2.48E-15 4.61E-15 S.39E-15 G. (vint. U) 106 Plant oWH LOADOUT (General Area)-Perimeter Air SLO272908 PSWH LOADOUT 12/18/23 Gross Apha-Betta Gross Ap	SLD272905	P6WH LOADOUT	12/14/23	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.80E-15	9.58E-15	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272905 P6WH LOADOUT 121823 Gross AlphaBeta Gross Alpha 2.8E-15 2.8E-1	SLD272905	P6WH LOADOUT	12/14/23	Gross Alpha/Beta	Gross Beta	4.51E-14	1.62E-14	2.05E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272905 P6WH LOADOUT 121823 Gross AlphaBeta Gross Alph	SLD272907	P6WH LOADOUT	12/18/23	Gross Alpha/Beta	Gross Alpha	-1.07E-15	2.42E-15	8.57E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272908 P6WH LOADOUT 12/18/23 Gross Alpha/Belu Gross Rela 13/1E-14 1.05E-14 1.59E-14 1.05E-14 1.05E	SLD272907	P6WH LOADOUT	12/18/23		Gross Beta	7.02E-15	9.81E-15	1.63E-14	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272998 P6WH LOADOUT 12/18/23 Gross Alpha Beta Gross Alpha 3,62E 13 Gross Alpha 3,66E 13 Gross Alpha 3,62E 13 Gross Alpha 4,63E 13 Gross Alp	SLD272908	P6WH LOADOUT	12/18/23	Gross Alpha/Beta	Gross Alpha	2.38E-15	4.61E-15	8.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272999 POWH LOADOUT 121823 Gross AlpharBeta Gross Stefa 421E-15 3.6E-15 3.6E-15 4.6E-15 4.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272911 PoWH LOADOUT 121923 Gross AlpharBeta Gross Stefa 4.2E-15 3.6E-15 3.6E-15 4.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272912 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.6E-15 5.2E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272912 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.6E-15 5.4E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272912 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.6E-15 5.4E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272913 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.4E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272913 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.4E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272916 PoWH LOADOUT 121923 Gross AlpharBeta Gross Alpha 4.6E-15 5.2E-15 5.2E-15 0.0C/mL U T06 Plant GWH LOADOUT (General Area)-Perimeter Air SLD272916 PoWH LOADOUT 122023 Gross AlpharBeta Gross Beta 3.10E-14 1.6E-14 1.6E-14	SLD272908	P6WH LOADOUT	12/18/23	*	•	1.31E-14	1.05E-14	1.59E-14	μCi/mL	UJ	T04, T05	, , , ,
SLD27291 P6WII LOADOUT 1219/23 Gross Alpha/Beta Gross Beta 4.21E.15 9.46E.15 5.35E.15 5.35E.									•	UJ		, ,
SLD27911 PoWH LOADOUT 12/19/23 Gross AlphaBeta Gross Alpha 3.66E-15 5.35E-15 R.72E-15 R.72E-				•	•					UJ		, ,
SLD27291 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Balta 3.10E-14 1.32E-14 1.66E-14 µC/mL — Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272912 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Alpha 4.68E-15 5.66E-15 8.42E-15 µC/mL — Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Beta 4.11E-14 1.64E-14 µC/mL — Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Beta 3.61E-15 S.24E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 3.61E-15 S.28E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 3.61E-15 S.28E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 4.64E-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 4.64E-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 4.64E-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD2				•						UJ		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272912 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Alpha/Beta Gross Beta 4.11E-14 1.41E-14 1.60E-14 pC/ml. = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Alpha 1.60E-15 2.41E-15 S.57E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Alpha 1.60E-15 2.41E-15 S.57E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Alpha 1.60E-14 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Alpha 1.60E-15 pC/ml. U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.33E-14 1.63E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.48E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.17E-14 1.66E-14 pC/ml. Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/2023 Gross Alpha/Beta Gross Beta 4.18E-15 6.70E-15 8.50E-15 pC/ml. U T06 Plant 6WH LOADOUT (Gene				*	•							. /
S.D.272912 PSWH I.OADOUT 12/19/23 Gross Alpha/Beta Gross Beta 4.11E-14 1.41E-14 1.60E-15 Grown. = Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272913 PSWH I.OADOUT 12/19/23 Gross Alpha/Beta Gross Beta 4.11E-15 8.53E-15 Grown. Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272916 PSWH I.OADOUT 12/19/23 Gross Alpha/Beta Gross Beta 3.10E-15 5.28E-15 S.G.E-15 Grown. UJ T06 Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272916 PSWH I.OADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 3.61E-15 5.28E-15 S.G.E-15 Grown. UJ T06 Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272917 PSWH I.OADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.42E-15 4.69E-15 S.53E-15 Grown. UJ T06 Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272917 PSWH I.OADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.63E-14 Grown. UJ T06 Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272918 PSWH I.OADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.42E-15 4.69E-15 S.53E-15 Grown. UJ T06 Plant GWH I.OADOUT (General Area)-Perimeter Air SLD272918 PSWH I.OADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.25E-15 S.G.E-15 G.G.E-15 G.G.E-15									•	UJ	T06	· · · · · · · · · · · · · · · · · · ·
SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Alpha -1.06f-15 2.41f-15 8.53f-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 3.0fE-14 1.30fE-14 1.62f-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 3.27fF-14 1.33fF-14 1.33fF-14 1.62fF-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 3.27fF-14 1.33fF-14 1.62fF-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17EF-14 1.43fF-14 1.62fF-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.41fF-15 4.67fF-15 8.50fF-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.41fF-15 4.67fF-15 4.67fF-15 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.41fF-15 4.68fF-16 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25fF-15 6.86fF-16 8.64fF-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.17fF-15 6.70fF-15 8.64fF-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272910 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16fF-14 1.66fF-14 1.64fF-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272910 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43FF-15 8.50FF-15 µC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta			+	*					 			, ,
SLD272913 P6WH LOADOUT 12/19/23 Gross Alpha/Beta Gross Beta 3.10E-14 1.62E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air				•					 	UJ	T06	
SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 3.61E-15 5.28E-15 8.61E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.42E-15 4.69E-15 8.53E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.42E-15 4.69E-15 8.53E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 4.47E-15 4.67E-15 R.50E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.64E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.64E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.64E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272910 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 7.15E-15 6.70E-15 8.64E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.50E-15 8.96E-15 µC/mL UJ T06 Plant 6WH LOAD				•	•					=		` '
SLD272916 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 3.27E-14 1.33E-14 1.63E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.43E-14 1.62E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.61E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27290 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27290 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27290 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27290 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-15 µCi/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27291 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD27292 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 4.43E-15 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 4.43E-15 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD2729				•						UJ	T06	` '
SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.42E-15 4.69E-15 8.53E-15 µC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 7.15E-15 6.70E-15 8.64E-15 µC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.64E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 µC/mL U				•	•				•			`
SLD272917 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 4.17E-14 1.43E-14 1.62E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.41E-15 4.67E-15 8.50E-15 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.64E-15 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.66E-14 1.66E-14 1.64E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 µCi/mL E Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 µCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross				•						UJ	T06	, , , ,
SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Alpha 2.41E-15 4.67E-15 8.50E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.66E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.64E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.66E-14 1.66E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 µCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.66E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.65E-14 µCi/mL UJ				•	•				•			, ,
SLD272918 P6WH LOADOUT 12/20/23 Gross Alpha/Beta Gross Beta 2.74E-14 1.25E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.25E-15 6.86E-16 8.64E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272910 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 7.15E-15 6.70E-15 8.64E-15 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272912 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.13E-14 1.69E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.13E-14 1.69E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/				•						UJ	T06	` /
SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha -2.25E-15 6.86E-16 8.64E-15 μC/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 2.50E-14 1.24E-14 1.64E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 6.66E-14 1.66E-14 1.64E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.64E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 8.96E-15 μC/mL UJ T06			+	•	•				 			
SLD272919 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 2.50E-14 1.24E-14 1.64E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 7.15E-15 6.70E-15 8.64E-15 μCi/mL U T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 μCi/mL U T04 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 8.96E-15 μCi/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15			+	*					i - i	UJ	T06	` /
SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 7.15E-15 6.70E-15 8.64E-15 μC/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.66E-14 1.64E-14 μC/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 μC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.21E-15 8.50E-15 μC/mL U T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μC/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.74E-15 5.47E-15 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>=</td> <td></td> <td>/</td>					1					=		/
SLD272920 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 6.16E-14 1.66E-14 μ.6/E-14 μ.C/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 μCi/mL UJ				•						UJ	T04, T05	/
SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Alpha 3.56E-15 5.21E-15 8.50E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 8.96E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-15 9.20E-15 μCi/mL				•	•				•		, , , ,	,
SLD272921 P6WH LOADOUT 12/21/23 Gross Alpha/Beta Gross Beta 4.43E-14 1.45E-14 1.61E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 8.96E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.74E-15 5.47E-15 8.92E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-17 3.41E-				•						UJ	T06	, ,
SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.76E-15 5.50E-15 8.96E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 µCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.74E-15 5.47E-15 8.92E-15 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 µCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 1.65E-14				1	•							, ,
SLD272923 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.92E-14 1.19E-14 1.70E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.74E-15 5.47E-15 8.92E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-17 3.41E-15 1.69E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-17 3.41E-15 8.68E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62				•							T06	, ,
SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 3.74E-15 5.47E-15 8.92E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-17 3.41E-15 8.68E-15 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 1.40E-15 4.54E-15 9.26E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 3.62E-14				•	•					J		, ,
SLD272924 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.62E-14 1.15E-14 1.69E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 1.40E-15 4.54E-15 9.26E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62E-14 1.59E-14 2.15E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15				*						UJ		` /
SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 9.80E-17 3.41E-15 8.68E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Alpha 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 1.40E-15 4.54E-15 9.26E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62E-14 1.59E-14 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15 8.98E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air				•	•							,
SLD272925 P6WH LOADOUT 12/26/23 Gross Alpha/Beta Gross Beta 1.65E-14 1.13E-14 1.65E-14 μCi/mL UJ T04, T05 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 1.40E-15 4.54E-15 9.26E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62E-14 1.59E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15 8.98E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha				<u> </u>								
SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 1.40E-15 4.54E-15 9.26E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62E-14 1.59E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15 8.98E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha				1	•							,
SLD272927 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 3.62E-14 1.59E-14 2.15E-14 μCi/mL = Plant 6WH LOADOUT (General Area)-Perimeter Air SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15 8.98E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air				•								, ,
SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Alpha 2.71E-16 3.83E-15 8.98E-15 μCi/mL UJ T06 Plant 6WH LOADOUT (General Area)-Perimeter Air				•	•						100	. /
				•							T06	, ,
SLD272928 P6WH LOADOUT 12/27/23 Gross Alpha/Beta Gross Beta 2.68E-14 1.45E-14 2.08E-14 μCi/mL J T04, T20 Plant 6WH LOADOUT (General Area)-Perimeter Air				•	•					I		, ,

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD272929	P6WH LOADOUT	12/27/23	Gross Alpha/Beta	Gross Alpha	4.63E-15	5.82E-15	9.01E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272929	P6WH LOADOUT	12/27/23	Gross Alpha/Beta	Gross Beta	2.35E-14	1.42E-14	2.09E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272930	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Alpha	2.44E-15	4.91E-15	8.98E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272930	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Beta	2.82E-14	1.47E-14	2.08E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272931	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Alpha	1.42E-15	4.60E-15	9.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272931	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Beta	2.16E-14	1.45E-14	2.18E-14	μCi/mL	UJ	T04, T05	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272932	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Alpha	3.69E-15	5.62E-15	9.39E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD272932	P6WH LOADOUT	12/28/23	Gross Alpha/Beta	Gross Beta	3.09E-14	1.55E-14	2.18E-14	μCi/mL	J	T04, T20	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265731	PLANT 1	04/18/23	Gross Alpha/Beta	Gross Alpha	-3.77E-15	1.16E-15	1.47E-14	μCi/mL	UJ	T06	Plant 1 (General Area)-Perimeter Air
SLD265731	PLANT 1	04/18/23	Gross Alpha/Beta	Gross Beta	1.22E-14	2.30E-14	3.89E-14	μCi/mL	UJ	T06	Plant 1 (General Area)-Perimeter Air
SLD265735	PLANT 1	04/19/23	Gross Alpha/Beta	Gross Alpha	1.36E-14	1.07E-14	1.22E-14	μCi/mL	J	T04, T20	Plant 1 (General Area)-Perimeter Air
SLD265735	PLANT 1	04/19/23	Gross Alpha/Beta	Gross Beta	2.18E-14	2.05E-14	3.24E-14	μCi/mL	UJ	T04, T05	Plant 1 (General Area)-Perimeter Air
SLD265739	PLANT 1	04/20/23	Gross Alpha/Beta	Gross Alpha	3.35E-15	1.05E-14	2.18E-14	μCi/mL	UJ	T06	Plant 1 (General Area)-Perimeter Air
SLD265739	PLANT 1	04/20/23	Gross Alpha/Beta	Gross Beta	5.96E-14	3.86E-14	5.76E-14	μCi/mL	J	T04, T20	Plant 1 (General Area)-Perimeter Air
SLD265550	PLANT 2	01/03/23	Gross Alpha/Beta	Gross Alpha	-5.78E-16	3.66E-15	1.01E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265550	PLANT 2	01/03/23	Gross Alpha/Beta	Gross Beta	7.64E-15	1.18E-14	1.97E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265551	PLANT 2	01/04/23	Gross Alpha/Beta	Gross Alpha	6.83E-16	4.44E-15	1.01E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265551	PLANT 2	01/04/23	Gross Alpha/Beta	Gross Beta	5.16E-15	1.14E-14	1.97E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265552	PLANT 2	01/05/23	Gross Alpha/Beta	Gross Alpha	1.88E-15	4.94E-15	9.71E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265552	PLANT 2	01/05/23	Gross Alpha/Beta	Gross Beta	2.97E-14	1.43E-14	1.91E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265553	PLANT 2	01/09/23	Gross Alpha/Beta	Gross Alpha	7.35E-16	4.78E-15	1.08E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265553	PLANT 2	01/09/23	Gross Alpha/Beta	Gross Beta	4.47E-14	1.74E-14	2.12E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265554	PLANT 2	01/10/23	Gross Alpha/Beta	Gross Alpha	4.27E-15	5.97E-15	9.62E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265554	PLANT 2	01/10/23	Gross Alpha/Beta	Gross Beta	6.66E-14	1.84E-14	1.89E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265555	PLANT 2	01/11/23	Gross Alpha/Beta	Gross Alpha	5.59E-15	6.57E-15	9.80E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265555	PLANT 2	01/11/23	Gross Alpha/Beta	Gross Beta	3.81E-14	1.54E-14	1.92E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265556	PLANT 2	01/12/23	Gross Alpha/Beta	Gross Alpha	1.10E-14	8.09E-15	9.21E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265556	PLANT 2	01/12/23	Gross Alpha/Beta	Gross Beta	8.57E-14	1.99E-14	1.81E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265557	PLANT 2	01/17/23	Gross Alpha/Beta	Gross Alpha	5.88E-15	7.50E-15	1.15E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265557	PLANT 2	01/17/23	Gross Alpha/Beta	Gross Beta	5.45E-14	2.25E-14	3.01E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265558	PLANT 2	01/18/23	Gross Alpha/Beta	Gross Alpha	1.06E-14	7.42E-15	1.03E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265558	PLANT 2	01/18/23	Gross Alpha/Beta	Gross Beta	4.53E-14	2.13E-14	3.27E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265559	PLANT 2	01/19/23	Gross Alpha/Beta	Gross Alpha	6.04E-15	5.87E-15	7.81E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265559	PLANT 2	01/19/23	Gross Alpha/Beta	Gross Beta	2.17E-14	1.37E-14	2.04E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265560	PLANT 2	01/23/23	Gross Alpha/Beta	Gross Alpha	1.94E-15	4.18E-15	7.85E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265560	PLANT 2	01/23/23	Gross Alpha/Beta	Gross Beta	5.57E-14	1.72E-14	2.05E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265561	PLANT 2	01/24/23	Gross Alpha/Beta	Gross Alpha	1.94E-14	1.09E-14	9.93E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265561	PLANT 2	01/24/23	Gross Alpha/Beta	Gross Beta	7.30E-14	2.20E-14	2.59E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265574	PLANT 2	01/26/23	Gross Alpha/Beta	Gross Alpha	2.00E-16	4.62E-15	1.17E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265574	PLANT 2	01/26/23	Gross Alpha/Beta	Gross Beta	2.29E-14	1.67E-14	2.49E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265575	PLANT 2	01/31/23	Gross Alpha/Beta	Gross Alpha	-7.32E-15	2.25E-15	2.85E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265575	PLANT 2	01/31/23	Gross Alpha/Beta	Gross Beta	3.79E-14	3.82E-14	6.06E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265576	PLANT 2	02/01/23	Gross Alpha/Beta	Gross Alpha	1.57E-14	8.98E-15	8.11E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265576	PLANT 2	02/01/23	Gross Alpha/Beta	Gross Beta	3.84E-14	1.44E-14	1.72E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265586	PLANT 2	02/02/23	Gross Alpha/Beta	Gross Alpha	1.30E-14	8.29E-15	7.95E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265586	PLANT 2	02/02/23	Gross Alpha/Beta	Gross Beta	7.27E-14	1.97E-14	2.19E-14	μCi/mL	=	, ,	Plant 2 (General Area)- Perimeter Air
SLD265590	PLANT 2	02/06/23	Gross Alpha/Beta	Gross Alpha	1.03E-14	9.17E-15	1.12E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265590	PLANT 2	02/06/23	Gross Alpha/Beta	Gross Beta	7.73E-14	2.53E-14	3.09E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265597	PLANT 2	02/07/23	Gross Alpha/Beta	Gross Alpha	5.03E-15	6.72E-15	1.04E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265597	PLANT 2	02/07/23	Gross Alpha/Beta	Gross Beta	1.01E-14	1.70E-14	2.86E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265601	PLANT 2	02/08/23	Gross Alpha/Beta	Gross Alpha	1.46E-14	8.55E-15	7.63E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265601	PLANT 2	02/08/23	Gross Alpha/Beta	Gross Beta	4.34E-14	1.63E-14	2.10E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265605	PLANT 2	02/09/23	Gross Alpha/Beta	Gross Alpha	1.96E-14	1.03E-14	7.64E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265605	PLANT 2	02/09/23	Gross Alpha/Beta	Gross Beta	1.48E-14	1.50E-14	2.41E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265606	PLANT 2	02/13/23	Gross Alpha/Beta	Gross Alpha	7.73E-15	6.37E-15	6.93E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265606	PLANT 2	02/13/23	Gross Alpha/Beta	Gross Beta	3.89E-14	1.63E-14	2.19E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265610	PLANT 2	02/14/23	Gross Alpha/Beta	Gross Alpha	2.45E-15	4.46E-15	7.92E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265610	PLANT 2	02/14/23	Gross Alpha/Beta	Gross Beta	3.40E-14	1.76E-14	2.50E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265613	PLANT 2	02/15/23	Gross Alpha/Beta	Gross Alpha	6.52E-15	5.95E-15	7.08E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265613	PLANT 2	02/15/23	Gross Alpha/Beta	Gross Beta	6.09E-14	1.84E-14	2.16E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265616	PLANT 2	02/16/23	Gross Alpha/Beta	Gross Alpha	3.86E-14	8.26E-15	3.44E-15	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265616	PLANT 2	02/16/23	Gross Alpha/Beta	Gross Beta	1.59E-13	1.86E-14	1.24E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265623	PLANT 2	02/21/23	Gross Alpha/Beta	Gross Alpha	-1.30E-15	5.02E-16	7.08E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265623	PLANT 2	02/21/23	Gross Alpha/Beta	Gross Beta	2.05E-14	1.43E-14	2.16E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265627	PLANT 2	02/22/23	Gross Alpha/Beta	Gross Alpha	1.65E-15	5.66E-15	1.25E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265627	PLANT 2	02/22/23	Gross Alpha/Beta	Gross Beta	2.63E-14	2.41E-14	3.82E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265631	PLANT 2	02/23/23	Gross Alpha/Beta	Gross Alpha	-4.10E-16	4.07E-15	1.09E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265631	PLANT 2	02/23/23	Gross Alpha/Beta	Gross Beta	2.93E-14	1.80E-14	2.64E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265635	PLANT 2	02/27/23	Gross Alpha/Beta	Gross Alpha	9.95E-16	4.95E-15	1.09E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265635	PLANT 2	02/27/23	Gross Alpha/Beta	Gross Beta	2.84E-14	1.79E-14	2.64E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265639	PLANT 2	02/28/23	Gross Alpha/Beta	Gross Alpha	2.56E-15	5.16E-15	9.43E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265639	PLANT 2	02/28/23	Gross Alpha/Beta	Gross Beta	5.20E-14	1.76E-14	2.16E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265651	PLANT 2	03/08/23	Gross Alpha/Beta	Gross Alpha	2.53E-15	8.23E-15	1.68E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265651	PLANT 2	03/08/23	Gross Alpha/Beta	Gross Beta	7.19E-14	2.92E-14	3.84E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265655	PLANT 2	03/09/23	Gross Alpha/Beta	Gross Alpha	3.09E-15	6.22E-15	1.14E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265655	PLANT 2	03/09/23	Gross Alpha/Beta	Gross Beta	3.30E-14	1.81E-14	2.60E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265659	PLANT 2	03/13/23	Gross Alpha/Beta	Gross Alpha	4.76E-15	5.98E-15	9.26E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265659	PLANT 2	03/13/23	Gross Alpha/Beta	Gross Beta	3.05E-14	1.51E-14	2.12E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265663	PLANT 2	03/14/23	Gross Alpha/Beta	Gross Alpha	3.49E-15	5.32E-15	8.90E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265663	PLANT 2	03/14/23	Gross Alpha/Beta	Gross Beta	3.95E-14	1.56E-14	2.04E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265667	PLANT 2	03/15/23	Gross Alpha/Beta	Gross Alpha	1.39E-15	4.50E-15	9.18E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265667	PLANT 2	03/15/23	Gross Alpha/Beta	Gross Beta	3.86E-14	1.59E-14	2.10E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265671	PLANT 2	03/16/23	Gross Alpha/Beta	Gross Alpha	3.60E-15	2.26E-14	5.40E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265671	PLANT 2	03/16/23	Gross Alpha/Beta	Gross Beta	1.09E-14	6.86E-14	1.24E-13	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265680	PLANT 2	03/22/23	Gross Alpha/Beta	Gross Alpha	2.06E-15	4.95E-15	9.72E-15	μCi/mL	UJ	T06	Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265680	PLANT 2	03/22/23	Gross Alpha/Beta	Gross Beta	4.72E-14	1.82E-14	2.23E-14	μCi/mL	=		Plant 6WH LOADOUT (General Area)-Perimeter Air
SLD265692	PLANT 2	03/28/23	Gross Alpha/Beta	Gross Alpha	4.29E-15	6.37E-15	1.05E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265692	PLANT 2	03/28/23	Gross Alpha/Beta	Gross Beta	4.10E-14	2.00E-14	2.80E-14	μCi/mL	Ш		Plant 2 (General Area)- Perimeter Air
SLD265693	PLANT 2	03/29/23	Gross Alpha/Beta	Gross Alpha	1.65E-16	1.14E-14	2.93E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265693	PLANT 2	03/29/23	Gross Alpha/Beta	Gross Beta	1.20E-14	4.49E-14	7.84E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265723	PLANT 2	04/13/23	Gross Alpha/Beta	Gross Alpha	7.98E-15	9.56E-15	1.41E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265723	PLANT 2	04/13/23	Gross Alpha/Beta	Gross Beta	4.75E-14	2.26E-14	2.97E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265727	PLANT 2	04/17/23	Gross Alpha/Beta	Gross Alpha	1.91E-15	5.97E-15	1.24E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265727	PLANT 2	04/17/23	Gross Alpha/Beta	Gross Beta	2.54E-14	2.11E-14	3.29E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD265743	PLANT 2	04/24/23	Gross Alpha/Beta	Gross Alpha	-9.54E-16	5.11E-15	1.42E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265743	PLANT 2	04/24/23	Gross Alpha/Beta	Gross Beta	2.27E-14	2.14E-14	3.39E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265747	PLANT 2	04/25/23	Gross Alpha/Beta	Gross Alpha	2.56E-15	4.71E-15	8.38E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265747	PLANT 2	04/25/23	Gross Alpha/Beta	Gross Beta	2.86E-14	1.43E-14	2.00E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265751	PLANT 2	04/26/23	Gross Alpha/Beta	Gross Alpha	2.54E-15	4.67E-15	8.31E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265751	PLANT 2	04/26/23	Gross Alpha/Beta	Gross Beta	3.42E-14	1.47E-14	1.99E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265755	PLANT 2	04/27/23	Gross Alpha/Beta	Gross Alpha	4.18E-15	7.69E-15	1.37E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265755	PLANT 2	04/27/23	Gross Alpha/Beta	Gross Beta	2.84E-14	2.13E-14	3.27E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265759	PLANT 2	05/01/23	Gross Alpha/Beta	Gross Alpha	1.75E-15	4.87E-15	9.68E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265759	PLANT 2	05/01/23	Gross Alpha/Beta	Gross Beta	2.08E-14	1.52E-14	2.31E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265763	PLANT 2	05/02/23	Gross Alpha/Beta	Gross Alpha	6.60E-17	5.64E-15	1.35E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265763	PLANT 2	05/02/23	Gross Alpha/Beta	Gross Beta	3.12E-14	2.06E-14	3.09E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD265767	PLANT 2	05/03/23	Gross Alpha/Beta	Gross Alpha	1.17E-14	2.61E-14	4.88E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265767	PLANT 2	05/03/23	Gross Alpha/Beta	Gross Beta	1.01E-14	6.28E-14	1.11E-13	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265772	PLANT 2	05/09/23	Gross Alpha/Beta	Gross Alpha	-2.02E-16	5.73E-15	1.40E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265772	PLANT 2	05/09/23	Gross Alpha/Beta	Gross Beta	1.48E-14	1.93E-14	3.18E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265776	PLANT 2	05/10/23	Gross Alpha/Beta	Gross Alpha	5.83E-15	1.01E-14	1.75E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265776	PLANT 2	05/10/23	Gross Alpha/Beta	Gross Beta	3.53E-14	2.60E-14	3.98E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265777	PLANT 2	05/10/23	Gross Alpha/Beta	Gross Alpha	1.30E-15	6.06E-15	1.29E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265777	PLANT 2	05/10/23	Gross Alpha/Beta	Gross Beta	6.07E-15	1.69E-14	2.92E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265781	PLANT 2	05/11/23	Gross Alpha/Beta	Gross Alpha	1.39E-15	6.45E-15	1.37E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265781	PLANT 2	05/11/23	Gross Alpha/Beta	Gross Beta	3.06E-14	2.07E-14	3.12E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265782	PLANT 2	05/11/23	Gross Alpha/Beta	Gross Alpha	-7.54E-15	7.57E-15	3.07E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265782	PLANT 2	05/11/23	Gross Alpha/Beta	Gross Beta	1.45E-14	4.03E-14	6.96E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265786	PLANT 2	05/15/23	Gross Alpha/Beta	Gross Alpha	-1.34E-16	3.80E-15	9.27E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265786	PLANT 2	05/15/23	Gross Alpha/Beta	Gross Beta	1.73E-14	1.36E-14	2.10E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265787	PLANT 2	05/15/23	Gross Alpha/Beta	Gross Alpha	5.59E-15	1.35E-14	2.58E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265787	PLANT 2	05/15/23	Gross Alpha/Beta	Gross Beta	3.29E-14	3.61E-14	5.85E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265790	PLANT 2	05/16/23	Gross Alpha/Beta	Gross Alpha	-6.62E-15	1.72E-14	5.09E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265790	PLANT 2	05/16/23	Gross Alpha/Beta	Gross Beta	5.76E-14	7.06E-14	1.16E-13	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265791	PLANT 2	05/16/23	Gross Alpha/Beta	Gross Alpha	-1.62E-16	4.59E-15	1.12E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265791	PLANT 2	05/16/23	Gross Alpha/Beta	Gross Beta	2.09E-14	1.65E-14	2.55E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265794	PLANT 2	05/17/23	Gross Alpha/Beta	Gross Alpha	7.55E-15	1.59E-14	2.98E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265794	PLANT 2	05/17/23	Gross Alpha/Beta	Gross Beta	4.17E-14	3.69E-14	5.73E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265795	PLANT 2	05/17/23	Gross Alpha/Beta	Gross Alpha	7.01E-15	7.61E-15	1.08E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD265795	PLANT 2	05/17/23	Gross Alpha/Beta	Gross Beta	3.42E-14	1.58E-14	2.07E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD265799	PLANT 2	05/18/23	Gross Alpha/Beta	Gross Alpha	1.05E-14	9.21E-15	1.15E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD265799	PLANT 2	05/18/23	Gross Alpha/Beta	Gross Beta	3.84E-14	1.71E-14	2.22E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267077	PLANT 2	05/22/23	Gross Alpha/Beta	Gross Alpha	8.31E-15	7.27E-15	9.08E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267077	PLANT 2	05/22/23	Gross Alpha/Beta	Gross Beta	2.59E-14	1.30E-14	1.75E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267081	PLANT 2	05/23/23	Gross Alpha/Beta	Gross Alpha	5.65E-15	6.14E-15	8.69E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267081	PLANT 2	05/23/23	Gross Alpha/Beta	Gross Beta	3.46E-14	1.36E-14	1.67E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267085	PLANT 2	05/24/23	Gross Alpha/Beta	Gross Alpha	6.83E-15	6.59E-15	8.72E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267085	PLANT 2	05/24/23	Gross Alpha/Beta	Gross Beta	4.53E-14	1.49E-14	1.68E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267089	PLANT 2	05/25/23	Gross Alpha/Beta	Gross Alpha	8.39E-15	7.34E-15	9.16E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267089	PLANT 2	05/25/23	Gross Alpha/Beta	Gross Beta	3.06E-14	1.36E-14	1.76E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267093	PLANT 2	05/30/23	Gross Alpha/Beta	Gross Alpha	4.66E-15	5.89E-15	8.99E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD267093	PLANT 2	05/30/23	Gross Alpha/Beta	Gross Beta	3.73E-14	1.43E-14	1.73E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267094	PLANT 2	05/31/23	Gross Alpha/Beta	Gross Alpha	-9.50E-17	3.31E-15	8.65E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267094	PLANT 2	05/31/23	Gross Alpha/Beta	Gross Beta	4.28E-14	1.45E-14	1.67E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267098	PLANT 2	06/01/23	Gross Alpha/Beta	Gross Alpha	0	3.43E-15	8.86E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267098	PLANT 2	06/01/23	Gross Alpha/Beta	Gross Beta	4.01E-14	1.73E-14	2.34E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267105	PLANT 2	06/05/23	Gross Alpha/Beta	Gross Alpha	4.25E-15	5.25E-15	7.93E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267105	PLANT 2	06/05/23	Gross Alpha/Beta	Gross Beta	3.18E-14	1.50E-14	2.09E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267106	PLANT 2	06/06/23	Gross Alpha/Beta	Gross Alpha	1.17E-14	1.01E-14	1.25E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267106	PLANT 2	06/06/23	Gross Alpha/Beta	Gross Beta	3.74E-14	2.24E-14	3.29E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267113	PLANT 2	06/07/23	Gross Alpha/Beta	Gross Alpha	0	3.10E-15	8.00E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267113	PLANT 2	06/07/23	Gross Alpha/Beta	Gross Beta	4.43E-14	1.64E-14	2.11E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267117	PLANT 2	06/08/23	Gross Alpha/Beta	Gross Alpha	6.41E-15	6.09E-15	7.96E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267117	PLANT 2	06/08/23	Gross Alpha/Beta	Gross Beta	1.70E-14	1.35E-14	2.10E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267121	PLANT 2	06/12/23	Gross Alpha/Beta	Gross Alpha	0	8.60E-15	2.22E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267121	PLANT 2	06/12/23	Gross Alpha/Beta	Gross Beta	1.35E-14	3.40E-14	5.86E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267122	PLANT 2	06/13/23	Gross Alpha/Beta	Gross Alpha	5.49E-15	1.11E-14	2.04E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267122	PLANT 2	06/13/23	Gross Alpha/Beta	Gross Beta	4.55E-14	3.50E-14	5.39E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267129	PLANT 2	06/14/23	Gross Alpha/Beta	Gross Alpha	3.22E-15	4.84E-15	8.00E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267129	PLANT 2	06/14/23	Gross Alpha/Beta	Gross Beta	3.07E-14	1.50E-14	2.11E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267133	PLANT 2	06/15/23	Gross Alpha/Beta	Gross Alpha	2.21E-15	4.48E-15	8.25E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267133	PLANT 2	06/15/23	Gross Alpha/Beta	Gross Beta	3.87E-14	1.62E-14	2.18E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267134	PLANT 2	06/19/23	Gross Alpha/Beta	Gross Alpha	2.04E-15	6.02E-15	1.19E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267134	PLANT 2	06/19/23	Gross Alpha/Beta	Gross Beta	5.07E-14	1.97E-14	2.57E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267138	PLANT 2	06/20/23	Gross Alpha/Beta	Gross Alpha	1.14E-14	8.19E-15	9.69E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267138	PLANT 2	06/20/23	Gross Alpha/Beta	Gross Beta	4.41E-14	1.64E-14	2.10E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267142	PLANT 2	06/21/23	Gross Alpha/Beta	Gross Alpha	6.31E-15	6.90E-15	1.02E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267142	PLANT 2	06/21/23	Gross Alpha/Beta	Gross Beta	2.25E-14	1.48E-14	2.21E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267146	PLANT 2	06/22/23	Gross Alpha/Beta	Gross Alpha	-1.10E-15	8.47E-15	2.14E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267146	PLANT 2	06/22/23	Gross Alpha/Beta	Gross Beta	6.38E-15	2.64E-14	4.63E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267150	PLANT 2	06/26/23	Gross Alpha/Beta	Gross Alpha	8.26E-15	9.03E-15	1.33E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267150	PLANT 2	06/26/23	Gross Alpha/Beta	Gross Beta	4.65E-14	2.11E-14	2.89E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267154	PLANT 2	06/27/23	Gross Alpha/Beta	Gross Alpha	2.81E-15	5.49E-15	9.91E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267154	PLANT 2	06/27/23	Gross Alpha/Beta	Gross Beta	2.47E-14	1.46E-14	2.15E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267158	PLANT 2	06/28/23	Gross Alpha/Beta	Gross Alpha	7.45E-15	5.27E-15	7.33E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267158	PLANT 2	06/28/23	Gross Alpha/Beta	Gross Beta	4.17E-14	1.30E-14	1.80E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267162	PLANT 2	06/29/23	Gross Alpha/Beta	Gross Alpha	1.72E-15	5.07E-15	1.00E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267162	PLANT 2	06/29/23	Gross Alpha/Beta	Gross Beta	4.41E-14	1.67E-14	2.17E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267169	PLANT 2	07/03/23	Gross Alpha/Beta	Gross Alpha	2.62E-15	4.71E-15	8.33E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267169	PLANT 2	07/03/23	Gross Alpha/Beta	Gross Beta	3.55E-14	1.35E-14	1.61E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267170	PLANT 2	07/05/23	Gross Alpha/Beta	Gross Alpha	5.93E-15	6.89E-15	9.98E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267170	PLANT 2	07/05/23	Gross Alpha/Beta	Gross Beta	3.40E-14	1.51E-14	1.92E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267174	PLANT 2	07/06/23	Gross Alpha/Beta	Gross Alpha	1.02E-14	7.91E-15	8.87E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267174	PLANT 2	07/06/23	Gross Alpha/Beta	Gross Beta	3.25E-14	1.37E-14	1.71E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267178	PLANT 2	07/10/23	Gross Alpha/Beta	Gross Alpha	-8.66E-16	2.39E-15	8.26E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267178	PLANT 2	07/10/23	Gross Alpha/Beta	Gross Beta	3.59E-14	1.35E-14	1.59E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267182	PLANT 2	07/11/23	Gross Alpha/Beta	Gross Alpha	3.71E-15	5.14E-15	8.15E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267182	PLANT 2	07/11/23	Gross Alpha/Beta	Gross Beta	4.87E-14	1.48E-14	1.57E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SLD267186	PLANT 2	07/12/23	Gross Alpha/Beta	Gross Alpha	2.62E-15	4.71E-15	8.33E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267186	PLANT 2	07/12/23	Gross Alpha/Beta	Gross Beta	4.54E-14	1.47E-14	1.61E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267190	PLANT 2	07/13/23	Gross Alpha/Beta	Gross Alpha	1.02E-15	4.10E-15	8.86E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267190	PLANT 2	07/13/23	Gross Alpha/Beta	Gross Beta	1.88E-14	1.16E-14	1.65E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267194	PLANT 2	07/17/23	Gross Alpha/Beta	Gross Alpha	-1.63E-15	3.03E-15	1.10E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267194	PLANT 2	07/17/23	Gross Alpha/Beta	Gross Beta	2.25E-14	1.43E-14	2.06E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267198	PLANT 2	07/18/23	Gross Alpha/Beta	Gross Alpha	6.04E-15	7.70E-15	1.18E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267198	PLANT 2	07/18/23	Gross Alpha/Beta	Gross Beta	4.13E-14	1.76E-14	2.21E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267202	PLANT 2	07/19/23	Gross Alpha/Beta	Gross Alpha	4.81E-15	6.13E-15	9.43E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267202	PLANT 2	07/19/23	Gross Alpha/Beta	Gross Beta	2.46E-14	1.29E-14	1.76E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267206	PLANT 2	07/20/23	Gross Alpha/Beta	Gross Alpha	-1.88E-15	3.50E-15	1.27E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267206	PLANT 2	07/20/23	Gross Alpha/Beta	Gross Beta	2.50E-14	1.64E-14	2.38E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD267210	PLANT 2	07/24/23	Gross Alpha/Beta	Gross Alpha	5.91E-15	6.47E-15	9.22E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD267210	PLANT 2	07/24/23	Gross Alpha/Beta	Gross Beta	3.44E-14	1.39E-14	1.72E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD267214	PLANT 2	07/25/23	Gross Alpha/Beta	Gross Alpha	7.22E-15	6.37E-15	7.68E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD267214	PLANT 2	07/25/23	Gross Alpha/Beta	Gross Beta	4.11E-14	1.65E-14	2.17E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268712	PLANT 2	07/27/23	Gross Alpha/Beta	Gross Alpha	5.63E-15	6.24E-15	8.69E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268712	PLANT 2	07/27/23	Gross Alpha/Beta	Gross Beta	4.17E-14	1.81E-14	2.45E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268713	PLANT 2	07/31/23	Gross Alpha/Beta	Gross Alpha	1.66E-15	3.99E-15	7.83E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268713	PLANT 2	07/31/23	Gross Alpha/Beta	Gross Beta	3.68E-14	1.63E-14	2.21E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268717	PLANT 2	08/01/23	Gross Alpha/Beta	Gross Alpha	2.70E-15	4.43E-15	7.54E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268717	PLANT 2	08/01/23	Gross Alpha/Beta	Gross Beta	2.85E-14	1.50E-14	2.13E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268724	PLANT 2	08/03/23	Gross Alpha/Beta	Gross Alpha	5.12E-16	3.21E-15	7.68E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268724	PLANT 2	08/03/23	Gross Alpha/Beta	Gross Beta	1.91E-14	1.42E-14	2.17E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD268728	PLANT 2	08/07/23	Gross Alpha/Beta	Gross Alpha	5.12E-16	3.21E-15	7.68E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268728	PLANT 2	08/07/23	Gross Alpha/Beta	Gross Beta	2.98E-14	1.53E-14	2.17E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268731	PLANT 2	08/08/23	Gross Alpha/Beta	Gross Alpha	5.96E-15	6.11E-15	8.25E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268731	PLANT 2	08/08/23	Gross Alpha/Beta	Gross Beta	1.95E-14	1.13E-14	1.58E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268735	PLANT 2	08/09/23	Gross Alpha/Beta	Gross Alpha	2.81E-16	3.88E-15	9.70E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268735	PLANT 2	08/09/23	Gross Alpha/Beta	Gross Beta	2.30E-14	1.33E-14	1.86E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268739	PLANT 2	08/10/23	Gross Alpha/Beta	Gross Alpha	6.15E-15	6.30E-15	8.50E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268739	PLANT 2	08/10/23	Gross Alpha/Beta	Gross Beta	2.30E-14	1.20E-14	1.63E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268743	PLANT 2	08/14/23	Gross Alpha/Beta	Gross Alpha	2.41E-16	3.33E-15	8.32E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268743	PLANT 2	08/14/23	Gross Alpha/Beta	Gross Beta	1.69E-14	1.10E-14	1.59E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268747	PLANT 2	08/15/23	Gross Alpha/Beta	Gross Alpha	-9.34E-16	2.45E-15	8.50E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268747	PLANT 2	08/15/23	Gross Alpha/Beta	Gross Beta	1.08E-14	1.04E-14	1.63E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD268751	PLANT 2	08/16/23	Gross Alpha/Beta	Gross Alpha	2.74E-15	5.01E-15	8.93E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268751	PLANT 2	08/16/23	Gross Alpha/Beta	Gross Beta	2.49E-14	1.28E-14	1.71E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268758	PLANT 2	08/17/23	Gross Alpha/Beta	Gross Alpha	1.41E-15	4.09E-15	8.39E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268758	PLANT 2	08/17/23	Gross Alpha/Beta	Gross Beta	2.13E-14	1.17E-14	1.61E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268759	PLANT 2	08/21/23	Gross Alpha/Beta	Gross Alpha	3.74E-15	5.26E-15	8.39E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268759	PLANT 2	08/21/23	Gross Alpha/Beta	Gross Beta	7.17E-14	1.75E-14	1.61E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268763	PLANT 2	08/22/23	Gross Alpha/Beta	Gross Alpha	8.43E-15	7.08E-15	8.43E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268763	PLANT 2	08/22/23	Gross Alpha/Beta	Gross Beta	7.85E-14	1.83E-14	1.61E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268767	PLANT 2	08/23/23	Gross Alpha/Beta	Gross Alpha	9.96E-15	7.92E-15	9.59E-15	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268767	PLANT 2	08/23/23	Gross Alpha/Beta	Gross Beta	6.53E-14	1.97E-14	2.33E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268771	PLANT 2	08/24/23	Gross Alpha/Beta	Gross Alpha	8.65E-15	7.45E-15	9.45E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air

Table C-3. Perimeter Air Data Results for CY 2023 (Continued)

S1258771	Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
SALD288775 PLANT 2 0829223 Gross Alpha-Beta Gross Jehn 3.05.1-14 1.931.1-14 Crim. J 194.120 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0829223 Gross Alpha-Beta Gross Alpha 4.487-14 1.687-14 2.127-14 Crim. J 104.120 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0829223 Gross Alpha-Beta Gross Alpha 4.487-14 1.687-14 2.127-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0829223 Gross Alpha-Beta Gross Alpha 1.521-14 1.591.1-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0839223 Gross Alpha-Beta Gross Alpha 1.521-14 1.591.1-14 2.41-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0839123 Gross Alpha-Beta Gross Alpha 2.278-1-15 1.591.1-14 2.527-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288787 PLANT 2 0.991223 Gross Alpha-Beta Gross Alpha 2.278-1-15 1.297-14 2.257-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288791 PLANT 2 0.991223 Gross Alpha-Beta Gross Alpha 2.278-1-15 1.297-14 2.257-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288791 PLANT 2 0.991223 Gross Alpha-Beta Gross Alpha 2.278-1-15 1.297-14 2.257-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288795 PLANT 2 0.991223 Gross Alpha-Beta Gross Alpha 2.278-1-15 1.297-14 2.257-14 Crim. U 106 Plant 2 General Area Perimeter Air SLD288799 PLANT 2 0.991223 Gross Alpha-Beta Gross Alpha 1.297-14	SLD268771	PLANT 2	08/24/23	Gross Alpha/Beta	Gross Beta	7.84E-14	2.08E-14	2.30E-14	μCi/mL	Ш		Plant 2 (General Area)- Perimeter Air
S.D.268779 P.LANT 2 0829221 Gross Alpha Beta 1 Gross Alpha 4.581-14 1.652-14 2.152-14 1.052-14 1.052-14 S.D.268783 P.LANT 2 0829023 Gross Alpha Beta 1 Gross Alpha 4.2381-15 6.128-15 1.062-14 6.57m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268787 P.LANT 2 0829023 Gross Alpha Beta 1 Gross Alpha 4.2381-15 6.128-15 1.062-14 6.57m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268787 P.LANT 2 0831/23 Gross Alpha Beta 1 Gross Alpha Beta 1 Gross Alpha 2.258-15 5.168-15 0.258-15 6.07m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268787 P.LANT 2 0851/23 Gross Alpha Beta 1 Gross Alpha 4.778-16 4.068-15 0.258-15 6.07m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268791 P.LANT 2 0905/23 Gross Alpha Beta 1 Gross Alpha 4.778-16 4.068-15 0.258-15 6.07m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268795 P.LANT 2 0906/23 Gross Alpha Beta 1 Gross Alpha 4.778-16 4.068-15 0.258-15 6.07m.1 U D6 Plant 2 (General Ara-p-Perinneter Air S.D.268795 P.LANT 2 0906/23 Gross Alpha Beta 1 Gross Beta 2 S.D.268795 P.LANT 2 0900/23 Gross Alpha Beta 1 Gross Beta 2 Gross	SLD268775	PLANT 2	08/28/23	Gross Alpha/Beta	Gross Alpha	5.85E-16	4.95E-15	1.14E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD26879	SLD268775	PLANT 2	08/28/23	Gross Alpha/Beta	Gross Beta	3.65E-14	1.93E-14	2.77E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268783	SLD268779	PLANT 2	08/29/23	Gross Alpha/Beta	Gross Alpha	2.60E-15	4.86E-15	8.71E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD28878 PLANT	SLD268779	PLANT 2	08/29/23	Gross Alpha/Beta	Gross Beta	4.43E-14	1.65E-14	2.12E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268787 PLANT 2	SLD268783	PLANT 2	08/30/23	Gross Alpha/Beta	Gross Alpha	4.23E-15	6.12E-15	1.00E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268791 PLANT2 990523 Gross Alpha Beta Gross Beta 2.98e-15 1.27e-14 2.25e-14 GC/ml UJ T06 Plant 2 (General Arcs) - Perimeter Air	SLD268783	PLANT 2	08/30/23	Gross Alpha/Beta	Gross Beta	1.32E-14	1.50E-14	2.44E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268791 PLANT 2 09:05:23 Gross Alpha@Hea Gross Beta 2.7E1-16 4.04E1-15 2.2E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268795 PLANT 2 09:06:23 Gross Alpha@Hea Gross Beta 2.7E1-15 1.29E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268795 PLANT 2 09:06:23 Gross Alpha@Hea Gross Beta 2.7E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268795 PLANT 2 09:06:23 Gross Alpha@Hea Gross Beta 2.7E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268799 PLANT 2 09:07:23 Gross Alpha@Hea Gross Beta 3.6E1-14 1.02E1-14 1.02E1-14 µCVmL U T04, T05 Plant 2 (General Area) Perimeter Air SLD268799 PLANT 2 09:07:23 Gross Alpha@Hea Gross Beta 3.6E1-14 1.02E1-14 1.02E1-14 µCVmL U T04, T20 Plant 2 (General Area) Perimeter Air SLD268890 PLANT 2 09:07:23 Gross Alpha@Hea Gross Beta 3.6E1-14 1.02E1-14 2.7E1-14 µCVmL U T04, T20 Plant 2 (General Area) Perimeter Air SLD268803 PLANT 2 09:11:23 Gross Alpha@Hea Gross Beta 2.68E1-14 1.02E1-14 2.7E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268803 PLANT 2 09:12:3 Gross Alpha@Hea Gross Beta 2.68E1-14 1.02E1-14 2.3E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268803 PLANT 2 09:26:23 Gross Alpha@Hea Gross Beta 2.3E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268804 PLANT 2 09:27:23 Gross Alpha@Hea Gross Beta 5.23E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268804 PLANT 2 09:27:23 Gross Alpha@Hea Gross Beta 5.23E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268804 PLANT 2 09:27:23 Gross Alpha@Hea Gross Beta 5.23E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268804 PLANT 2 09:28:23 Gross Alpha@Hea Gross Alpha Beta Gross Beta 5.23E1-14 µCVmL U T06 Plant 2 (General Area) Perimeter Air SLD268805 PLANT 2 09:28:23	SLD268787	PLANT 2	08/31/23	Gross Alpha/Beta	Gross Alpha	2.75E-15	5.16E-15	9.23E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268791 PLANT 2 09096/23 Gross Alpha/Beta Gross Beta 2.79F-15 1.29F-14 2.26F-14 µC/imL U T06 Plant 2 (General Area). Perimeter Air	SLD268787	PLANT 2	08/31/23	Gross Alpha/Beta	Gross Beta	2.05E-15	1.27E-14	2.25E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268795 PLANT 2 0900/623 Gross Alpha/Beta Gross Alpha 3.56E-15 6.69E-15 1.39E-14 µC/ml. U T06 Plant 2 (General Area) Perimeter Air SLD268799 PLANT 2 0900/623 Gross Alpha/Beta Gross Alpha 1.46E-14 1.02E-14 1.47E-14 µC/ml. J T04, T20 Plant 2 (General Area) Perimeter Air SLD268799 PLANT 2 0900/23 Gross Alpha/Beta Gross Alpha 1.46E-14 1.02E-14 1.47E-14 µC/ml. J T04, T20 Plant 2 (General Area) Perimeter Air SLD268803 PLANT 2 0901/23 Gross Alpha/Beta Gross Alpha 1.46E-14 1.03E-14 1.47E-14 µC/ml. J T04, T20 Plant 2 (General Area) Perimeter Air SLD268803 PLANT 2 0911/23 Gross Alpha/Beta Gross Alpha 1.46E-14 1.03E-14 µC/ml. J T04, T20 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0901/23 Gross Alpha/Beta Gross Alpha T04, T20 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/623 Gross Alpha/Beta Gross Alpha T04, T20 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/723 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 6.32E-14 µC/ml. U T04, T30 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/723 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 6.32E-14 µC/ml. U T04, T30 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/723 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 6.32E-14 µC/ml. U T04, T30 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/723 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 µC/ml. U T04, T30 Plant 2 (General Area) Perimeter Air SLD268806 PLANT 2 0902/723 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 µC/ml. µC/ml. Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 0902/823 Gross Alpha/Beta Gross Beta 5.65E-14 1.79E-14 2.08E-14 µC/ml. U T04, T05 Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 1.0002/23 Gross Alpha/Beta Gross Beta 5.65E-14 1.79E-14 2.08E-14	SLD268791	PLANT 2	09/05/23	Gross Alpha/Beta	Gross Alpha	4.77E-16	4.04E-15	9.28E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268795 PLANT 2 09/06/23 Gross Alpha/Beta Gross Alpha 1.46E-14 1.89E-14 1.4E-14 µC/mL J T04, T20 Plant 2 (General Area) - Perimeter Air	SLD268791	PLANT 2	09/05/23	Gross Alpha/Beta	Gross Beta	2.79E-15	1.29E-14	2.26E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268799 PLANT 2 09/07/23 Gross Alpha/Beta Gross Alpha 1.46ft-14 1.02t-14 1.14ft-14 1.02t-14 1.02t-1	SLD268795	PLANT 2	09/06/23	Gross Alpha/Beta	Gross Alpha	3.56E-15	6.66E-15	1.19E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268803 PLANT 2 09/17/23 Gross Alpha/Beta Gross Beta 3.65E-14 1.93E-14 2.77E-14 pC/rmL J T04, T20 Plant 2 (General Area) - Perimeter Air SLD268803 PLANT 2 09/11/23 Gross Alpha/Beta Gross Alpha 2.05E-16 3.55E-15 8.93E-15 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268836 PLANT 2 09/26/23 Gross Alpha/Beta Gross Alpha 7.07E-15 1.32E-14 2.37E-14 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268836 PLANT 2 09/26/23 Gross Alpha/Beta Gross Alpha 7.07E-15 1.32E-14 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268836 PLANT 2 09/26/23 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 6.32E-14 pC/rmL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 pC/rmL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 pC/rmL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 3.16E-14 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 100/223 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 pC/rmL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 100/323 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 pC/rmL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 100/323 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 pC/rmL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 100/423 Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Beta Gross Alpha/Bet	SLD268795	PLANT 2	09/06/23	Gross Alpha/Beta	Gross Beta	2.51E-14	1.89E-14	2.90E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD268803 PLANT 2	SLD268799	PLANT 2	09/07/23	Gross Alpha/Beta	Gross Alpha	1.46E-14	1.02E-14	1.14E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268836 PLANT 2 09/11/23 Gross Alpha/Beta Gross Beta 2.68E-14 1.62E-14 2.39E-14 µC/mL J T04, T20 Plant 2 (General Area) Perimeter Air SLD268836 PLANT 2 09/26/23 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 4.09E-14 µC/mL U T04, T05 Plant 2 (General Area) Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Alpha 7.72E-15 6.52E-15 7.81E-15 µC/mL U T04, T05 Plant 2 (General Area) Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 µC/mL U T04, T05 Plant 2 (General Area) Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 µC/mL U T06 Plant 2 (General Area) Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 µC/mL U T06 Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 100/223 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 100/223 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268855 PLANT 2 100/23 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 100/23 Gross Alpha/Beta Gross Beta 3.3EE-14 1.47E-14 1.96E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 100/423 Gross Alpha/Beta Gross Beta 3.3EE-14 1.47E-14 1.96E-14 µC/mL = Plant 2 (General Area) Perimeter Air SLD268869 PLANT 2 100/423 Gross Alpha/Beta Gross Beta 3.3EE-14 1.47E-14 1.96E-14 µC/mL U T06 Plant 2 (General Area) Perimeter Air SLD268870 PLANT 2 100/423 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14	SLD268799	PLANT 2	09/07/23	Gross Alpha/Beta	Gross Beta	3.65E-14	1.93E-14	2.77E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268836 PLANT 2 09/26/23 Gross Alpha/Beta Gross Alpha 7.07E-15 1.32E-14 2.37E-14 µC/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Alpha 7.72E-15 6.52E-15 7.81E-15 µC/mL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Alpha Gross Alpha Gross Alpha/Beta Gross A	SLD268803	PLANT 2	09/11/23	Gross Alpha/Beta	Gross Alpha	2.05E-16	3.55E-15	8.93E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268846 PLANT 2 09/26/23 Gross Alpha/Beta Gross Beta 5.23E-14 4.09E-14 6.32E-15 pC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 pC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Alpha 5.46E-15 8.11E-15 1.34E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Alpha 5.46E-15 8.11E-15 1.34E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268845 PLANT 2 10/02/23 Gross Alpha/Beta Gross Alpha 6.84E-15 6.54E-15 8.84E-15 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Alpha 6.84E-15 6.54E-15 8.84E-15 pC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268850 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 6.84E-15 6.54E-15 8.84E-15 pC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 5.43E-15 6.14E-15 1.09E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.47E-14 1.96E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.6E-14 2.23E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.6E-14 2.3E-14 pC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PL	SLD268803	PLANT 2	09/11/23	Gross Alpha/Beta	Gross Beta	2.68E-14	1.62E-14	2.39E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Alpha 7.72E-15 6.52E-15 7.81E-15 µCi/mL UJ T04, T05 Plant 2 (General Area) Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 µCi/mL = Plant 2 (General Area) Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 µCi/mL UJ T04, T05 Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 6.54E-15 6.54E-15 8.84E-15 µCi/mL UJ T04, T05 Plant 2 (General Area) Perimeter Air SLD268850 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268851 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 6.54E-15 5.81E-15 8.33E-15 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 µCi/mL - Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 µCi/mL - Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 2.23E-14 µCi/mL - Plant 2 (General Area) Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 2.23E-14 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.48E-15 1.23E-14 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268870 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 µCi/mL UJ T06 Plant 2 (General Area) Perimeter Air SLD268880 PLANT 2 10/16/23 G	SLD268836	PLANT 2	09/26/23	Gross Alpha/Beta	Gross Alpha	7.07E-15	1.32E-14	2.37E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268840 PLANT 2 09/27/23 Gross Alpha/Beta Gross Beta 4.32E-14 1.62E-14 2.09E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Alpha 5.46E-15 8.11E-15 1.34E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 10/02/23 Gross Alpha/Beta Gross Alpha 6.84E-15 6.54E-15 8.18E-15 µCi/mL UJ T04, T05 Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.31E-14 1.47E-14 1.96E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 3.34E-15 6.14E-15 1.09E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-15 4.74E-14 µCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gros	SLD268836	PLANT 2	09/26/23	Gross Alpha/Beta	Gross Beta	5.23E-14	4.09E-14	6.32E-14	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Alpha 5.46E-15 8.11E-15 1.34E-14 μC/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268845 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 3.16E-14 μC/mL = Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 6.68E-14 1.79E-14 2.08E-14 μC/mL = Plant 2 (General Area) - Perimeter Air SLD268850 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 μC/mL = Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 μC/mL = Plant 2 (General Area) - Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.14E-15 1.09E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.44E-15 1.09E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.48E-15 6.44E-15 1.23E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μC/mL U T06 Plant 2 (General Area) - Perimeter Air SLD268890 PLANT 2 10/10/23 Gross Alpha/B	SLD268840	PLANT 2	09/27/23	Gross Alpha/Beta	Gross Alpha	7.72E-15	6.52E-15	7.81E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD26885 PLANT 2 09/28/23 Gross Alpha/Beta Gross Beta 5.65E-14 2.36E-14 3.16E-14 µCi/mL = Plant 2 (General Area) - Perimeter Air	SLD268840	PLANT 2	09/27/23	Gross Alpha/Beta	Gross Beta	4.32E-14	1.62E-14	2.09E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Alpha 6.84E-15 6.54E-15 8.84E-15 μC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268850 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.14E-15 1.09E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.14E-15 1.09E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Alpha 2.74E-15 7.10E-15 1.36E-14 μC/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha 4.98E-15 2.91E-14 μC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μC/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/08/23 G	SLD268845	PLANT 2	09/28/23	Gross Alpha/Beta	Gross Alpha	5.46E-15	8.11E-15	1.34E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268850 PLANT 2 10/02/23 Gross Alpha/Beta Gross Beta 6.06E-14 1.79E-14 2.08E-14 μCi/mL = Plant 2 (General Area)- Perimeter Air	SLD268845	PLANT 2	09/28/23	Gross Alpha/Beta	Gross Beta	5.65E-14	2.36E-14	3.16E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Alpha 5.43E-15 5.81E-15 8.33E-15 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268855 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 μCi/mL = Plant 2 (General Area) - Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 μCi/mL = Plant 2 (General Area) - Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 μCi/mL = Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T06 Plant 2 (General Area) - Perimeter Air SLD268924 PLANT 2 11/08/23 Gross	SLD268850	PLANT 2	10/02/23	Gross Alpha/Beta	Gross Alpha	6.84E-15	6.54E-15	8.84E-15	μCi/mL	UJ	T04, T05	Plant 2 (General Area)- Perimeter Air
SLD268855 PLANT 2 10/03/23 Gross Alpha/Beta Gross Beta 3.51E-14 1.47E-14 1.96E-14 μCi/mL = Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.14E-15 1.09E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 2.23E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 μCi/mL UJ T06 Pla	SLD268850	PLANT 2	10/02/23	Gross Alpha/Beta	Gross Beta	6.06E-14	1.79E-14	2.08E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Alpha 3.34E-15 6.14E-15 1.09E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 2.23E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.48E-15 6.44E-15 1.23E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL U T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Alpha 2.74E-15 7.10E-15 1.36E-14 μCi/mL	SLD268855	PLANT 2	10/03/23	Gross Alpha/Beta	Gross Alpha	5.43E-15	5.81E-15	8.33E-15	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268859 PLANT 2 10/04/23 Gross Alpha/Beta Gross Beta 4.13E-14 1.68E-14 2.23E-14 μCi/mL = Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 2.78E-14 μCi/mL UJ	SLD268855	PLANT 2	10/03/23	Gross Alpha/Beta	Gross Beta	3.51E-14	1.47E-14	1.96E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Alpha 2.48E-15 6.44E-15 1.23E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 2.78E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL	SLD268859	PLANT 2	10/04/23	Gross Alpha/Beta	Gross Alpha	3.34E-15	6.14E-15	1.09E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268869 PLANT 2 10/09/23 Gross Alpha/Beta Gross Beta 2.78E-14 1.71E-14 2.52E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 10/16/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ	SLD268859	PLANT 2	10/04/23	Gross Alpha/Beta	Gross Beta	4.13E-14	1.68E-14	2.23E-14	μCi/mL	=		Plant 2 (General Area)- Perimeter Air
SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Alpha 9.58E-15 2.48E-14 4.74E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 2.78E-14 μCi/mL UJ T04, T20 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T04, T20 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14	SLD268869	PLANT 2	10/09/23	Gross Alpha/Beta	Gross Alpha	2.48E-15	6.44E-15	1.23E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268870 PLANT 2 10/10/23 Gross Alpha/Beta Gross Beta 8.86E-15 5.49E-14 9.73E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05	SLD268869	PLANT 2	10/09/23	Gross Alpha/Beta	Gross Beta	2.78E-14	1.71E-14	2.52E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Alpha 2.74E-15 7.10E-15 1.36E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ	SLD268870	PLANT 2	10/10/23	*	Gross Alpha	9.58E-15	2.48E-14	4.74E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air	SLD268870	PLANT 2	10/10/23	Gross Alpha/Beta	Gross Beta	8.86E-15	5.49E-14	9.73E-14	μCi/mL	UJ	T06	Plant 2 (General Area)- Perimeter Air
SLD268880 PLANT 2 10/16/23 Gross Alpha/Beta Gross Beta 3.71E-14 1.95E-14 μCi/mL J T04, T20 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air	SLD268880	PLANT 2	10/16/23	•	Gross Alpha	2.74E-15		1.36E-14	-	UJ		Plant 2 (General Area)- Perimeter Air
SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Alpha -9.87E-15 2.51E-15 2.91E-14 μCi/mL UJ T06 Plant 2 (General Area)- Perimeter Air SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air	SLD268880	PLANT 2	10/16/23	Gross Alpha/Beta	Gross Beta	3.71E-14	1.95E-14	2.78E-14	μCi/mL	J	T04, T20	Plant 2 (General Area)- Perimeter Air
SLD268924 PLANT 2 11/08/23 Gross Alpha/Beta Gross Beta 5.22E-14 4.33E-14 6.75E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air	SLD268924		11/08/23	<u>*</u>	Gross Alpha	-9.87E-15	2.51E-15	2.91E-14		UJ		Plant 2 (General Area)- Perimeter Air
SLD268944 PLANT 2 11/20/23 Gross Alpha/Beta Gross Alpha 1.85E-14 1.64E-14 2.19E-14 μCi/mL UJ T04, T05 Plant 2 (General Area)- Perimeter Air				•							T04, T05	Plant 2 (General Area)- Perimeter Air
			11/20/23	•	Gross Alpha		1.64E-14		· ·	UJ		Plant 2 (General Area)- Perimeter Air
	·	PLANT 2		<u>*</u>	Gross Beta	5.03E-14	3.16E-14		μCi/mL	J	T04, T20	

VQs:

^{= -} Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Codes:

T04 - Radionuclide Quantitation: Professional judgment was used to qualify the data.

T05 - Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.

T06 - Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.

T20 - Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainty 50 to 100 percent of the result.

Table C-4. Radon-222 Results for CY 2023

Sample Name	Station Name	Sample Collection Date	Method Type	Analyte Name	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Sampling Event Name
HIS267866	BA-1	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
HIS273286	BA-1	01/02/24	Radiological	Ra-222	0.22	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267887	DA-10	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273313	DA-10	01/02/24	Radiological	Ra-222	0.19	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267888	DA-11	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273314	DA-11	01/02/24	Radiological	Ra-222	0.16	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267889	DA-12	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273315	DA-12	01/02/24	Radiological	Ra-222	0.22	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267890	DA-14	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273316	DA-14	01/02/24	Radiological	Ra-222	0.16	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267883	DA-3	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273308	DA-3	01/02/24	Radiological	Ra-222	0.22	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267884	DA-7	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	UJ	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273309	DA-7	01/02/24	Radiological	Ra-222	0.19	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267885	DA-8	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273310	DA-8	01/02/24	Radiological	Ra-222	0.19	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267886	DA-9	07/05/23	Radiological	Ra-222	0.08	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273312	DA-9	01/02/24	Radiological	Ra-222	0.24	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023
SLD267891	DI-1	07/05/23	Radiological	Ra-222	0.19	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-1st Semiannual 2023
SLD273317	DI-1	01/02/24	Radiological	Ra-222	0.86	0	0.08	pCi/L	J	Y01	Environmental Monitoring (Alpha Tracks)-2nd Semiannual 2023

VQs:

J - Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.

UJ - Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate. Validation Reason Code:

Y01 - FUSRAP Only: Not enough supporting documentation to perform validation.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
APPENDIX D
STORMWATER, WASTEWATER, AND EXCAVATION WATER DATA

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023
First Quarter

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			25.4	pCi/L		5.2E-06	3,000 pCi/L	
Gross Beta			19.2	pCi/L		3.9E-06	NA	
Th-228		01/03/23 - 01/26/23 (Gunther Salt)	< 0.7	pCi/L	53,627	7.1E-08	2,000 pCi/L	
Th-230	SLDS- BK637		1.8	pCi/L		3.7E-07	1,000 pCi/L	
Th-232			< 0.5	pCi/L		4.9E-08	300 pCi/L	0.01
Uranium (Isotopic U) ^c			31.0	pCi/L		6.3E-06	3,000 pCi/L	
Ra-226 ^d			< 0.8	pCi/L		8.2E-08	10 pCi/L	
Ra-228 ^{e,f}			< 0.7	pCi/L		7.1E-08	30 pCi/L	0.01
TSS			90.9	mg/L		ı	-	
Gross Alpha (raw water)			38.5	pCi/L		5.2E-06	3,000 pCi/L	
Gross Beta			17.0	pCi/L		2.3E-06	NA	
Th-228		02/00/22	< 0.6	pCi/L		4.1E-08	2,000 pCi/L	
Th-230	ci De	02/09/23 - 02/23/23	1.8	pCi/L		2.4E-07	1,000 pCi/L	
Th-232		(Gunther	< 0.4	pCi/L	35,560	2.7E-08	300 pCi/L	
Uranium (Isotopic U) ^c		Salt)	42.8	pCi/L		5.8E-06	3,000 pCi/L	
Ra-226 ^d		Suit)	<1.1	pCi/L		7.5E-08	10 pCi/L	
Ra-228 ^{e,f}			< 0.6	pCi/L		4.1E-08	30 pCi/L	
TSS			91.2	mg/L		-	-	

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023 First Quarter (Continued)

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			43.6	pCi/L		2.1E-05	3,000 pCi/L	
Gross Beta		03/02/23 - 03/27/23	27.9	pCi/L	129,137	1.4E-05	NA	
Th-228			0.7	pCi/L		3.6E-07	2,000 pCi/L	
Th-230	SLDS-		3.1	pCi/L		1.5E-06	1,000 pCi/L	
Th-232	BK639		< 0.5	pCi/L		2.6E-07	300 pCi/L	
Uranium (Isotopic U) ^c	BK039	(Gunther Salt)	55	pCi/L		2.7E-05	3,000 pCi/L	
Ra-226 ^d			<1.4	pCi/L		6.7E-07	10 pCi/L	
Ra-228 ^{e,f}			0.7	pCi/L		3.6E-07	30 pCi/L	
TSS			186.1	mg/L		-	-	

	Total Activity	Discharged in Fir	st Quarter o	f CY 2023 (Ci)
--	-----------------------	-------------------	--------------	-------------	-----

Total Activity Discharged in First Q	uarter of CY 2023 (Ci)	Total Activity Discharged through 03/31/23 (Ci)		
Th-228	4.7E-07	Th-228	4.7E-07	
Th-230	2.1E-06	Th-230	2.1E-06	
Th-232	3.3E-07	Th-232	3.3E-07	
Uranium (Isotopic U) ^c	3.9E-05	Uranium (Isotopic U) ^c	3.9E-05	
Ra-226	8.3E-07	Ra-226	8.3E-07	
Ra-228 ^e	4.7E-07	Ra-228 ^e	4.7E-07	

Total Volume Discharged in First Quarter of CY 2023 (gallons) Gallons 218.324

Total Volume Discharged through 03/31/23 (gallons) Gallons 218,324

Notes:

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

^a Non-detect sample results are converted to half the DL in January and February.

DLs are substituted for non-detect sample results moving forward.

^b The weighted average was used to calculate the total activity.

^c Total U (KPA) is unavailable and sum of isotopic results are being substituted.

^d 10 CFR 20 limit is 600 pCi/L for Ra-226.

^e Ra-228 assumed to be in equilibrium with Th-228.

^f 10 CFR 20 limit is 600 pCi/L for Ra-228.

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023 Second Quarter

Parameter	Batch Number	Date of Discharge	Ba Res	tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			20.4	pCi/L		4.0E-06	3,000 pCi/L	
Gross Beta		04/03/23 - 04/17/23	<12.70	pCi/L		2.5E-06	NA	
Th-228			< 0.7	pCi/L		1.4E-07	2,000 pCi/L	
Th-230	SLDS-		1.5	pCi/L		3.0E-07	1,000 pCi/L	
Th-232	BK640	(Gunther	< 0.5	pCi/L	51,335	1.1E-07	300 pCi/L	
Uranium (Isotopic U) ^c	DIXOTO	Salt)	22.1	pCi/L		4.3E-06	3,000 pCi/L	
Ra-226 ^d		Sait)	<1	pCi/L		2.0E-07	10 pCi/L	
Ra-228 ^{e,f}			< 0.7	pCi/L		1.4E-07	30 pCi/L	
TSS			41.9	mg/L		-	-	
Gross Alpha (raw water)			22.9	pCi/L		6.3E-06	3,000 pCi/L	
Gross Beta			17.7	pCi/L		4.9E-06	NA	
Th-228		05/04/23 -	< 0.7	pCi/L		1.9E-07	2,000 pCi/L	
Th-230	SLDS-	05/16/23	2.9	pCi/L		7.9E-07	1,000 pCi/L	
Th-232	BK641	(Gunther	< 0.6	pCi/L	72,630	1.6E-07	300 pCi/L	0.02
Uranium (Isotopic U) ^c	DICOTI	Salt)	20.6	pCi/L		5.7E-06	3,000 pCi/L	
Ra-226 ^d			<1.1	pCi/L		3.3E-07	10 pCi/L	
Ra-228 ^{e,f}			< 0.7	pCi/L		1.9E-07	30 pCi/L	
TSS			215.2	mg/L		-	-	

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023 **Second Quarter (Continued)**

Parameter	Batch Number	Date of Discharge	Batch Results ^a		Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	ivity MSD er Discharge narge Limit		SOR
Gross Alpha (raw water)			17.6	pCi/L		3.9E-06	3,000	pCi/L	
Gross Beta		0.6/12/22	12.6	pCi/L		2.8E-06	N	A	
Th-228			< 0.6	pCi/L		1.4E-07	2,000	pCi/L	
Th-230	CLDC	06/12/23 -	1.4	pCi/L		3.2E-07	1,000	pCi/L	
Th-232	SLDS- BK642	06/29/23 (Gunther	< 0.7	pCi/L	58,920	1.5E-07	300	pCi/L	0.01
Uranium (Isotopic U) ^c	DK042	Salt)	21.7	pCi/L		4.8E-06	3,000	pCi/L	
Ra-226 ^d		Sait)	< 0.9	pCi/L		2.0E-07	10	pCi/L	
Ra-228 ^{e,f}			< 0.6	pCi/L		1.4E-07	30	pCi/L	
TSS			53.1	mg/L		-	-	ı	

Total Activity Discharged in Secon	nd Quarter of CY 2023 (C	Zi)
------------------------------------	--------------------------	-----

Total Activity Discharged in Second	Quarter of CY 2023 (Ci)	Total Activity Discharged through 06/30/23 (Ci)			
Th-228	4.7E-07	Th-228	9.4E-07		
Th-230	1.4E-06	Th-230	3.5E-06		
Th-232	4.3E-07	Th-232	7.6E-07		
Uranium (Isotopic U) ^c	1.5E-05	Uranium (Isotopic U) ^c	5.4E-05		
Ra-226	7.3E-07	Ra-226	1.6E-06		
Ra-228 ^e	4.7E-07	Ra-228 ^e	9.4E-07		

Total Volume Discharged in Second Quarter of CY 2023 (gallons) Gallons 182,885

Total Volume Discharged through 06/30/23 (gallons) Gallons 401,209

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

^a Non-detect sample results are converted to the DL.

^b The weighted average was used to calculate the total activity.

^c Total U (KPA) is unavailable and sum of isotopic results are being substituted.

^d 10 CFR 20 limit is 600 pCi/L for Ra-226.

^e Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm f}$ 10 CFR 20 limit is 600 pCi/L for Ra-228.

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023
Third Quarter

Parameter	Batch Number	Date of Discharge	Batch Results ^a				Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			17.5	pCi/L		8.6E-06	3,000 pCi/L			
Gross Beta		07/01/23 - 07/31/23	25.4	pCi/L		1.3E-05	NA			
Th-228			< 0.5	pCi/L		2.6E-07	2,000 pCi/L			
Th-230	SLDS-		2.4	pCi/L		1.2E-06	1,000 pCi/L			
Th-232	BK643	(Gunther	Gunther <0.5 pCi/L	130,241	2.5E-07	300 pCi/L	0.01			
Uranium (Isotopic U) ^c	DIXO43	Salt)	22	pCi/L		1.1E-05	3,000 pCi/L			
Ra-226 ^d			0.9	pCi/L		4.4E-07	10 pCi/L			
Ra-228 ^{e,f}			< 0.5	pCi/L		2.6E-07	30 pCi/L			
TSS			119.6	mg/L		-	-			
Gross Alpha (raw water)			20.0	pCi/L		5.5E-06	3,000 pCi/L			
Gross Beta			20.3	pCi/L		5.6E-06	NA			
Th-228		08/02/23 -	0.5	pCi/L		1.4E-07	2,000 pCi/L			
Th-230	SLDS-	08/02/23 -	2.1	pCi/L		5.8E-07	1,000 pCi/L			
Th-232	BK644	(Gunther	< 0.5	pCi/L	72,514	1.4E-07	300 pCi/L	0.01		
Uranium (Isotopic U) ^c	DIXOTT	Salt)	20.0	pCi/L		5.5E-06	3,000 pCi/L			
Ra-226 ^d]		< 0.8	<0.8 pCi/L		2.1E-07	10 pCi/L			
Ra-228 ^{e,f}]		0.5	pCi/L		1.4E-07	30 pCi/L			
TSS			58.7	mg/L		-	-			

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023
Third Quarter (Continued)

Parameter	Batch Number	Date of Discharge	Batch Results ^a		Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			33.5	pCi/L		9.4E-06	3,000 pCi/L	
Gross Beta		00/06/22	28.7	pCi/L		8.1E-06	NA	
Th-228			< 0.6	pCi/L		1.8E-07	2,000 pCi/L	
Th-230	SLDS-	09/06/23 - 09/27/23	4.0	pCi/L		1.1E-06	1,000 pCi/L	
Th-232	BK645	(Gunther	< 0.6	pCi/L	74,501	1.7E-07	300 pCi/L	0.02
Uranium (Isotopic U) ^c	BK043	Salt)	37	pCi/L		1.0E-05	3,000 pCi/L	
Ra-226 ^d		Sait)	<1.6	pCi/L		4.5E-07	10 pCi/L	
Ra-228 ^{e,f}			< 0.6	pCi/L		1.8E-07	30 pCi/L	
TSS			232.9	mg/L		-	-	

Total Activit	v Discharged	in Third	Ouarter	of CY	2023 ((Ci)
----------------------	--------------	----------	---------	-------	--------	------

		, e	•
Th-228	5.8E-07	Th-228	1.5E-06
Th-230	2.9E-06	Th-230	6.4E-06
Th-232	5.6E-07	Th-232	1.3E-06
Uranium (Isotopic U)	c 2.7E-05	Uranium (Isotopic U) ^c	8.0E-05
Ra-226	1.1E-06	Ra-226	2.7E-06
Ra-228 ^e	5.8E-07	Ra-228 ^e	1.5E-06

Total Volume Discharged in Third Quarter of CY 2023 (gallons) Gallons 277.256

Total Volume Discharged through 09/30/23 (gallons)
Gallons 678,465

Total Activity Discharged through 09/30/23 (Ci)

Notes

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

 $TSS \hbox{ - total suspended } solid(s)$

^a Non-detect sample results are converted to the DL.

^b The weighted average was used to calculate the total activity.

^c Total U (KPA) is unavailable and sum of isotopic results are being substituted.

^d 10 CFR 20 limit is 600 pCi/L for Ra-226.

^e Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm f}$ 10 CFR 20 limit is 600 pCi/L for Ra-228.

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023 Fourth Quarter

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MS Disch Lin	arge	SOR
Gross Alpha (raw water)			27.9	pCi/L		5.1E-06	3,000	pCi/L	
Gross Beta			19.9	pCi/L		3.6E-06	N.	A	
Th-228		10/05/23 -	< 0.6	pCi/L		1.0E-07	2,000	pCi/L	
Th-230	SLDS-	10/03/23 -	1.1	pCi/L		2.0E-07	1,000	pCi/L	
Th-232	BK646	(Gunther	< 0.6	pCi/L	48,119	1.0E-07	300	pCi/L	0.02
Uranium (Isotopic U) ^c	DIXOTO	Salt)	33.8	pCi/L		6.2E-06	3,000	pCi/L	
Ra-226 ^d		Suit	< 0.9	pCi/L		1.7E-07	10	pCi/L	
Ra-228 ^{e,f}			< 0.6	pCi/L		1.0E-07	30	pCi/L	
TSS			28.3	mg/L		-	-	•	
Gross Alpha (raw water)			24.1	pCi/L		1.8E-06	3,000	pCi/L	
Gross Beta			<12.9	pCi/L		9.9E-07	N.	A	
Th-228			< 0.7	pCi/L		5.4E-08	2,000	pCi/L	
Th-230	SLDS-	11/21/23	1.4	pCi/L		1.1E-07	1,000	pCi/L	
Th-232	BK647	(Gunther	< 0.5	pCi/L	20,230	3.5E-08	300	pCi/L	0.02
Uranium (Isotopic U) ^c	DIXOT/	Salt)	28.5	pCi/L		2.2E-06	3,000	pCi/L	
Ra-226 ^d			<1	pCi/L		7.5E-08	10	pCi/L	
Ra-228 ^{e,f}			< 0.7	pCi/L		5.4E-08	30	pCi/L	
TSS			34.8	mg/L		-	-		

Table D-1. Self-Monitoring Report for Excavation Water Discharge During CY 2023 Fourth Quarter (Continued)

Parameter	Batch Number	Date of Discharge		tch ults ^a	Amount Discharged (Gallons)	Total Activity per Discharge (Ci) ^b	MSD Discharge Limit	SOR
Gross Alpha (raw water)			31.8	pCi/L		8.1E-06	3,000 pCi/	L
Gross Beta			15.7	pCi/L		4.0E-06	NA	
Th-228		10/04/02	< 0.6	pCi/L		1.5E-07	2,000 pCi/	L
Th-230	SLDS-	12/04/23 - 12/28/23	1.3	pCi/L		3.3E-07	1,000 pCi/	L
Th-232	BK648	(Gunther	< 0.5	pCi/L	67,029	1.1E-07	300 pCi/	L 0.02
Uranium (Isotopic U) ^c	BK048	Salt)	37.0	pCi/L		9.4E-06	3,000 pCi/	L
Ra-226 ^d		Sait)	< 0.7	pCi/L		1.8E-07	10 pCi/	L
Ra-228 ^{e,f}			< 0.6	pCi/L		1.5E-07	30 pCi/	L
TSS			21.9	mg/L		-	-	

Total Activity	Discharged in	Fourth (Duarter of	CY 2023	(Ci)

- ,	•	. ,
3.1E-07	Th-228	1.8E-06
6.4E-07	Th-230	7.1E-06
2.5E-07	Th-232	1.6E-06
1.8E-05	Uranium (Isotopic U) ^c	9.8E-05
4.2E-07	Ra-226	3.1E-06
3.1E-07	Ra-228 ^e	1.8E-06
	6.4E-07 2.5E-07 1.8E-05 4.2E-07	6.4E-07 Th-230 2.5E-07 Th-232 1.8E-05 Uranium (Isotopic U) ^c 4.2E-07 Ra-226

Total Volume Discharged in Fourth Quarter of CY 2023 (gallons) Gallons 135,378

Total Volume Discharged through 12/31/23 (gallons)
Gallons 813,843

Total Activity Discharged through 12/31/23 (Ci)

Notes

- No data/No limit

KPA - kinetic phosphorescence analysis

NA - not applicable

SOR - sum of ratios

TSS - total suspended solid(s)

^a Non-detect sample results are converted to the DL.

^b The weighted average was used to calculate the total activity.

^e Total U (KPA) is unavailable and sum of isotopic results are being substituted.

^d 10 CFR 20 limit is 600 pCi/L for Ra-226.

^e Ra-228 assumed to be in equilibrium with Th-228.

 $^{^{\}rm f}$ 10 CFR 20 limit is 600 pCi/L for Ra-228.

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
APPENDIX E
GROUNDWATER FIELD PARAMETER AND ANALYTICAL DATA RESULTS FOR CALENDAR YEAR 2023

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
THE DACE INTENTIONALLY LEED DE ANIZ
THIS PAGE INTENTIONALLY LEFT BLANK

Table E-1. Groundwater Monitoring Field Parameters First Quarter 2023

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 02/20/23
B16W06D											36.84
B16W06S											34.95
B16W07D											39.48
B16W08D	02/20/23	300	2,700	6.79	1.99	29.7	0.44	15.73	-122	39.52	39.52
B16W08S											36.84
B16W09D											35.38
B16W12S											17.62
DW14											**
DW15											41.32
DW16											36.78
DW17											**
DW18											40.72
DW19RD											36.68
DW19RS											**
DW21	02/20/23	50	450	6.72	6.60	28.1	0.77	14.71	-126	12.50	12.05

Table E-1. Groundwater Monitoring Field Parameters (Continued)
Second Quarter 2023

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 05/22/23
B16W06D											22.62
B16W06S											24.11
B16W07D											25.02
B16W08D											25.16
B16W08S											22.56
B16W09D											20.83
B16W12S											16.05
DW14	05/23/23	150	3,600	6.81	4.72	131	0.16	21.09	-152	19.42	18.85
DW15											26.49
DW16											21.99
DW17											24.06
DW18											26.42
DW19RD											22.00
DW19RS	05/23/23	50	4/14/1903	6.88	3.41	51.9	0.20	18.21	-152	19.42	19.40
DW21											10.53

Table E-1. Groundwater Monitoring Field Parameters (Continued)
Third Quarter 2023

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 09/06/23
B16W06D											42.59
B16W06S											37.35
B16W07D											44.2
B16W08D											44.95
B16W08S											34.97
B16W09D											39.15
B16W12S	10/23/23	85	8/10/1910	7.07	1.27	27.93	1.44	17.76	165	18.92	18.41
DW14											**
DW15											44.62
DW16											40.42
DW17											**
DW18											45.83
DW19RD											40.37
DW19RS											**
DW21	09/07/23	50	900	6.79	7.21	0.0	0.70	18.32	-155	12.09	11.75

Table E-1. Groundwater Monitoring Field Parameters (Continued)
Fourth Quarter 2023

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 10/23/23
B16W06D	10/26/23	200	26,000	6.70	7.18	1.3	0.59	16.95	-133	41.50	41.04
B16W06S											37.57
B16W07D	10/31/23	270	20,250	6.85	2.34	2.2	0.62	16.41	-146	42.69	43.71
B16W08D	10/30/23	280	14,320	6.86	1.91	0.5	0.86	16.03	-135	43.12	43.78
B16W08S											35.44
B16W09D	10/31/23	290	11,310	6.84	3.44	56.1	0.52	17.90	-129	38.87	39.50
B16W12S											18.52
DW14											**
DW15	10/24/23	245	11,025	6.72	5.02	1.3	0.76	18.35	-144	45.33	45.35
DW16											**
DW17											**
DW18	10/24/23	300	18,000	7.05	2.07	3.7	0.94	16.82	-177	45.16	45.13
DW19RD	11/01/23	150	7,800	6.89	1.79	0.0	0.51	16.24	-129	40.07	40.83
DW19RS											**
DW21	10/25/23	53	5,867	6.18	7.06	6.2	1.13	19.01	-142	13.27	12.96

Table E-1. Groundwater Monitoring Field Parameters (Continued)
Comprehensive 2023

Station ID	Date Sampled	Purge Rate (mL/minute)	Volume Removed (mL)	pН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°C)	ORP (mV)	Depth to Water (ft) at Sampling Time	Depth to Water (ft) (BTOC) 06/12/23
B16W06D	06/12/23	200	4,500	6.63	11.7	17.5	0.19	16.60	-110	35.60	NM
B16W06S	06/12/23	100	1,200	7.05	1.06	37.0	1.06	17.16	-151	33.72	NM
B16W07D	06/06/23	250	5,250	6.90	2.21	44.2	0.54	18.13	-148	33.90	NM
B16W08D	06/13/23	250	4,500	6.84	2.05	9.3	0.89	16.90	-129	38.55	NM
B16W08S	06/13/23	70	1,050	6.88	1.20	12.3	0.99	17.01	-34	31.89	NM
B16W09D	06/19/23	300	6,300	6.90	1.78	11.8	0.31	19.71	-141	35.78	NM
B16W12S	06/08/23	80	1,680	6.61	1.33	34.3	1.74	17.65	267	17.10	NM
DW14	06/05/23	150	2,700	6.87	4.60	114	0.26	22.76	-160	25.28	NM
DW15	06/08/23	250	3,750	6.73	4.40	29.2	0.21	18.52	-136	34.95	NM
DW16	06/07/23	300	6,300	6.80	1.65	36.5	0.34	17.84	-98	30.97	NM
DW17	06/06/23	300	6,300	6.71	1.69	125	0.85	17.90	191	33.00	NM
DW18	06/19/23	300	3,600	7.01	1.84	78.2	0.12	17.80	-177	42.26	NM
DW19RD	06/06/23	150	2,700	6.95	1.71	74.2	0.24	19.36	-133	30.73	NM
DW19RS	06/05/23	50	1,050	6.88	3.09	48.5	0.41	19.15	-136	23.64	NM
DW21	06/07/23	50	750	6.85	5.82	44.3	0.88	17.54	-147	11.50	NM

^{*} Monitoring well B16W06S was not sampled during the 4th quarter of 2023. Drawdown was below pump intake.

BTOC - below top of casing

DO - dissolved oxygen

ORP - oxidation reduction potential

NM - not measured - Depth to water measured quarterly and not measured during the comprehensive event.

^{**} Measurement could not be taken because water level was below the top of bladder pump at DW14, DW17, and DW19RS during the first quarter of 2023; at DW14 and DW17 and DW19RS during the third quarter of 2023; and at DW14, DW16, DW17, and DW19RS during the fourth quarter of 2023.

⁻⁻⁻ Monitoring well was not sampled during this event.

Table E-2. CY 2023 Groundwater Sampling Data

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	vQ	Validation Reason Code	Filtered
SLD266930	B16W06D	06/12/23	SW846 6020	Arsenic	1.9		1.6	μg/L	=		No
SLD266930	B16W06D	06/12/23	SW846 6020	Cadmium	0.32		0.2	μg/L	J	E01, E08	No
SLD266930	B16W06D	06/12/23	ML-005	Th-228	0.902	0.502	0.456	pCi/L	J	T04, T20	No
SLD266930	B16W06D	06/12/23	ML-005	Th-230	1.35	0.614	0.457	pCi/L	J	F01	No
SLD266930	B16W06D	06/12/23	ML-005	Th-232	0.174	0.222	0.336	pCi/L	UJ	T06	No
SLD266930	B16W06D	06/12/23	ML-006	Ra-226	1.58	0.776	0.61	pCi/L	=		No
SLD266930	B16W06D	06/12/23	ML-015	U-234	0.0601	0.165	0.426	pCi/L	UJ	T06	No
SLD266930	B16W06D	06/12/23	ML-015	U-235	0	0.28	0.728	pCi/L	UJ	T06	No
SLD266930	B16W06D	06/12/23	ML-015	U-238	0.0599	0.165	0.424	pCi/L	UJ	T06	No
SLD270136	B16W06D	10/26/23	SW846 6020	Arsenic	1.6		1.6	μg/L	U		No
SLD270136	B16W06D	10/26/23	SW846 6020	Cadmium	0.29		0.06	μg/L	=		No
SLD270136	B16W06D	10/26/23	ML-005	Th-228	0.64	0.459	0.611	pCi/L	J	T04, T20	No
SLD270136	B16W06D	10/26/23	ML-005	Th-230	1.42	0.65	0.496	pCi/L	=		No
SLD270136	B16W06D	10/26/23	ML-005	Th-232	0.0505	0.139	0.357	pCi/L	UJ	T06	No
SLD270136	B16W06D	10/26/23	ML-006	Ra-226	1.89	0.765	0.5	pCi/L	=		No
SLD270136	B16W06D	10/26/23	ML-015	U-234	0.342	0.326	0.383	pCi/L	UJ	T04, T05	No
SLD270136	B16W06D	10/26/23	ML-015	U-235	0	0.251	0.654	pCi/L	UJ	T06	No
SLD270136	B16W06D	10/26/23	ML-015	U-238	0.0359	0.152	0.458	pCi/L	UJ	T06	No
SLD266931	B16W06S	06/12/23	SW846 6020	Arsenic	190		1.6	μg/L	=		No
SLD266931	B16W06S	06/12/23	SW846 6020	Cadmium	0.2		0.2	μg/L	U	E01, E08	No
SLD266931	B16W06S	06/12/23	ML-005	Th-228	0.187	0.25	0.459	pCi/L	UJ	T06	No
SLD266931	B16W06S	06/12/23	ML-005	Th-230	1.12	0.558	0.46	pCi/L	J	F01	No
SLD266931	B16W06S	06/12/23	ML-005	Th-232	0	0.176	0.459	pCi/L	UJ	T06	No
SLD266931	B16W06S	06/12/23	ML-006	Ra-226	0.744	0.538	0.759	pCi/L	UJ	T04, T05	No
SLD266931	B16W06S	06/12/23	ML-015	U-234	0	0.208	0.542	pCi/L	UJ	T06	No
SLD266931	B16W06S	06/12/23	ML-015	U-235	0	0.257	0.668	pCi/L	UJ	T06	No
SLD266931	B16W06S	06/12/23	ML-015	U-238	0.0733	0.207	0.539	pCi/L	UJ	T06	No
SLD266932	B16W07D	06/06/23	SW846 6020	Arsenic	22		1.6	μg/L	=		No
SLD266932	B16W07D	06/06/23	SW846 6020	Cadmium	0.2		0.2	μg/L	U	E01, E08	No
SLD266932	B16W07D	06/06/23	ML-005	Th-228	0.267	0.368	0.703	pCi/L	UJ	T06	No
SLD266932	B16W07D	06/06/23	ML-005	Th-230	1.07	0.654	0.655	pCi/L	J	F01, T04, T20	No
SLD266932	B16W07D	06/06/23	ML-005	Th-232	-0.0222	0.183	0.471	pCi/L	UJ	T06	No
SLD266932	B16W07D	06/06/23	ML-006	Ra-226	1.64	0.728	0.766	pCi/L	=		No
SLD266932	B16W07D	06/06/23	ML-015	U-234	0.731	0.458	0.361	pCi/L	J	T04, T20	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD266932	B16W07D	06/06/23	ML-015	U-235	0.0839	0.237	0.618	pCi/L	UJ	T06	No
SLD266932	B16W07D	06/06/23	ML-015	U-238	0.406	0.361	0.498	pCi/L	UJ	T04, T05	No
SLD270138	B16W07D	10/31/23	SW846 6020	Arsenic	24		1.6	μg/L	=		No
SLD270138	B16W07D	10/31/23	SW846 6020	Cadmium	0.1		0.06	μg/L	=		No
SLD270138	B16W07D	10/31/23	ML-005	Th-228	0.416	0.359	0.384	pCi/L	J	T04, T20	No
SLD270138	B16W07D	10/31/23	ML-005	Th-230	1.48	0.685	0.463	pCi/L	J	F01	No
SLD270138	B16W07D	10/31/23	ML-005	Th-232	0.127	0.208	0.384	pCi/L	UJ	T06	No
SLD270138	B16W07D	10/31/23	ML-006	Ra-226	0.886	0.517	0.478	pCi/L	J	T04, T20	No
SLD270138	B16W07D	10/31/23	ML-015	U-234	2.14	1.11	0.828	pCi/L	J	T04, T20	No
SLD270138	B16W07D	10/31/23	ML-015	U-235	0.16	0.453	1.18	pCi/L	UJ	T06	No
SLD270138	B16W07D	10/31/23	ML-015	U-238	2	1.07	0.824	pCi/L	J	T04, T20	No
SLD270138-1	B16W07D	10/31/23	SW846 6020	Arsenic	22		1.6	μg/L	=		No
SLD270138-1	B16W07D	10/31/23	SW846 6020	Cadmium	0.15		0.06	μg/L	=		No
SLD270138-1	B16W07D	10/31/23	ML-005	Th-228	0.381	0.329	0.352	pCi/L	J	T04, T20	No
SLD270138-1	B16W07D	10/31/23	ML-005	Th-230	0.663	0.446	0.488	pCi/L	J	F01, T04, T20	No
SLD270138-1	B16W07D	10/31/23	ML-005	Th-232	0.0497	0.137	0.352	pCi/L	UJ	T06	No
SLD270138-1	B16W07D	10/31/23	ML-006	Ra-226	0.249	0.294	0.48	pCi/L	UJ	T06	No
SLD270138-1	B16W07D	10/31/23	ML-015	U-234	1.74	0.868	0.633	pCi/L	J	T04, T20	No
SLD270138-1	B16W07D	10/31/23	ML-015	U-235	-0.0306	0.252	0.65	pCi/L	UJ	T06	No
SLD270138-1	B16W07D	10/31/23	ML-015	U-238	2.05	0.937	0.524	pCi/L	=		No
SLD270138-2	B16W07D	10/31/23	SW846 9320 MODL	Ra-228	1.28	0.567	0.727	pCi/L	=		No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	Th-228	-0.0844	0.142	0.305	pCi/L	UJ	T06	No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	Th-230	0.262	0.226	0.273	pCi/L	UJ	T04, T05	No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	Th-232	-0.000676	0.0889	0.201	pCi/L	UJ	T06	No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	U-234	2.06	0.515	0.174	pCi/L	=		No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	U-235	0.0525	0.102	0.196	pCi/L	UJ	T06	No
SLD270138-2	B16W07D	10/31/23	EML A-01-R MOD	U-238	2.24	0.537	0.136	pCi/L	=		No
SLD270138-2	B16W07D	10/31/23	SW846 9315 MODL	Ra-226	0.261	0.198	0.285	pCi/L	UJ	T04, T05	No
SLD265845	B16W08D	02/20/23	SW846 6020	Arsenic	21		1.6	μg/L	=		No
SLD265845	B16W08D	02/20/23	SW846 6020	Cadmium	1.4		0.2	μg/L	J	E01, E08	No
SLD265845	B16W08D	02/20/23	ML-005	Th-228	0.763	0.487	0.51	pCi/L	J	F01, T04, T20	No
SLD265845	B16W08D	02/20/23	ML-005	Th-230	1.18	0.603	0.511	pCi/L	J	F01, T04, T20	No
SLD265845	B16W08D	02/20/23	ML-005	Th-232	0.052	0.143	0.368	pCi/L	UJ	T06	No
SLD265845	B16W08D	02/20/23	ML-006	Ra-226	0.491	0.407	0.508	pCi/L	UJ	T04, T05	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD265845	B16W08D	02/20/23	ML-015	U-234	0.479	0.381	0.377	pCi/L	J	T04, T20	No
SLD265845	B16W08D	02/20/23	ML-015	U-235	-0.0219	0.181	0.465	pCi/L	UJ	T06	No
SLD265845	B16W08D	02/20/23	ML-015	U-238	0.247	0.288	0.451	pCi/L	UJ	T06	No
SLD266933	B16W08D	06/13/23	SW846 6020	Arsenic	19		1.6	μg/L	=		No
SLD266933	B16W08D	06/13/23	SW846 6020	Cadmium	0.33		0.2	μg/L	J	E01, E08	No
SLD266933	B16W08D	06/13/23	ML-005	Th-228	0.476	0.388	0.5	pCi/L	UJ	T04, T05	No
SLD266933	B16W08D	06/13/23	ML-005	Th-230	1.09	0.573	0.501	pCi/L	J	F01, T04, T20	No
SLD266933	B16W08D	06/13/23	ML-005	Th-232	0.0679	0.192	0.5	pCi/L	UJ	T06	No
SLD266933	B16W08D	06/13/23	ML-006	Ra-226	0.499	0.508	0.747	pCi/L	UJ	T06	No
SLD266933	B16W08D	06/13/23	ML-015	U-234	0.0604	0.166	0.428	pCi/L	UJ	T06	No
SLD266933	B16W08D	06/13/23	ML-015	U-235	0	0.281	0.732	pCi/L	UJ	T06	No
SLD266933	B16W08D	06/13/23	ML-015	U-238	0.0802	0.227	0.59	pCi/L	UJ	T06	No
SLD270139	B16W08D	10/30/23	SW846 6020	Arsenic	22		1.6	μg/L	=		No
SLD270139	B16W08D	10/30/23	SW846 6020	Cadmium	0.44		0.06	μg/L	=		No
SLD270139	B16W08D	10/30/23	ML-005	Th-228	0.314	0.311	0.517	pCi/L	UJ	T04, T05	No
SLD270139	B16W08D	10/30/23	ML-005	Th-230	0.328	0.283	0.303	pCi/L	J	T04, T20	No
SLD270139	B16W08D	10/30/23	ML-005	Th-232	0.114	0.198	0.419	pCi/L	UJ	T06	No
SLD270139	B16W08D	10/30/23	ML-006	Ra-226	0.4	0.443	0.852	pCi/L	UJ	T06	No
SLD270139	B16W08D	10/30/23	ML-015	U-234	0.127	0.248	0.542	pCi/L	UJ	T06	No
SLD270139	B16W08D	10/30/23	ML-015	U-235	0.21	0.364	0.771	pCi/L	UJ	T06	No
SLD270139	B16W08D	10/30/23	ML-015	U-238	0.0846	0.239	0.622	pCi/L	UJ	T06	No
SLD266934	B16W08S	06/13/23	SW846 6020	Arsenic	2.2		1.6	μg/L	=		No
SLD266934	B16W08S	06/13/23	SW846 6020	Cadmium	0.38		0.2	μg/L	J	E01, E08	No
SLD266934	B16W08S	06/13/23	ML-005	Th-228	0.243	0.263	0.345	pCi/L	UJ	T06	No
SLD266934	B16W08S	06/13/23	ML-005	Th-230	0.747	0.46	0.415	pCi/L	J	F01, T04, T20	No
SLD266934	B16W08S	06/13/23	ML-005	Th-232	0	0.183	0.477	pCi/L	UJ	T06	No
SLD266934	B16W08S	06/13/23	ML-006	Ra-226	0.249	0.499	1.17	pCi/L	UJ	T06	No
SLD266934	B16W08S	06/13/23	ML-015	U-234	3.99	1.56	0.713	pCi/L	=		No
SLD266934	B16W08S	06/13/23	ML-015	U-235	0.331	0.575	1.22	pCi/L	UJ	T06	No
SLD266934	B16W08S	06/13/23	ML-015	U-238	3.21	1.4	0.984	pCi/L	=		No
SLD266935	B16W09D	06/19/23	SW846 6020	Arsenic	25		1.6	μg/L	=		No
SLD266935	B16W09D	06/19/23	SW846 6020	Cadmium	0.2		0.2	μg/L	U		No
SLD266935	B16W09D	06/19/23	ML-005	Th-228	0.607	0.333	0.493	pCi/L	J	T04, T20	No
SLD266935	B16W09D	06/19/23	ML-005	Th-230	1.25	0.421	0.269	pCi/L	J	F01	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD266935	B16W09D	06/19/23	ML-005	Th-232	0.223	0.182	0.235	pCi/L	UJ	T04, T05	No
SLD266935	B16W09D	06/19/23	ML-006	Ra-226	1.17	0.649	0.615	pCi/L	J	T04, T20	No
SLD266935	B16W09D	06/19/23	ML-015	U-234	0.181	0.314	0.665	pCi/L	UJ	T06	No
SLD266935	B16W09D	06/19/23	ML-015	U-235	0	0.315	0.82	pCi/L	UJ	T06	No
SLD266935	B16W09D	06/19/23	ML-015	U-238	0	0.254	0.662	pCi/L	UJ	T06	No
SLD270141	B16W09D	10/31/23	SW846 6020	Arsenic	8.2		1.6	μg/L	=		No
SLD270141	B16W09D	10/31/23	SW846 6020	Cadmium	0.1		0.06	μg/L	=		No
SLD270141	B16W09D	10/31/23	ML-005	Th-228	0.473	0.385	0.497	pCi/L	UJ	T04, T05	No
SLD270141	B16W09D	10/31/23	ML-005	Th-230	0.811	0.495	0.497	pCi/L	J	F01, T04, T20	No
SLD270141	B16W09D	10/31/23	ML-005	Th-232	0.27	0.303	0.497	pCi/L	UJ	T06	No
SLD270141	B16W09D	10/31/23	ML-006	Ra-226	1.32	0.62	0.678	pCi/L	=		No
SLD270141	B16W09D	10/31/23	ML-015	U-234	1.95	0.939	0.569	pCi/L	=		No
SLD270141	B16W09D	10/31/23	ML-015	U-235	-0.0353	0.267	0.702	pCi/L	UJ	T06	No
SLD270141	B16W09D	10/31/23	ML-015	U-238	1.84	0.909	0.567	pCi/L	=		No
SLD266936	B16W12S	06/08/23	SW846 6020	Arsenic	1.6		1.6	μg/L	U		No
SLD266936	B16W12S	06/08/23	SW846 6020	Cadmium	0.51		0.2	μg/L	J	E01, E08	No
SLD266936	B16W12S	06/08/23	ML-005	Th-228	0.48	0.334	0.291	pCi/L	J	T04, T20	No
SLD266936	B16W12S	06/08/23	ML-005	Th-230	0.536	0.353	0.292	pCi/L	J	F01, T04, T20	No
SLD266936	B16W12S	06/08/23	ML-005	Th-232	0.0549	0.155	0.404	pCi/L	UJ	T06	No
SLD266936	B16W12S	06/08/23	ML-006	Ra-226	0.127	0.22	0.467	pCi/L	UJ	T06	No
SLD266936	B16W12S	06/08/23	ML-015	U-234	1.58	0.632	0.313	pCi/L	=		No
SLD266936	B16W12S	06/08/23	ML-015	U-235	0.0546	0.15	0.386	pCi/L	UJ	T06	No
SLD266936	B16W12S	06/08/23	ML-015	U-238	1.81	0.677	0.312	pCi/L	=		No
SLD270142	B16W12S	10/23/23	SW846 6020	Arsenic	1.6		1.6	μg/L	=		No
SLD270142	B16W12S	10/23/23	SW846 6020	Cadmium	0.63		0.06	μg/L	=		No
SLD270142	B16W12S	10/23/23	ML-005	Th-228	0.425	0.377	0.611	pCi/L	UJ	T04, T05	No
SLD270142	B16W12S	10/23/23	ML-005	Th-230	0.593	0.391	0.323	pCi/L	J	T04, T20	No
SLD270142	B16W12S	10/23/23	ML-005	Th-232	0.243	0.273	0.447	pCi/L	UJ	T06	No
SLD270142	B16W12S	10/23/23	ML-006	Ra-226	0.0339	0.28	0.795	pCi/L	UJ	T06	No
SLD270142	B16W12S	10/23/23	ML-015	U-234	1.26	0.662	0.579	pCi/L	J	T04, T20	No
SLD270142	B16W12S	10/23/23	ML-015	U-235	0.194	0.337	0.714	pCi/L	UJ	T06	No
SLD270142	B16W12S	10/23/23	ML-015	U-238	1.17	0.638	0.576	pCi/L	J	T04, T20	No
SLD266919	DW14	05/23/23	SW846 6020	Arsenic	130		1.6	μg/L	=		No
SLD266919	DW14	05/23/23	SW846 6020	Cadmium	1.2		0.2	μg/L	J	E01, E08	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD266919	DW14	05/23/23	ML-005	Th-228	2.65	1.02	0.65	pCi/L	J	T04	No
SLD266919	DW14	05/23/23	ML-005	Th-230	0.85	0.569	0.542	pCi/L	J	T04, T20	No
SLD266919	DW14	05/23/23	ML-005	Th-232	0.177	0.306	0.65	pCi/L	UJ	T06	No
SLD266919	DW14	05/23/23	ML-006	Ra-226	5.73	1.56	1.22	pCi/L	=		No
SLD266919	DW14	05/23/23	ML-015	U-234	2.24	0.887	0.428	pCi/L	=		No
SLD266919	DW14	05/23/23	ML-015	U-235	0	0.281	0.732	pCi/L	UJ	T06	No
SLD266919	DW14	05/23/23	ML-015	U-238	1.5	0.719	0.426	pCi/L	=		No
SLD266937	DW14	06/05/23	SW846 6020	Arsenic	140		1.6	μg/L	=		No
SLD266937	DW14	06/05/23	SW846 6020	Cadmium	0.68		0.2	μg/L	J	E01, E08	No
SLD266937	DW14	06/05/23	ML-005	Th-228	0.494	0.378	0.528	pCi/L	UJ	T04, T05	No
SLD266937	DW14	06/05/23	ML-005	Th-230	1.16	0.547	0.428	pCi/L	J	F01	No
SLD266937	DW14	06/05/23	ML-005	Th-232	0.0436	0.12	0.308	pCi/L	UJ	T06	No
SLD266937	DW14	06/05/23	ML-006	Ra-226	2.92	0.925	0.585	pCi/L	=		No
SLD266937	DW14	06/05/23	ML-015	U-234	1.02	0.556	0.502	pCi/L	J	T04, T20	No
SLD266937	DW14	06/05/23	ML-015	U-235	0	0.238	0.62	pCi/L	UJ	T06	No
SLD266937	DW14	06/05/23	ML-015	U-238	0.442	0.366	0.434	pCi/L	J	T04, T20	No
SLD266938	DW15	06/08/23	SW846 6020	Arsenic	34		1.6	μg/L	=		No
SLD266938	DW15	06/08/23	SW846 6020	Cadmium	0.2		0.2	μg/L	U	E01, E08	No
SLD266938	DW15	06/08/23	ML-005	Th-228	0.264	0.362	0.74	pCi/L	UJ	T06	No
SLD266938	DW15	06/08/23	ML-005	Th-230	0.705	0.474	0.519	pCi/L	J	F01, T04, T20	No
SLD266938	DW15	06/08/23	ML-005	Th-232	0.246	0.287	0.45	pCi/L	UJ	T06	No
SLD266938	DW15	06/08/23	ML-006	Ra-226	0.422	0.35	0.437	pCi/L	UJ	T04, T05	No
SLD266938	DW15	06/08/23	ML-015	U-234	0.0645	0.183	0.475	pCi/L	UJ	T06	No
SLD266938	DW15	06/08/23	ML-015	U-235	0	0.225	0.586	pCi/L	UJ	T06	No
SLD266938	DW15	06/08/23	ML-015	U-238	0.0643	0.182	0.473	pCi/L	UJ	T06	No
SLD270144	DW15	10/24/23	SW846 6020	Arsenic	41		1.6	μg/L	=		No
SLD270144	DW15	10/24/23	SW846 6020	Cadmium	0.34		0.06	μg/L	=		No
SLD270144	DW15	10/24/23	ML-005	Th-228	0.567	0.374	0.309	pCi/L	J	T04, T20	No
SLD270144	DW15	10/24/23	ML-005	Th-230	0.801	0.444	0.309	pCi/L	J	T04, T20	No
SLD270144	DW15	10/24/23	ML-005	Th-232	0.291	0.286	0.428	pCi/L	UJ	T04, T05	No
SLD270144	DW15	10/24/23	ML-006	Ra-226	0.598	0.461	0.628	pCi/L	UJ	T04, T05	No
SLD270144	DW15	10/24/23	ML-015	U-234	0.0847	0.24	0.623	pCi/L	UJ	T06	No
SLD270144	DW15	10/24/23	ML-015	U-235	0	0.295	0.769	pCi/L	UJ	T06	No
SLD270144	DW15	10/24/23	ML-015	U-238	0.0843	0.239	0.62	pCi/L	UJ	T06	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD266939	DW16	06/07/23	SW846 6020	Arsenic	9.4		1.6	μg/L	=		No
SLD266939	DW16	06/07/23	SW846 6020	Cadmium	1.1		0.2	μg/L	J	E01, E08	No
SLD266939	DW16	06/07/23	ML-005	Th-228	0.408	0.381	0.625	pCi/L	UJ	T04, T05	No
SLD266939	DW16	06/07/23	ML-005	Th-230	0.718	0.459	0.481	pCi/L	J	F01, T04, T20	No
SLD266939	DW16	06/07/23	ML-005	Th-232	-0.0163	0.134	0.346	pCi/L	UJ	T06	No
SLD266939	DW16	06/07/23	ML-006	Ra-226	0.652	0.443	0.548	pCi/L	J	T04, T20	No
SLD266939	DW16	06/07/23	ML-015	U-234	0.766	0.47	0.425	pCi/L	J	T04, T20	No
SLD266939	DW16	06/07/23	ML-015	U-235	0.0821	0.232	0.604	pCi/L	UJ	T06	No
SLD266939	DW16	06/07/23	ML-015	U-238	0.994	0.544	0.524	pCi/L	J	T04, T20	No
SLD266940	DW17	06/06/23	SW846 6020	Arsenic	2.3		1.6	μg/L	=		No
SLD266940	DW17	06/06/23	SW846 6020	Cadmium	2.3		0.2	μg/L	J	E01, E08	No
SLD266940	DW17	06/06/23	ML-005	Th-228	0.485	0.399	0.587	pCi/L	UJ	T04, T05	No
SLD266940	DW17	06/06/23	ML-005	Th-230	0.566	0.394	0.344	pCi/L	J	F01, T04, T20	No
SLD266940	DW17	06/06/23	ML-005	Th-232	0.178	0.227	0.343	pCi/L	UJ	T06	No
SLD266940	DW17	06/06/23	ML-006	Ra-226	0.407	0.338	0.422	pCi/L	UJ	T04, T05	No
SLD266940	DW17	06/06/23	ML-015	U-234	1.23	0.572	0.331	pCi/L	=		No
SLD266940	DW17	06/06/23	ML-015	U-235	0.077	0.218	0.567	pCi/L	UJ	T06	No
SLD266940	DW17	06/06/23	ML-015	U-238	1.18	0.568	0.457	pCi/L	=		No
SLD266941	DW18	06/19/23	SW846 6020	Arsenic	110		1.6	μg/L	=		No
SLD266941	DW18	06/19/23	SW846 6020	Cadmium	0.45		0.2	μg/L	=		No
SLD266941	DW18	06/19/23	ML-005	Th-228	0.531	0.247	0.195	pCi/L	J	T04	No
SLD266941	DW18	06/19/23	ML-005	Th-230	1.05	0.348	0.179	pCi/L	J	F01	No
SLD266941	DW18	06/19/23	ML-005	Th-232	-0.0133	0.0593	0.179	pCi/L	UJ	T06	No
SLD266941	DW18	06/19/23	ML-006	Ra-226	0.585	0.474	0.615	pCi/L	UJ	T04, T05	No
SLD266941	DW18	06/19/23	ML-015	U-234	0	0.276	0.718	pCi/L	UJ	T06	No
SLD266941	DW18	06/19/23	ML-015	U-235	0.12	0.341	0.886	pCi/L	UJ	T06	No
SLD266941	DW18	06/19/23	ML-015	U-238	0.0728	0.2	0.516	pCi/L	UJ	T06	No
SLD270147	DW18	10/24/23	SW846 6020	Arsenic	53		1.6	μg/L	=		No
SLD270147	DW18	10/24/23	SW846 6020	Cadmium	0.06		0.06	μg/L	U		No
SLD270147	DW18	10/24/23	ML-005	Th-228	0.324	0.28	0.299	pCi/L	J	T04, T20	No
SLD270147	DW18	10/24/23	ML-005	Th-230	0.692	0.416	0.407	pCi/L	J	T04, T20	No
SLD270147	DW18	10/24/23	ML-005	Th-232	0.0423	0.116	0.299	pCi/L	UJ	T06	No
SLD270147	DW18	10/24/23	ML-006	Ra-226	0.178	0.397	0.953	pCi/L	UJ	T06	No
SLD270147	DW18	10/24/23	ML-015	U-234	0.216	0.289	0.529	pCi/L	UJ	T06	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD270147	DW18	10/24/23	ML-015	U-235	0.0887	0.251	0.653	pCi/L	UJ	T06	No
SLD270147	DW18	10/24/23	ML-015	U-238	0	0.203	0.527	pCi/L	UJ	T06	No
SLD266942	DW19RD	06/06/23	SW846 6020	Arsenic	18		1.6	μg/L	=		No
SLD266942	DW19RD	06/06/23	SW846 6020	Cadmium	0.33		0.2	μg/L	J	E01, E08	No
SLD266942	DW19RD	06/06/23	ML-005	Th-228	0.394	0.35	0.483	pCi/L	UJ	T04, T05	No
SLD266942	DW19RD	06/06/23	ML-005	Th-230	1.12	0.57	0.483	pCi/L	J	F01, T04, T20	No
SLD266942	DW19RD	06/06/23	ML-005	Th-232	0.131	0.228	0.482	pCi/L	UJ	T06	No
SLD266942	DW19RD	06/06/23	ML-006	Ra-226	0.235	0.314	0.577	pCi/L	UJ	T06	No
SLD266942	DW19RD	06/06/23	ML-015	U-234	41	6.92	0.926	pCi/L	=		No
SLD266942	DW19RD	06/06/23	ML-015	U-235	1.32	0.953	0.992	pCi/L	J	T04, T20	No
SLD266942	DW19RD	06/06/23	ML-015	U-238	39.7	6.74	0.922	pCi/L	=		No
SLD266942-1	DW19RD	06/06/23	SW846 6020	Arsenic	16		1.6	μg/L	=		No
SLD266942-1	DW19RD	06/06/23	SW846 6020	Cadmium	0.2		0.2	μg/L	U	E01, E08	No
SLD266942-1	DW19RD	06/06/23	ML-005	Th-228	0.334	0.35	0.653	pCi/L	UJ	T06	No
SLD266942-1	DW19RD	06/06/23	ML-005	Th-230	1.28	0.562	0.411	pCi/L	J	F01	No
SLD266942-1	DW19RD	06/06/23	ML-005	Th-232	0.278	0.274	0.41	pCi/L	UJ	T04, T05	No
SLD266942-1	DW19RD	06/06/23	ML-006	Ra-226	0.5	0.417	0.601	pCi/L	UJ	T04, T05	No
SLD266942-1	DW19RD	06/06/23	ML-015	U-234	43	5.47	0.424	pCi/L	=		No
SLD266942-1	DW19RD	06/06/23	ML-015	U-235	2.3	0.912	0.603	pCi/L	=		No
SLD266942-1	DW19RD	06/06/23	ML-015	U-238	45.4	5.72	0.423	pCi/L	=		No
SLD266942-2	DW19RD	06/06/23	SW846 9320 MODL	Ra-228	0.742	0.603	0.921	pCi/L	UJ	T04, T05	No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	Th-228	0.026	0.125	0.215	pCi/L	UJ	T06	No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	Th-230	0.25	0.203	0.233	pCi/L	J	T04, T20	No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	Th-232	0.00296	0.041	0.106	pCi/L	UJ	T06	No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	U-234	38.9	3.75	0.122	pCi/L	=		No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	U-235	1.96	0.49	0.151	pCi/L	=		No
SLD266942-2	DW19RD	06/06/23	EML A-01-R MOD	U-238	38.4	3.7	0.121	pCi/L	=		No
SLD266942-2	DW19RD	06/06/23	SW846 9315 MODL	Ra-226	0.352	0.193	0.241	pCi/L	J	T04, T20	No
SLD266942-2	DW19RD	06/06/23	SW846 6020	Arsenic	16		0.5	μg/L	=		No
SLD266942-2	DW19RD	06/06/23	SW846 6020	Cadmium	1.9		0.19	μg/L	=		No
SLD270149	DW19RD	11/01/23	SW846 6020	Arsenic	17		1.6	μg/L	=		No
SLD270149	DW19RD	11/01/23	SW846 6020	Cadmium	0.88		0.06	μg/L	=		No
SLD270149	DW19RD	11/01/23	ML-005	Th-228	0.539	0.429	0.424	pCi/L	J	T04, T20	No
SLD270149	DW19RD	11/01/23	ML-005	Th-230	0.799	0.538	0.588	pCi/L	J	F01, T04, T20	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD270149	DW19RD	11/01/23	ML-005	Th-232	0.0598	0.165	0.424	pCi/L	UJ	T06	No
SLD270149	DW19RD	11/01/23	ML-006	Ra-226	0.0695	0.278	0.748	pCi/L	UJ	T06	No
SLD270149	DW19RD	11/01/23	ML-015	U-234	44.8	5.88	0.388	pCi/L	=		No
SLD270149	DW19RD	11/01/23	ML-015	U-235	2.07	0.909	0.664	pCi/L	=		No
SLD270149	DW19RD	11/01/23	ML-015	U-238	42.1	5.59	0.536	pCi/L	=		No
SLD266920	DW19RS	05/23/23	SW846 6020	Arsenic	11		1.6	μg/L	=		No
SLD266920	DW19RS	05/23/23	SW846 6020	Cadmium	0.2		0.2	μg/L	J	E01, E08	No
SLD266920	DW19RS	05/23/23	ML-005	Th-228	0.256	0.287	0.47	pCi/L	UJ	T06	No
SLD266920	DW19RS	05/23/23	ML-005	Th-230	0.832	0.487	0.471	pCi/L	J	T04, T20	No
SLD266920	DW19RS	05/23/23	ML-005	Th-232	0.0639	0.181	0.47	pCi/L	UJ	T06	No
SLD266920	DW19RS	05/23/23	ML-006	Ra-226	-0.108	0.265	0.91	pCi/L	UJ	T06	No
SLD266920	DW19RS	05/23/23	ML-015	U-234	4.79	1.41	0.641	pCi/L	=		No
SLD266920	DW19RS	05/23/23	ML-015	U-235	0.215	0.373	0.791	pCi/L	UJ	T06	No
SLD266920	DW19RS	05/23/23	ML-015	U-238	3.91	1.25	0.639	pCi/L	=		No
SLD266943	DW19RS	06/05/23	SW846 6020	Arsenic	15		1.6	μg/L	=		No
SLD266943	DW19RS	06/05/23	SW846 6020	Cadmium	3.6		0.2	μg/L	J	E01, E08	No
SLD266943	DW19RS	06/05/23	ML-005	Th-228	0.388	0.321	0.439	pCi/L	UJ	T04, T05	No
SLD266943	DW19RS	06/05/23	ML-005	Th-230	0.542	0.357	0.295	pCi/L	J	F01, T04, T20	No
SLD266943	DW19RS	06/05/23	ML-005	Th-232	0.0277	0.118	0.354	pCi/L	UJ	T06	No
SLD266943	DW19RS	06/05/23	ML-006	Ra-226	0.563	0.467	0.584	pCi/L	UJ	T04, T05	No
SLD266943	DW19RS	06/05/23	ML-015	U-234	2.58	0.899	0.513	pCi/L	=		No
SLD266943	DW19RS	06/05/23	ML-015	U-235	0.323	0.348	0.457	pCi/L	UJ	T06	No
SLD266943	DW19RS	06/05/23	ML-015	U-238	2.15	0.816	0.511	pCi/L	=		No
SLD265844	DW21	02/20/23	SW846 6020	Arsenic	66		1.6	μg/L	=		No
SLD265844	DW21	02/20/23	SW846 6020	Cadmium	2.2		0.2	μg/L	J	E01, E08	No
SLD265844	DW21	02/20/23	ML-005	Th-228	1.48	0.696	0.543	pCi/L	J	F01	No
SLD265844	DW21	02/20/23	ML-005	Th-230	1.9	0.784	0.393	pCi/L	J	F01	No
SLD265844	DW21	02/20/23	ML-005	Th-232	0.369	0.364	0.543	pCi/L	UJ	T04, T05	No
SLD265844	DW21	02/20/23	ML-006	Ra-226	0.36	0.403	0.662	pCi/L	UJ	T06	No
SLD265844	DW21	02/20/23	ML-015	U-234	0.0858	0.243	0.632	pCi/L	UJ	T06	No
SLD265844	DW21	02/20/23	ML-015	U-235	-0.0265	0.218	0.562	pCi/L	UJ	T06	No
SLD265844	DW21	02/20/23	ML-015	U-238	0.0855	0.242	0.629	pCi/L	UJ	T06	No
SLD266944	DW21	06/07/23	SW846 6020	Arsenic	59		1.6	μg/L	=		No
SLD266944	DW21	06/07/23	SW846 6020	Cadmium	1.1		0.2	μg/L	J	E01, E08	No

Table E-2. CY 2023 Groundwater Sampling Data (Continued)

Site: SLDS											
Sample Name	Station Name	Sample Collect Date	Analytical Method	Analyte	Analytical Result	Measurement Error	DL	Units	VQ	Validation Reason Code	Filtered
SLD266944	DW21	06/07/23	ML-005	Th-228	0.822	0.519	0.596	pCi/L	J	T04, T20	No
SLD266944	DW21	06/07/23	ML-005	Th-230	1.68	0.724	0.516	pCi/L	J	F01	No
SLD266944	DW21	06/07/23	ML-005	Th-232	0.122	0.201	0.371	pCi/L	UJ	T06	No
SLD266944	DW21	06/07/23	ML-006	Ra-226	0.454	0.414	0.677	pCi/L	UJ	T04, T05	No
SLD266944	DW21	06/07/23	ML-015	U-234	-0.0512	0.149	0.492	pCi/L	UJ	T06	No
SLD266944	DW21	06/07/23	ML-015	U-235	0	0.238	0.619	pCi/L	UJ	T06	No
SLD266944	DW21	06/07/23	ML-015	U-238	0.119	0.195	0.361	pCi/L	UJ	T06	No
SLD269593	DW21	09/07/23	SW846 6020	Arsenic	57		1.6	μg/L	=		No
SLD269593	DW21	09/07/23	SW846 6020	Cadmium	1.4		0.06	μg/L	=		No
SLD270152	DW21	10/25/23	SW846 6020	Arsenic	63		1.6	μg/L	=		No
SLD270152	DW21	10/25/23	SW846 6020	Cadmium	2.5		0.06	μg/L	=		No
SLD270152	DW21	10/25/23	ML-005	Th-228	0.575	0.414	0.432	pCi/L	J	T04, T20	No
SLD270152	DW21	10/25/23	ML-005	Th-230	1.58	0.688	0.489	pCi/L	=		No
SLD270152	DW21	10/25/23	ML-005	Th-232	0.203	0.271	0.498	pCi/L	UJ	T06	No
SLD270152	DW21	10/25/23	ML-006	Ra-226	0.472	0.481	0.707	pCi/L	UJ	T06	No
SLD270152	DW21	10/25/23	ML-015	U-234	0.0529	0.146	0.375	pCi/L	UJ	T06	No
SLD270152	DW21	10/25/23	ML-015	U-235	0	0.246	0.641	pCi/L	UJ	T06	No
SLD270152	DW21	10/25/23	ML-015	U-238	0.281	0.315	0.517	pCi/L	UJ	T06	No

VQs:

- = Indicates that the data met all QA/QC requirements, and that the parameter has been positively identified and the associated concentration value is accurate.
- J Indicates that the parameter was positively identified; the associated numerical value is the approximate concentration of the parameter in the sample.
- U Indicates that the data met all QA/QC requirements, and that the parameter was analyzed for but was not detected above the reported sample quantitation limit.
- UJ Indicates that the parameter was not detected above the reported sample quantitation limit and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. However, the reported quantitation limit is approximate.

Validation Reason Codes:

- E01 ICP and Furnace Requirements: Interference check sample recovery was outside the control limit.
- E08 ICP and Furnace Requirements: Professional judgement was used to qualify the data.
- F01 Blanks: Sample data were qualified as a result of the method blank.
- T04 Radionuclide Quantitation: Professional judgment was used to qualify the data.
- T05 Radionuclide Quantitation: Analytical result is less than the associated MDA, but greater than the counting uncertainty.
- T06 Radionuclide Quantitation: Analytical result is less than both the associated counting uncertainty and MDA.
- T20 Radionuclide Quantitation: Analytical result is greater than the associated MDA, with uncertainly 50 to 100 percent of the result.

S
t. I
ouis
Downto
own Site
Annual
Enviro
nmental
Monit
oring
Data a
nd A
nalysis
Report
for
CY
2023

APPENDIX F

WELL MAINTENANCE CHECKLISTS FOR THE
ANNUAL GROUNDWATER MONITORING WELL INSPECTIONS AND
FIELD LOGBOOKS FOR ENVIRONMENTAL MONITORING
CONDUCTED IN CALENDAR YEAR 2023

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023	
ATTACHMENT F-1	
CALENDAR YEAR 2023 WELL MAINTENANCE CHECKLISTS	
CILEDI (BIIII I BIIII I VIII (I BI (III (III (I BI (III (III (I BI (III (III (III (III (I BI (III (III) (IIII) (III) (III) (III) (III) (III) (IIII) (III)	

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

Name of Observer(s): L. Hoover and J. King					4/17/23	Time: _0	835	
Mor	nitoring Well Station	Identification:	B16W08S			SLAPS \(\subseteq SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective cas (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move Are there gaps betword Are there signs of election in the properly working proper	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Veen pad and we rosion around the Mississippi Riverssure cap? wells in the Missippi resure cap? wells in the Missippi respectly working that properly or properly? flow away from the clearly visite ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? for and Coldwater ssissippi River and gressure cap? locked, if application well casing (i.e., ble? te that impacts the retain before the near	flush mount of so, removered in of the condition of the c	ve water. other matter odplain have er Creek	a a m	\mathbf{x}_{0}	N/A
Con	nments for "NO" resp	oonses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:0	840	
Mor	nitoring Well Station	Identification:	B16W06D			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing wan Is the weep hole op Is the protective case (i.e., bird droppings) Is the riser casing down of the pad move Are there gaps betwood and the properly working	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Veen pad and we rosion around the Mississippi Riverssure cap? wells in the Missippi resure cap? wells in the Missippi respectly working that properly or properly? flow away from the clearly visite ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? fer and Coldwater of the well or pad? locked, if application well casing (i.e., ble? that impacts the vention before the ne	flush mount of so, removered in a covered in	ve water. other matter odplain have er Creek		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	onses/Any other	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Name of Observer(s): L. Hoover and J. King I					4/17/23	Time: _0	840	
Mor	nitoring Well Station	Identification:	B16W06S			SLAPS \(\subseteq SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing way Is the weep hole op Is the protective case (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move. Are there gaps betwork are there gaps betwork are there signs of elements of the wells in the properly working properly working protection. The well secure (so the locks work part the locks rusted to the locks ru	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Veen pad and we rosion around the Mississippi Riverssure cap? wells in the Misroperly working that properly or properly? flow away from tark clearly visite ange in land use any type of atternance any type of atternance any type of atternance in the proper of a tternance any type of atternance any type of atternance in the proper of atternance and the proper of a tternance and the proper of a tternanc	of well casing for etation? side well casing? It blockage. naged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? for and Coldwater ssissippi River and gressure cap? locked, if application well casing (i.e., ble? te that impacts the retain before the ne	flush mount of so, removered in of the condition of the c	ve water. other matter odplain have er Creek	a \Bigsim \Big	\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	oonses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nam	e of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time: <u>1</u>	021	
Mon	itoring Well Station Io	lentification:	B16W07D		□SL	APS ⊠SL	DS [HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. Com	Is well identification Is well identification Is well accessible? Is well covered/surro Is there standing wate Is the weep hole oper Is the protective casin (i.e., bird droppings). Is the riser casing der Is the concrete pad in Does the pad move? Are there gaps betwe Are there signs of ero Is riser cap present? Do the wells in the M properly working pre Do the flush mount w floodplain have a pro Is the well secure (sh Do the locks work pr Are the locks rusted? Does surface water fl Is TOC elevation may Has there been a char comment section. Will the well need an measurement? If yes, ments for "NO" response.	flush mounts If so, removered in overed in ove	ve water. other matter odplain have a er Creek g)? es, describe in water surface	Yes	\mathbf{N}_{1}	N/A		
We	ll I.D Marking							
	pricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:0	835	
Mor	nitoring Well Station	Identification:	B16W08D			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective cas (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move Are there gaps betwood Are there signs of elements of the wells in the properly working parts Do the flush mount floodplain have a parts Is the well secure (secure to the locks work parts Are the locks rusted to the locks work parts are the locks rusted to the locks work parts are the locks rusted to the locks rusted to the locks work parts are the locks rusted to the locks rusted to the locks work parts are the locks rusted to the locks work parts are the locks rusted to the locks rusted to the locks work parts are the locks rusted to the locks rus	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Ween pad and we rosion around the Mississippi Riverssure cap? Wells in the Misroperly working that properly or properly? If flow away from tark clearly visiting ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? for and Coldwater ssissippi River and gressure cap? locked, if application well casing (i.e., ble? te that impacts the retain before the ne	flush mount of so, removered in a covered in	odplain have er Creek		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	oonses/Any othe	er observations reg	garding we	11.			
We	ell I.D Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:1	003	
Mor	nitoring Well Station	Identification:	B16W09D			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective case (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move. Are there gaps betwork there signs of elements of the properly working properly	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Ween pad and we rosion around the Mississippi Riverssure cap? Wells in the Misroperly working that properly or properly? If flow away from tark clearly visiting ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? for and Coldwater ssissippi River and gressure cap? locked, if application well casing (i.e., ble? te that impacts the retain before the ne	flush mount of so, removered in a covered in	ont well? Eve water. Other matter Odplain have er Creek er Creek es, describe in		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	onses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:0	956	
Mor	nitoring Well Station	Identification:	B16W12S			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective cas (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move. Are there gaps betw Are there signs of elements of the wells in the properly working parts Do the flush mount floodplain have a parts Is the well secure (second parts) Do the locks work parts Are the locks rusted Does surface water Is TOC elevation may Has there been a che comment section. Will the well need a measurement? If ye	rounded by vegenter or debris insten? If not, clears ing dented, dants? ented or damage intact (free of corresponding and we rosion around the Mississippi Riverssure cap? wells in the Miroperly working that properly or properly? It? flow away from tark clearly visit ange in land use any type of atterts, describe in corresponding to the corresp	of well casing for etation? side well casing? It blockage. haged, rusted, or ced? racks, chips, etc.)? ell casing? he well or pad? er and Coldwater ssissippi River and pressure cap? locked, if application well casing (i.e., ble? e that impacts the seminon before the necomment section.	flush mount of so, removered in a covered in	ve water. other matter odplain have er Creek es, describe in water surface		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	onses/Any othe	er observations reg	garding we	ll. 			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:1	044	
Mor	nitoring Well Station	Identification:	DW14			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective cas (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move. Are there gaps betwood Are there signs of elements of the wells in the properly working parts of the wells in the properly working parts of the well secure (second parts) Do the locks work parts of the well secure (second parts) Is the well secure (second parts) Is the well secure (second parts) Is TOC elevation in the properly working parts the locks rusted parts of the locks work parts of the locks work parts of the locks rusted parts of the locks rusted parts of the locks work parts of the locks work parts of the locks rusted parts of the locks rusted parts of the locks work parts of the locks rusted parts o	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Veen pad and we rosion around the Mississippi Riverssure cap? wells in the Misroperly working that properly or properly? flow away from tark clearly visite ange in land use any type of atternance any type of atternance any type of atternance in the proper of a tternance any type of atternance any type of atternance in the proper of atternance and the proper of a tternance and the proper of a tternanc	of well casing for etation? side well casing? It blockage. naged, rusted, or compared to the casing? the well casing? the well or pad? the well casing (i.e., ble) the that impacts the mation before the near	If so, removered in a covered i	ve water. other matter odplain have er Creek		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	oonses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time: _0	956	
Mor	nitoring Well Station	Identification:	DW15			SLAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing was Is the weep hole op Is the protective cas (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move. Are there gaps betwoor Are there gaps betwoor Are there signs of elements of the wells in the properly working pro	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Ween pad and we rosion around the Mississippi Riverssure cap? Wells in the Misroperly working that properly or properly? If flow away from tark clearly visiting ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or compared to the casing? the well casing? the well or pad? the well casing (i.e., the pared to the pare	r flush mounts If so, removered in a Creek flood Coldwate ble)? no pondin well? If ye	ve water. other matter odplain have er Creek	a \Bigsim \Big	\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	onses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time:0	850	
Mor	nitoring Well Station	Identification:	DW16			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing wan Is the weep hole op Is the protective case (i.e., bird droppings) Is the riser casing down on the concrete pad Does the pad move of	rounded by vegenter or debris insten? If not, clearing dented, dans)? ented or damage intact (free of contract)? Ween pad and we rosion around the Mississippi Riverssure cap? Wells in the Misroperly working that properly or properly? If flow away from tark clearly visiting ange in land use any type of attentions.	of well casing for etation? side well casing? It blockage. naged, rusted, or compared to the casing? the well casing? the well or pad? the well casing (i.e., ble) the that impacts the mation before the near	If so, removered in a covered i	ve water. other matter odplain have er Creek		\mathbf{N}_{0}	N/A
Con	nments for "NO" resp	onses/Any othe	er observations reg	garding we	11.			
We	ell I.D. Marking							
Lu	bricate Lock							

Nan	ne of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	Time	: 10)18	
Mor	Monitoring Well Station Identification: <u>DW17</u>					SLAPS [⊠sLì	DS [HISS
Name of Observer(s): L. Hoover and J. King Date: 4/17/22 Monitoring Well Station Identification: DW17 1. Is well identification number visible on outer casing for a stick up well? 2. Is well identification visible on top of well casing for flush mount well? 3. Is well accessible? 4. Is well accessible? 4. Is well covered/surrounded by vegetation? 5. Is there standing water or debris inside well casing? If so, remove water 6. Is the weep hole open? If not, clear blockage. 7. Is the protective casing dented, damaged, rusted, or covered in other ma (i.e., bird droppings)? 8. Is the riser casing dented or damaged? 9. Is the concrete pad intact (free of cracks, chips, etc.)? 10. Does the pad move? 11. Are there gaps between pad and well casing? 12. Are there signs of erosion around the well or pad? 13. Is riser cap present? 14. Do the wells in the Mississippi River and Coldwater Creek floodplain hap properly working pressure cap? 15. Do the flush mount wells in the Mississippi River and Coldwater Creek floodplain have a properly working pressure cap? 16. Is the well secure (shut properly or locked, if applicable)? 17. Do the locks work properly? 18. Are the locks rusted? 19. Does surface water flow away from well casing (i.e., no ponding)? 20. Is TOC elevation mark clearly visible? 21. Has there been a change in land use that impacts the well? If yes, descric comment section. 22. Will the well need any type of attention before the next groundwater sur measurement? If yes, describe in comment section. Comments for "NO" responses/Any other observations regarding well. Well I.D. Marking Lubricate Lock							Yes Yes		N/A
We	ell I D. Marking								

Nam	e of Observer(s):	L. Hoover	and J. King	Date:	4/17/23	_ Time: <u>0</u>	857	
Mon	itoring Well Station	Identification:	DW18			LAPS ⊠SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surfactor Is there standing was a standing was	rounded by vegenater or debris insten? If not, clears sing dented, dames? If not dented, dames? If not dented or damage intact (free of corect or experience) ween pad and we crosion around the massissippi Riverssure cap? It wells in the Mit roperly working shut properly or properly? If ow away from mark clearly visit ange in land use any type of atteres, describe in core	etation? side well casing? r blockage. haged, rusted, or ed? racks, chips, etc.) ell casing? he well or pad? er and Coldwater ssissippi River and pressure cap? locked, if application has well casing (i.e. has ble? has the hation before the resonance of the reso	or flush moderate of the covered in	ove water. other matter odplain have a ter Creek ng)? es, describe in			N/A
Con	ments for "NO" resp	polises/Ally oule	ouservations re	garuing we	711.			
Needs Painting								
We	ll I.D. Marking							
Lul	oricate Lock							

Nam	e of Observer(s): _	L. Hoover	and J. King	Date:	4/17/23	_ Time: _10	010	
Mon	itoring Well Station	Identification:	DW19RD			APS \(\subseteq \subseteq \subseteq \)	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Is well identification Is well accessible? Is well accessible? Is well covered/surn Is there standing wa Is the weep hole op Is the protective case (i.e., bird droppings) Is the riser casing d Is the concrete pad Does the pad move Are there gaps betword Are there signs of els riser cap present? Do the wells in the properly working properly work	rounded by vegenter or debris insten? If not, clears sing dented, damage intact (free of crew een pad and we rosion around the Mississippi Riverssure cap? wells in the Mississippi Riversperly working that properly or broperly? If low away from ark clearly visit ange in land use any type of atterts, describe in compare the compared of the compared o	of well casing for etation? side well casing? r blockage. haged, rusted, or or ed? racks, chips, etc.) ell casing? he well or pad? er and Coldwater ssissippi River and pressure cap? locked, if application well casing (i.e., pole? e that impacts the ention before the notement section.	r flush modern flush modern flush modern flush modern flush modern flush	ove water. other matter odplain have a ter Creek ng)? es, describe in	Yes		N/A
Com	ments for "NO" resp	onses/Any otne	er observations reg	garding we	2 11.			
Well I.D. Marking								
Lut	oricate Lock							
Pai	nt Cover							

Nam	e of Observer(s): _	L. Hoover	and J. King	Date:	4/17/23	_ Time: <u>_1</u>	009	
Mon	itoring Well Station	Identification:	DW19RS			APS \(\sum SL	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Com	Is well identification. Is well accessible? Is well accessible? Is well covered/surf. Is there standing war Is the weep hole op Is the protective case (i.e., bird droppings Is the riser casing down Is the concrete pade of Is the concrete pade of Is the concrete pade of Is riser cap present? The Is riser cap present? The Is riser cap present? The Is the wells in the properly working properly wor	rounded by vegenter or debris insten? If not, clearing dented, damed intact (free of crew reen pad and we rosion around the Mississippi Riverssure cap? wells in the Mississippi working that properly working that properly or	of well casing for station? side well casing? It blockage. haged, rusted, or content of the casing? he well casing? he well or pad? er and Coldwater of the casing for the pressure cap? locked, if applicable that impacts the vertion before the necessary comment section.	flush moderate flush moderate flowered in Coldwart ole)? The point of	ove water. other matter odplain have a er Creek ng)? es, describe in water surface			N/A
We	ll I.D. Marking							
Lub	ricate Lock							
Pair	nt Cover							

Name of Observer(s): L. Hoover and J. King Date: 4/17/23 Time: 0850									
Mor	nitoring Well Station	Identification:	DW21			SLAPS [⊠SL1	DS []HISS
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Con	Is well identification Is well accessible? Is well accessible? Is well covered/sur Is there standing well is the weep hole of the protective can (i.e., bird dropping) Is the riser casing of the concrete padd Does the pad move and Does the pad move are there gaps between the properly working the properl	rounded by vege ater or debris insten? If not, clear sing dented, dants)? lented or damage intact (free of control of the erosion around the erosion around the Mississippi Riverssure cap? t wells in the Miteroperly working shut properly or properly? d? of flow away from mark clearly visite mange in land use any type of atter es, describe in control	of well casing for etation? side well casing? It is blockage. naged, rusted, or ceed? racks, chips, etc.)? ell casing? he well or pad? for and Coldwater of the well or pad? for sissispi River and gressure cap? locked, if application well casing (i.e., ble? that impacts the vention before the necomment section.	flush mount of so, removered in a covered in	other matter odplain have er Creek es, describe	in	Yes		N/A
Well I D. Marking									
	Well I.D. Marking Lubricate Lock								
					,				

St. Louis Downtown Site An	nnual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

ATTACHMENT F-2

CALENDAR YEAR 2023 FIELD LOGBOOKS FOR ENVIRONMENTAL MONITORING

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PACE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

COCH'S: LE QUI XOM - QYML

Recorded By:___

Par 35 1 Par 30 Our sumple doing

STANDED SUPERING TO

ESSLUTES Secretary

Part the service

DATE: 5 22 23
FIELD CREW: Lon Hooves? Sound King
XH 5.72-23
WEATHER: Mostly Sunay 73°F
1H 5.23.23
DAILY TASK ACTIVITY: Neet at SLAPS to load and calibrate
equipment for GW Sampling.
TH 5.22.23
B16WØ85 = 22.56' OW1715-19.40'
6/6 WOSV = 25.16' AWIZED = 22.4
$B 6W\phi6S = 24.11'$ $B 6W 2S = 16.05'$ $B 6W\phi6D = 22.62'$ $DW15 = 26.49'$ $DW14 = 18.85'$
DW1 = 0.53' $ DW14 = 8.85'$ $ DW14 = 21.99'$ $ DW17 = 24.06'$
DU 6 = 21,99' $DU 6 = 24.06'$
13(6W070=25.02)
BI6W09D 20.83'
Recorded Rus Lug. Home 5/22/23

Recorded By: QA:

DATE: 5-23-23	El th 13
FIELD CREW: LON HOURS	: Sarad King
	in 70x
WEATHER: Mostly Sunay	73°F
	ZH 5.23.23
DAILY TASK ACTIVITY:	olah Kanta isan
\$800 - Med at t	railers to calibrate and lad
equipment.	Carrier and the second
#815- Conduct Tailgoi	the Meeting. Topic = P.P.E. DS and sign in at Trackers. Many
0930 - Arrive at CL	DS and sign in at Trackers. Many
to DW19RS to pur	re and collect Rad. ? metal scarples.
1109- Complex sampling	of DWIGRS. Mon to DWIY
1230 - Arrive at NWC	of DW14. Move to SLAPS for ad ? Samples.
1325 - Complete sounding	at OWIY Move to SIAPS Ins
off-loading of recion	ext 2 Saunts.
	130.74 = FIW/
w Kinga	13.23
(Cue	11/5-1
Recorded By: M. SMM	1-23.23 QA:

DATE: 5 -23-22	
FIELD CREW: See 19. #2	
FIELD CREW.	
WEATHER: SEL 11. #2	
WELL ID: 243-16 OW 19RS SAMPLE ID: 540266920	
TOTAL DEPTH: 29' BTOC WELL DIAMETER: 2" PVC	
SCREEN INTERVAL: 18:5-28.5 BTOC MIDDLE OF SCREEN: 23.5 BT	TOC
STARTING WATER LEVEL: 18.98' BTOGNAL WATER LEVEL: 1948	
EVACUATION METHOD: Micro Pursius	
EQUIPMENT SERIAL #'S: WLT = GLO 11672, Horiba = 6LO	11482,
EQUIPMENT SERIAL #'S: WLT = GLO 11672, Horiba = GLO ? Pump Controller > GLO 11663	
PURGE START TIME: 1029 PURGE END TIME: 1053 TOTAL VOLUME PURGED:	
PORCE START TIME. TYPE PORCE END TIME: TYPE TOTAL VOLUME PORCED:	WAL ME
SAMPLE START TIME: 1053 SAMPLE END TIME: 1059	
FIELD PARAMETERS	

			FII	ELD PARA	ALL LUNG		2 2 2 2		
Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Wat Lev (ft/BT
1929	50	11 21	6.83	3.39	77.1	1.72	19.93	-125	12,
1932	1	150	6.86	3.44	78.9	4.76	19.15	-137	19.
1035	30 62	300	6.87	3.42	83.1	Ø.46	14.49	-/49	19.
639	bull 50	450	6.87	3.42	86.8	0.38	18.44	-146	19
1041	B 1	600	6.87	3.42	79.3	4.36	18.32	-149	12.
1044	72 PJ	750	6.87	3.42	5%.5	0.26	18.40	-156	19.
1047	The As	700	6.87	3.42	51.4	Ø.23	(8.37	-151	19
1050	1511	1050	6.87	3.42	51.8	\$.21	18.31	-151	11.
1053	DV III	1200	6.85	3.41	51.9	4.24	18.21	-152	19.
					c N	3.7"			
				1k					
	0	1.						1	

COCH'S: LE06062023-02TA

Cac	0011
	11 -Ø3ML
DATE: 6-5-23	
DATE: B J J	
• • • • • • • • • • • • • • • • • • • •	0 44
FIELD CREW: Lan Hoover, Noman	GASS Withes: None
11000	
WEATHER: 16 HAZY	
WEATHER. 10 11875	A (- 1) () .
1)11/1945	51 D7 6943 Kelon
WELL ID:	SAMPLE ID:
7 CIA	
TOTAL DEPTH:	WELL DIAMETER:
W 5-105) 1 5
SCREEN INTERVAL: 10.3	MIDDLE OF SCREEN:
13.18	FINAL WATER LEVEL: 23.95
STARTING WATER LEVEL:	FINAL WATER LEVEL:
Kledda Don	S ()
EVACUATION METHOD:	
TOWN ALTER CEDIAL AND ALT CHANGE	72 Horas - GLØ19482
EQUIPMENT SERIAL #'S: VIII G 1016	A FIORIDA SEPOTIFICA
I am Cartaller Gold	12/2
- Parp Caratoller O Lyon	000
	743 Jan M = (80,600)
PURGE START TIME: 1034 PURGE END TIME:	1055 TOTAL VOLUME DUDGED 1048
PURGE START TIME: TYOT PURGE END TIME:	1055 TOTAL VOLUME PURGED: 1050
CAMPLE CTART TIME.	CAMPLE END TIME
SAMPLE START TIME:	SAMPLE END TIME:

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC
1034	50	-	6.67	3.17	62.9	3.85	18.27	-7	23.42
1037		15ø	6.84	3.13	87.2	1.06	18.78	-109	23,48
1040	li li	300	6.35	3.12	87.6	0.78	18.73	-123	23.56
1043		450.	6.86	311	79.5	0.63	19.17	-129	23.58
1046		600	6.86	3,11	69.2	0.59	19.88	-133	23.60
1049		750	687	3,11	64.3	0.53	19.73	-135	23,60
1052		908	6.37	3.10	49.5	0.46	19.23	-136	23.61
155	of the	1050	6,38	3.09	48.5	0,41	19,15	-136	23.4
	100	Tellan.	7 1000	114/80	31601 -	- broad (1.25	1 10 =1	
	XBY	-71-1	Mya m	141			1, ,, ,		-9/2
			1/2	10	22	The state of	1 1		3115
			MAZ	6-0-	73			7 30.5	
								<u>. </u>	
	1/1/0	10		1 2 30			116	X	

DATE: 5.23.23	5-23-25
FIELD CREW: Lon Hooves? Jou'ch to	ing
WEATHER: See pg.#2	Et 19 -52
WELL ID: DW14	SAMPLE ID: SLD 266919
TOTAL DEPTH:	WELL DIAMETER: 2"
SCREEN INTERVAL: 16.6 - 36.6'	MIDDLE OF SCREEN: 31.6"
STARTING WATER LEVEL: 18.85 BTOC	FINAL WATER LEVEL: 12.43
EVACUATION METHOD: Micro purging with	- Bladder Pump
EQUIPMENT SERIAL #'S: WCT = GLO 11663	Horiba = 66019482
Pump Controller = GLO 11 063	outhern sensitives in them.
PURGE START TIME: 1244 PURGE END TIME:	13((TOTAL VOLUME PURGED: 36中の m)
SAMPLE START TIME: 13 ((SAMPLE END TIME: 1325
FIELD PA	RAMETERS

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOC
1247	150		6.84	4.17	115	1.78	21.97	-115	19.22
1259	Ed 50	450	6.81	4.48	77.4	4.54	21.55	-138	19.43
253	1-1- 17	900	6-80	4.28	₹4.4	4.39	21.73	-143	19.39
1256	214 - A	1350	6.80	4.17	98.0	Ø.28	21.65	-147	19.40
1259	lace II	1800	6.90	4.72	144	6.25	21.64	-148	19.49
1342	del Ik	2250	6.80	4.76	116	Ø.22	21.84	-150	19.40
1305	14 h 30	2700	6.81	4.75	120	0.20	2134	-150	19.40
1308	151 . 10	3150	6.81	4.73	125	Ø.18	21.25	-151	19.40
1311	18 P	3600	6.81	4.72	131	4.16	21.49	-152	19.42
			7-24-3						
			9	-41-					
	11	1						Q	

DAIE		,
TELD CREW:		
ATTIED.		
WEATHER:		
DAILY TASK ACTIVITY:		
	9	
JX 6-7-2	112	
6-1-7	060	
		-
	-	
		4
Recorded By:	QA:	

					2 ¹	COC#s: L	E06072	\$23-\$2	ML			1.5
		DATE:	2-	1-2	3		u	- Ø3°	ra Wi	thess	None	15
Hut	ton	FIELD CR	EW:_	Lon	Haver	Nath	on Gro	s, Jere	el Live	Honn	h Hate	on
		WEATHE	R: 7	5°C	louely	(1012 VA	Villeng L		No Fra		
tel 41	Metals	WELL ID:	D	W2	1		S	AMPLE ID:	SLD 20	6944	1/1/1	18
		WELL ID: SAMPLE ID: SLD 266944 TOTAL DEPTH: 32.7 WELL DIAMETER: 2"										
737 3		SCREEN INTERVAL: 17.3-223 MIDDLE OF SCREEN:							19.8	t0). Th		
		STARTING	WATE	R LEVE	L:]],	19	N. Julian	INAL WATE	100	-11 K	di	
		EVACUAT	ION MI	ETHOD:	Peri	steltic	Pumi		9. L			
1121	90	EOUIPMEN			1		110322	8	Hor. 6	a. G/	11/03	199
195					005132				- 101.10		·	
- 20	_	10		848	Stavela	S 15	CALC	40 B	4 - 3/5	j)		
ED: A	300	PURGE STA	ART TI	ME:	105	PURGE EN	D TIME:	120	TOTAL VO	LUME PUR	GED:	50 mls
	7	SAMPLE S'	ΓART Ί	IME:	1120		SA	MPLE END	TIME: _\	140	SEAL AND	Variation .
						FI	ELD PARA	METERS		1000		auch.
ORP (mV)	Water Level (ft/BTOC	Time		ge Rate /min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
15	3897	1105	5	0		6.86	5.68	53.4	3.31	19.94	-1/7	11.48
-7/	38.97	1108	_ ′	Ž.	150	6.86	5.78	61.1	1.60	18.71	-134	11.48
-84	30.97	uu			300	6.85	5.89	52.7	1.23	17.68	-142	11.49
-9ø	30,97	1114	2/	ANT-	450	6.85	5.90	51.6	1.08	17.56	-144	11.49
- 94	38,97	1117			600	6.85	5.82	51.3	0.97	17.48	-146	11.50
-96	30,97	1110	1		750	6.85	5.82	44.3	Ø.88	17.54	-147	11.50
-97	30,97											
-93	37.97			1	3/40	F GW	A Area S	way to	8,4562			N 199
		-					1.23					
						7× 9-	1					
							377.1					
							C-X N					
									L #/			
5-14-	73	Recorded B	y:	An	101	6-7-2	23	T	QA:	82	-6-9	23
110	-	N	(10					74		

COCH'S: LEGGOTTORS - OTML - OSTA WHOSE. None.

MIDDLE OF SCREEN:

FINAL WATER LEVEL:

14

DATE:

TOTAL DEPTH:

WELL ID:

SAMPLE ID: 54126939 WELL DIAMETER:

SCREEN INTERVAL: 39.0 STARTING WATER LEVEL:

EVACUATION METHOD: Bladder Pump

PURGE START TIME: 1921 SAMPLE START TIME: 0942

PURGE END TIME: U942 TOTAL VOLUME PURGED:

SAMPLE END TIME: 0948

FIELD PARAMETERS Sp. Cond. Turb. pН

Purge Rate mLs D.O. Temp. ORP Le Time (mL/min) Removed (SUs) (µS/cm) (NTUs) (mg/L) (mV) ,6 40,9 M

Recorded By:_

egurpment problems 1145-Drives at SUBS 1145-1215-Lineh 1215- Enrice Jamples delivery tomorrow.

DATE: 68-23 Harrah Hutton Witness: None WEATHER: 82° Mix of clarks and sun. NDG / 6-8-33 DAILY TASK ACTIVITY: 0808 - Mat at SLOBS to celibrate and bul cynipment. Safety topic! Driving to SLAS. 0320 - Deported For 5405. Driver of 5LDS. Sinker in at trailers. Sct up to somple at BIGWIZ-5 and DW15. Experienced 1115 - Completed sampling. Signed out and departed 1300 - Survey complete horized on Cocs for semple

Witness: None

DATE: 6-8-1013

FIELD CREW: Lon Hoover, Nathan Gross, Jared King, Hamah Hutton

WEATHER: 66 SUNNY

WELL ID: WW [5

SAMPLE ID: 5LD 266 938

TOTAL DEPTH: 64.5

WELL DIAMETER: 2" SCREEN INTERVAL: 53.6 -63.0

58.0 MIDDLE OF SCREEN:

STARTING WATER LEVEL: 34.94

FINAL WATER LEVEL: 34.95

EVACUATION METHOD: Bladder Pump

EQUIPMENT SERIAL #'S: WLI-GLW103228 Horiba-GLW103199

Pump Controller - GLW103230

PURGE START TIME: 1642 PURGE END TIME: 1657 TOTAL VOLUME PURGED: 3750

SAMPLE END TIME: 1100

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond.	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC
1042	250	-	6.67	3.97	187	2.06	18.88	-58	34.95
1945	1 1 1 1 1	754	6.70	4.08	139	0.92	18.73	-90	34.95
1048		1500	6.71	4.20	119	0.49	18.60	-115	34.95
051		2250	6.72	4.28	67.1	0.33	18.57	-127	34.95
1054		3000	6.73	4.34	36.6	10.22	18.57	-134	34.95
1057	-	3750	6.73	4.40	19.2	B.21	18.52	-136	34.95
						1 1 1 7 7	100	LAP	1
		-		Ď.		7,			
· 1	BA DE D		- 24	1		1			V-24
				SK		10 400		Whiles,	7
				6.	8-202	3			
				CIQ	3.	W.			
							-		

COC#: LEOGOB 2023-02TA - \$3ML Huess: None

DATE: 0-8-2023 FIELD CREW: Lon Hoover, Nother Gross, Jored King, Haunch Hutton

WEATHER: 66° Sunny WELL ID: B16 W12 SAMPLE ID: 510266936

WELL DIAMETER: 4" TOTAL DEPTH: 20.1

SCREEN INTERVAL: 10.1-20.1 MIDDLE OF SCREEN: 15.1

STARTING WATER LEVEL: 17.70 FINAL WATER LEVEL: 17.27

EVACUATION METHOD: Peristallic EQUIPMENT SERIAL #'S: WLI-GLW103728 Hor: ba-GLW103199

PUMP-D14005132

PURGE START TIME: 0951 PURGE END TIME: 1012 TOTAL VOLUME PURGED: 1680

SAMPLE END TIME: 1031 SAMPLE START TIME: 1012

FIELD PARAMETERS

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOC)
0951	30	TI SI	6.52	1.35	22.0	3.76	18.65	267	16.87
0954	3	240	6.59	1.35	38.7	2.35	18.01	266	16.90
0957	No. of	480	6.60	1.35	46.1	2.07	17.67	269	16.94
444	V. A	720	6.60	1.34	46.3	2.93		269	16.97
1003		960	6.61	1.34	46 \$	1.91	17.63	271	17.01
1006	71- 2	1.200	6.61	1.34	38.4	1.84	17.74	269	17.04
1009		1440	6.62	1.33	35.2	1.77	17.59	268	17.08
1012		1680	6.61	1.33	34.3	1.74	17.65	267	17.10
				JE	100				
				6-8	2023	g			
					-				
							,		

20 COC#5: LE \$6122023 - \$3M1	L
(12 .27) II - 04TA	1
DATE: 6 12	
FIELD CREW: Lon Hoover, North on Gross, Witness; None.	io.j
WEATHER: 62 Pully Cloudy	49a II
WELL ID: 816 W06D SAMPLE ID: \$1026630	rindsky
TOTAL DEPTH: 81.9 WELL DIAMETER: 2.35	
SCREEN INTERVAL: 69.7-79.7 MIDDLE OF SCREEN: 74.7	
STARTING WATER LEVEL: 35.60 FINAL WATER LEVEL: 35.60	
EVACUATION METHOD: Bloder Pump	
EQUIPMENT SERIAL #'S: WIT GIW 02000 Hoch - GIW 0316	79
Pump Contaller - GLW 103230	Street,
PURGE START TIME: PURGE END TIME: 1938 TOTAL VOLUME PURGE	ED: 45/18
2020	3D. <u>409</u>
SAMPLE START TIME: 0958 SAMPLE END TIME: 0938	
FIELD PARAMETERS	
	Wat

Purge Rate mLs Sp. Cond. Turb. D.O. Temp. ORP Level (mL/min) (SUs) (µS/cm) (mV) Time Removed (NTUs) (mg/L) (°C) (ft/BTO 6.63 16 6-12-33 6-12-23 QA: 14-23

Recorded By:_

WEATHER: 74° Portly Charly
Nos /6-12-23
DAILY TASK ACTIVITY: DBBY-Met at SLAPS to calibrate and load
egupenent. Satety topic: Mosquitos
03-30. Departed for SLDS.
0358-Drivel at 5205. Signed in Set up to senok BK wobs
and 01614065.
1015-completed somoline at B/6W06D and B/6W06D
Returned to Stops for Break
Returned to Stops for Break 1030. Deputed for somple at B16W09D.
1100- unable to sumple B16W09D. due to a bal
bladder pump. Returned to 5LDS for lurch.
1100-18d-Lunch.
113y signed out at 51DS, Return 45 5LDPS.
1150 - Driver of SINS. Un backed sunder and equipment.
160/1202
NOS/6171
Recorded By: 1009 6-12-23 QA: 11/6-14-23

FIELD CREW: Lon Hower, Nathan Gross
WHOSS: None.

M6/6-12-23

22		A	0	11 17		
DATE:		- = 5000 / 11	DATE: 6	-12-23	11	- , ,
	Lord Carte I am		FIELD CRE	ew: Or	1 Hoove	1 Na
FIELD CREW:			WEATHER	: 63	yartly 1	Cloudy
			WELL ID:	114	60	
			TOTAL DEP	-	27 6-4	L) L
WEATHER:	Charles and		SCREEN IN	TERVAL:	33.0=	3
				ON METHOD:	1/1 ///	2 Pi
			EQUIPMEN'	T SERIAL #'S:	WII-	GLN
The same of the	S - Abac - Abac		Pump	Controlle	11 - (-)	M027
DAILY TASK ACTIVITY:		Ca mulature v	PURGE STA	RT TIME:	130 6-	PURGE EN
		- 2003	SAMPLE ST	ART TIME:	<u>1990</u>	<u>Y</u>
130 a 32 v		See Wind Viel	1 de de 10			FII
2	/\L	WWW Jones B	Normal	Purge Rate (mL/min)	mLs Removed	pH (SUs)
- Na 1913/8 La	14.23	115-Composes	# 1	100	-	7.12
	6 (0)	- Carriera	199/		300	7,06
		180 - 180 - 1 - 1 - 1	0957		900	1.05
180 %	9,14), ph. 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		1000		1200	7.05
J. 3091, 100	A G . A . What we will be	mysele ()				
		100 Per June				
	Name of the Control of	Mar Three				4.4
3-13-10-10-10-10-10-10-10-10-10-10-10-10-10-		La seggia Mi		***************************************	1	100
	,					
		1 V			1	
Recorded By:	QA:		Recorded B	y: Not	2_	6-1
Tropolada Dj.						

DATE: D	1000		_ ,		4				
FIELD CRI	1	Hoove	, Na	than (21005	With	CS3 1/k	irk	
WEATHER	(2°	Partly 1	Cloudy	00001004		1145 G	12-23		
WELL ID:	10-17 i 10-6	65'	12	SA	AMPLE ID:	5104	19a 3	21799	13/
TOTAL DE	4	9'		W	ELL DIAME	ETER:	4"		
SCREEN IN	ITERVAL:	32,6-4	2.6	M	IDDLE OF S	CREEN:	37.6) _	
	WATER LEVEL	33.0E	3	FI	NAL WATE	R LEVEL:	33.89	Þ. P	
	ION METHOD:	Black	an Hi	~MO	4.00	11	163	,	
	IT SERIAL #'S:	1/1/12-	GLN	10222	2, <i>I</i>	bring-	GLW	10319	79
Pump	457 567 577 6	5-61	M62:	130	Albert Le) FK	a Thu		
-11-	05	48 6	\$23	1	711		THE DOLL	15	العالم
PURGE STA	ART TIME:	158 -	PURGE EN	D TIME:	0,0,0	TOTAL VO	LUME PUR	GED:	<u> </u>
SAMPLE ST	TART TIME: _	<u> 180,000</u>	<u> </u>	SA	MPLE END	TIME:	1912		
116			FI	ELD PARA	METERS			_	
1223	Purge Rate	mLs	рН	Sp. Cond.	Turb.	D.O.	Temp.	ORP	Water Level
Delate	(mL/min)	Removed	(SUs)	(μS/cm)	(NTUs)	(mg/L)	(°C)	(mV)	(ft/BTOC) 23 2a
NOCE!	1,00	248	786	101	140	1 2/	10.11	-145	22 52
HARL		1 20	7 84	1.01	4,1	118	17 13	-149	12 60
0957		GXX	11.15	1.06	209	1 67	17.17	-141	3265
1888		1200	7.05	1.06	37. d	1.06	17.16	-151	33.72
1440				7.100	<i>J</i> 1,0	1100	17.78	-01	-50/12
2000			47						
	34.4 47.44.0	N	10	1-12-2	3				
	TI TOWNER								
	1/								
Recorded B	y: // de	2_	6-l	2-23		QA:	14/6	14-2	5
	//					0	//		

Recorded By:

24			an il										
DATE:	-12-2	3						-/-		DATE: 00	113/2023)	
DATE: E	100	11	- 41%							Control	ew: Lon 1		-1741010
FIELD CR	REW: LON	Morrey	, Na	thon 101	033	1		/-		Control of the Contro			
WEATHE	R: 65° F	orth C	buly		V Is	with	/	Tel .			2: 100° P(J	<u>iouay</u>
	B16W	109D)	SA	MPLE ID:	SLDA	66935	- day	ak		BILOWOS		
TOTAL DI	ертн: <u>5</u>	5.5			ELL DIAME	2	4			TOTAL DE	PTH: <u>10.8</u>)	
SCREEN II	NTERVAL: 4	4.4-5	4.4			CREEN:	49.4			SCREEN IN	TERVAL: 5	8.2 - 69	z.lo
	G WATER LEVEL		7	FIN		/				STARTING	WATER LEVEL	<u> 38.5</u>	<u>5</u>
	TION METHOD:		ler Du		ms! /	100	2/4			EVACUAT	ION METHOD:	bladde	ur puur
	NT SERIAL #'S:			132228	Va	iba G	LWID	2199		EQUIPMEN	IT SERIAL #'S:	WLI -	GILW103
	p Contra	1	-1201	721 30	/	100	- 1 9	Same.	MANUEL	-	Pump cont	roller -	GLW 103
	1	.,, -, 0		y so cy		33-31 3	775)			O.	a di Auto	HUPTHU
PURGE ST	ART TIME:		PURGE EN	D TIME:		TOTAL VO	LUME PUR	GED:			ART TIME: 0		PURGE ENI
SAMPLE S	START TIME:	177		SAM	MPLE END	TIME:				SAMPLE S'	TART TIME:	1919	
			FI	ELD PARAN	METERS				1/1		797.851	d. 13375 - 616	FIE
Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond.	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC	Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)
80.00	300	240110100	1/1/	14.10	(11103)	(Mg/L)		(11117)	(IDB10C)	0900	250	107. IB 300621	6.53
12.6	111	4 3	1	6	u = = = = 1"	*	7.5-		1727	0903		750	4.75
Care	1-31- 6	/		100	an P	121			75 W	0906	· · · · · · · · · · · · · · · · · · ·	1000-001	6.80
100 20	101		11 19	Se d			75		PORT	0909		2250	6.82
7-45			, A		4				Union	0915	112.	3000	6.83
	/											3750	4.83
									100	0918		4500	6.84
						-					+1	A WEAR	S DATE
						4						,	
				d v									
									1				
	93												
10	No.							_		ļ			
11								1			. 1		
Recorded E	Bv:					OA·			. 9	Recorded B	y AA	1 06	13/2023

DATE: 06/13/2023	COC #'s: LE 06152023 - Ø3TA 25
FIELD CREW: LON HOOVER, Hannan +	tutton; No witness
WEATHER: ULO Partly Cloudy	COTTON ALL-MONEY 15 VOOR WOLL
WELL ID: BILWOSD	_ SAMPLE ID: SLD264933 Rad and Metals
TOTAL DEPTH: 10.8	WELL DIAMETER: 2.35"
SCREEN INTERVAL: 58.2 - 48.4	MIDDLE OF SCREEN: 63.4
	FINAL WATER LEVEL: 38.55
EVACUATION METHOD: bladder pump	
EQUIPMENT SERIAL #'S: WLT - GLW103221	Horiba-GLW103199,
Pump controller - GILW103230	*
PURGE START TIME: 0900 PURGE END TIME:	one of the order o
FIELD PA	ARAMETERS
	Water

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
0900	250	N. B. BASI	(SUs)	2.04	12.5	2.24	17.11	182	38.55
0903		750	4.75	2.05	17.9	1.73	16.99	- 33	38.55
0906		1000	C.80	2.05	39.7	1.29	14.87	-99	38.55
0909		2250	6.82	2.05	30.1	1.18	14.95	-116	38.55
1912	912	3000	6.83	2.05	27.6	1.03	14.91	-124	38.55
0915		3750	4.83	2.05	19.4	1.00	16.92	-126	38.55
0918		4500	6.84	2.05	9.3	0.89	14.90	-129	38.55
	+1	UMBAUS	3 PMO	36/0m23	heboo	181. 191	18 10	burne	: 444
	11				H 00	13/23		<u>.</u>	
				-27745	10 Min 10	11.0103			

DATE: 00/13/2013	
DATE: WW\'2\UUL3	
FIELD CREW: LON HOOVEY, Hannah Hutton; NO W	
Industrials to 22500077 I-1	d setty what
Winds of	7.0.1
Marine 1010° 90 MIL Clouded	
WEATHER: U6 Partly Cloudy	s and hade
PRISON OF THE TEST TO THE TEST OF THE TEST	v Jehr - Derry
	ving – okampal gmili
DAILY TASK ACTIVITY: 0800: MET OF Slaps to called	rate outch 16aa
equipment safety topic: poisonivy	
0815: 1eft for SLDS	
0830: arrived at SLOS, Signed in, Set up to	Sample BlowasD
and BILINOSS, pumping mateunction on 1	•
The PAID sample so we split the PAID sample i	
Sample bottle.	A AND STATE OF THE
1015 : Finished sampling and returned to subs for a	break
1045: Went to install new pumpat Browners	S St. Cartie
1123: signed out at SLOS and want back to SI	aus
1200: arrived at SUAPS unloaded samples and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20/20/20	
H 04/13/2023	

JK 6/14/2:	2 35 mm/3
0.0001172.	3 SAME (1884)
	Auto
EATHER: 70° Sunny	English State
11/16	27 IS
JK 6/14/23	
, and some state of the state o	North Application - Bour
ILY TASK ACTIVITY: OBOO - Met at	SLAPS to calibrate and load
equipment. Tailgate safety meet	
0830 - Attempted blodder pump	o sample at 1853W175. Was
not successful due to pump con	fieller melfunction.
\$850 - Arised at HISS to some	-
	The state of the s
1045 - concluded sompling HW27	THE DESTRUCTION OF SOMPLE
an annual and constant to been to	
equipment and went to lunch.	TA STATE OF COMPANY
1145 - Returned to SLAPS to a	grab water and equipment.
1145 - Returned to SLAPS to a	
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a	somple
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a 1330 - Concluded sampling at HISS-	somple
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to 3 1330 - Concluded sampling at HISS-deported for SLAPS.	195, packed up equipment, and
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to 3 1330 - Concluded sampling at HISS-deported for SLAPS.	195, packed up equipment, and
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a	195, packed up equipment, and
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a 1330 - Concluded sampling at HISS- deported for SLAPS. 1350 - Arrived at SLAPS, unloaded	195, packed up equipment, and samples and equipment.
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a 1330 - Concluded sampling at HISS- deported for SLAPS. 1350 - Arrived at SLAPS, unloaded	195, packed up equipment, and
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a 1330 - Concluded sampling at HISS- deported for SLAPS. 1350 - Arrived at SLAPS, unloaded	195, packed up equipment, and samples and equipment.
1145 - Returned to SLAPS to a 1215 - Arrived at HISS-195 to a 1330 - Concluded sampling at HISS- deported for SLAPS. 1350 - Arrived at SLAPS, unloaded	195, packed up equipment, and samples and equipment.

DATE: 6/14/2023

COC#\$: LE \$6152\$23-\$3TA

DATE: 04 13 2013

FIELD CREW: LON HOOVEY, Hannah Hutton; no withus

WEATHER: UN POYTHY CLOUDY

WELL ID: BILWOSS

TOTAL DEPTH: 38.2

SCREEN INTERVAL: 27.9-37.9

STARTING WATER LEVEL: 31.27

EVACUATION METHOD: bladder pump

EQUIPMENT SERIAL #'S: WLI - GLW102228, Horiba - GLW103199.

SAMPLE ID: SUD 166934

WELL DIAMETER: 4"

MIDDLE OF SCREEN: 32.9

FINAL WATER LEVEL: 31.80

pump controller-Grun103230

PURGE START TIME: 0940 PURGE END TIME: 0957 TOTAL VOLUME PURGED: 1050

SAMPLE START TIME: 0957 SAMPLE END TIME: 1015

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTO(
0940	70	Neskad	6.97	1.17	10.7	4.90	17.09	28	3159
0943		210	4.92	1.19	12.5	2.27	10.99	2	31.40
0946	h	420	6.90	1.20	12.1	1.50	16.96	-14	31.74
0949	treamed.	630	4.89	1.20	11.60	1.31	16.97	-23	31.88
0952		840	4.89	1.20	11.0	1.13	17.00	-29	3134
0955	b. V 150.	1050	4.88	1.20	12.3	0.99	17.01	-34	31.89
· · · · ·	-	1				5.0	60		n also
	a water of the special for	6		35	2.				
a para a sa managing primara sa paryuka		lines 1	NE HARLE	MARIE 167	STATE OF THE STATE		48. 84	3200	
المستوارة									
,		1.83	17.2 -11	H	pu113/23				
				y					
		A							

QA: 14-15-23 Recorded By: 11/6-14-73

COCHS:	1F.061	5202	3 -	PHML
CCCH3.		rt	-	05TA

COCHS.	6040	 et			05	TA	-
		• •		•	PU	45.76	

FIELD CREW: Lon Hoover, Jared King, notilitness

WEATHER: 70° Sunny

DATE: 6/14/2023

SAMPLE ID: H15266955 WELL ID: HW 23

TOTAL DEPTH: 93.5 WELL DIAMETER: Z"

SCREEN INTERVAL: 91.5.93.5 MIDDLE OF SCREEN: 92.5

STARTING WATER LEVEL: 9.74 FINAL WATER LEVEL: 9.85

EVACUATION METHOD: Peristolfic

EQUIPMENT SERIAL #'S: WLI-GLW(02228 Horiba-GLW103197

Pump - D14005/32

PURGE START TIME: 4900 PURGE END TIME: 6915 TOTAL VOLUME PURGED: 1200

SAMPLE START TIME: 0915 SAMPLE END TIME: 0945

FIELD PARAMETERS

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
9900	80	DT 1	7.50	1.03	52.7	8.60	17.17	-39	9.85
0903		240	7.54	1.02	48.6	8.00	17.11	-102	9.85
Ø9Ø6	AZ I M	480	7.57	1.02	55.8	7.85	17.03	-//7	9.85
0909	PE 12	720	7.58	1.01	47.1	8.00	16.96	-121	9.85
\$912	A	960	7.60	1.02	40.1	8.06	16.87	-123	9.85
0915	4	1200	7.61	1.01	39.2	7.97	16.84	125	9.85
The state of the s		-		-		•	29	the state of the s	
									70° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1
4-					. 15			- Fallenin	many military (see) () 10 °C
			36.		06/14	1/23		12.4	garant fact on
				JE	,,,,,			<u> </u>	- or believe at
				30.1			_		
							***************************************	-	
/						1	/		1

DATE: 6-19-23	
- Los House C Nothan Garage	
Witness: None.	
NAG 6-19-23	PAR 100 Tayan
1700 1000 111	(E, 8.)
VEATHER: 88° Partly Cloudy	15.
	Acod - T
14/6-19-23	XLI :
PAILY TASK ACTIVITY: 1806 - Met of SLAPS +0	calibrate and
load equipment. Sofety topic: Onigners	
1845 - Departed for SLDS.	(c.17.92.)
910- Drrived at SLDS, Signed in Drive	to B16W09 D.
\$25 - Completed sampling BlbW89D.]	
provides blowler pung, and removed	from Dible 18th
030-1/dr - 1.00	11/11/11/11/11/11/11
80- Set up to sample DW18.	-5-45 VI26
145- Completed sampling DWB. Petrned	LesiAs to Summer
denset to 51 XPX	41 OND to Olybor
DIE-Acot of SIND= (10) 161	
215-british at 5/MPS. Unbucked ex	approved over
Emples Prepried COC'S in SLEDS. on	V 45V
tommers simpling.	
NA6 6-19-23	

DATE:			1	
FIELD CREW:	nach Grain	44 1 30 100	9-10-	
		h Charles	101/	
LARY PERMALE		1376		13.0
WEATHER:		442-7		
WEATHER.			Ē.	
	d No.	14 January	p.	
Trich, water miner	10 May 13		Y.	h
DAILY TASK ACTIVITY:		34, 11		are disper-
	6-18	P W W		
	1.18	25		
	/ 6,00			
BETTE THE TOP OF THE	Les des	AL		RAS THE
877 784 16.P V/L	1386 738		OF-	i bee
	id. Cit.		191	424
			1	
Engel (a)	176 EX.	1 85 0	Vii -	
1900 P. 10 10 10 10 10 10 10 10 10 10 10 10 10		. T 1 %	H.J.	>4
187 16, 189	R. 1. 1817	56	jan ,	ob 155
		€.3		<u> </u>
	70-51 F		<u></u>	
Recorded By:		QA:		

Recorded By:

COC #\$!	LE	Ф619	2023-	P2ML
		11	_	Ø3TA

38	The state of the s
(19 2)	11 - Φ3TA
DATE: 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FIELD CREW: Lon Hover, Nather	Gass Witnes: Nonc.
WEATHER: 75° Partly Claudy.	
WELL ID: 316W09D	SAMPLE ID: SLD 266935 Model
TOTAL DEPTH: 55.5	WELL DIAMETER: "
SCREEN INTERVAL: 44.4 - 54.4	MIDDLE OF SCREEN: 494
STARTING WATER LEVEL: 35.78	_ final water level:35.78
EVACUATION METHOD: Blacker Purps	
EQUIPMENT SERIAL #'S: WIT-G- MAD	28 Horing - G-LW/ 183199
Pum Controller - MPlo - 30	136
PURGE START TIME: 6947 PURGE END TIME:	1000 TOTAL VOLUME PURGED: 6300
SAMPLE START TIME:	SAMPLE END TIME: 1025
FIELD PA	RAMETERS
	Water

Purge Rate (mL/min) Sp. Cond. mLs D.O. Temp. ORP Turb. Level Time Removed (NTUs) (mg/L) (°C) (ft/BTOC) (mV) 35.78 10002 19.69 1005 5.78 1008 MAS 6-19-23 6-19-23

6-26-23

DATE: C	5-19-23	Hoover	>20031 - 1	un Gro		(1	2013 - 9 - 9 ! Non	031 <i>H</i>	3
WEATHER WELL ID:	700	Partly	y Cla	ely	AMPLE ID:	51.11	16941	Res	elqui,
TOTAL DEI		5.0	3.7	W	ELL DIAME		20 40.7		Mexas
EVACUATI	WATER LEVEI ION METHOD: IT SERIAL #'S:	Blas	26 Clev L-G-L	Pump	NAL WATE	R LEVEL:	40.21 GL	6 N10.	3/99
PURGE STA	ART TIME:	ntroller 120 1132	PURGE EN		3936 32 MPLE END		DLUME PUR	ged: <u>36</u>	jad
	Purge Rate	mLs		ELD PARAI		D.O.	Towns	OPP	Water
Time	(mL/min)	Removed	PH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	(°C)	ORP (mV)	Level (ft/BTOC
1123	<i>500</i>	900	7.01	1.94	96.0	0.47	13,25	-153	42.26
1129	500	908 1808 2700	7.01	1.84 1.84 1.84	96.5 76.5 76.3	0.47	18.05	-153 -167 -173	42.26
Maria Allanda	500	908 1808 2708 3608	7.01	1.84 1.84 1.84	96.8 76.5 76.3 73.2	0.47 0.26 0.18 0.12	18.10	-153 -167 -173 -177	42.26
Maria Allanda		988 1868 2768 3668	7.01	1.84 1.84 1.84 1.84	96.0 76.5 76.3 73.2	0.47 0.26 0.18 0.12	17.85	-153 -157 -173 -177	42.26
Maria Allanda		908 1808 2700 3600	7.01	1.84 1.84 1.84 1.84	96.8 76.5 76.3 73.2	0.47 0.26 0.18 0.12	17.85	-153 -153 -167 -173 -177	42.26

86		
DATE: 4-6-25	DATE	-
FIELD CREW: Nathan Gross Jarcol Ling	MELD CR	ÈW.
	WEATHE	R:
Withests: None.	WELL ID:	
Wy/9.633	TOTAL DE	ЕРТН:
WEATHER: 82° Partly Cloudy	SCREEN IN	NTER
WEATHER: Od Yarti Cloudy	STARTING	G WA'I
N/m /a / 23	EVACUAT	N NOIT
1/10/ 1/000	EQUIPMEN	NT SE
DAILY TASK ACTIVITY: 0800-Met at SLAPS to calibrate and	-	
load carement. Satety topic: Driving.	PURGE ST	ART 1
	SAMPLE S	START
0830 - Departed for SLDS.		,
0859 - Got stuck behind a train on Anglood.	Time	Pu (n
1990 - Drrives at 5408 Jigwel in Stated	Time	(1)
collecting water leves.		
BI6W065-37.35; B16W06D-459; B16V00D-44.95		
BI6W085-3497", DINIG-40.42, DW21-11.75		
DINI7- top of pump. B6W07D-44,20; DW18-45.83		
DU1985-18 DI198D-4037 DI15-44 62		
B1/1 112 4-18 41 BKW09D 39 16 DW14- topoe	-	-
DIGWING TO THE DIGWO TO STATE OF THE PARTY O		-
1105 - Completed collecting naturelevels Digner out.	-	
Returned to North County.		+
1/25 - Arrived in North County. Daily by continued		
In the HSDCWC daily logbook.		
Recorded By: Nat 2 9-6-23 QA: LS. MM 9/2/17	Recorded I	Ву:

ATE		= //	_						
ELD CR	ÈW:								
/EATHE	R:								
WELL ID:		7.3		SA	MPLE ID:				
OTAL DE	PTH:			wi	ELL DIAME	TER:			
CREEN II	NTERVAL:			MI	DDLE OF S	CREEN: _	_		
TARTING	WATER LEVEL	.:		FII	NAL WATEI	R LEVEL:			
VACUAT	ION METHOD:								
QUIPMEN	NT SERIAL #'S:								
	*								
	Purge Rate	mLs	FII pH	ELD PARAI	Turb.	D.O.	Temp.	ORP	Water Level
Time	(mL/min)	Removed	(SUs)	(µS/cm)	(NTUs)	(mg/L)	(°C)	(mV)	(ft/BTOC)
		CA DIL	541	distribution (contraction)	1		9 7		
			CKS	•	V.		(· +.	13	
			· ·						
		,							

QA:_

88										DATE:_	176	23							89
DATE:	REW:									FELD CR	EW: Va	Hyon !	Gross	Jores	1 K,	a. Wi	tness:	None.	
WEATHE										WEATHER	<u>. 67</u>	5hr	MU	Asilol	15%	3)	a Magr	S-1	
WELL ID:				<u> </u>	AMPLE ID:					WELL ID:	DN	12		SA	AMPLE ID:	SLD	1959	3 Me	Held MIV
	TOTAL DEPTH: WELL DIAMETER:								TOTAL DE	_	12.7			ELL DIAMI	1000	2"			
SCREEN II	SCREEN INTERVAL: MIDDLE OF SCREEN:								SCREEN IN	TTERVAL:	17.3-	22.3	M	IDDLE OF S	SCREEN: _	19,8	3		
STARTING	STARTING WATER LEVEL: FINAL WATER LEVEL:										WATER LEVE		79			R LEVEL:	12.	10	
EVACUAT	EVACUATION METHOD:									EVACUAT	ON METHOD:	Peris	taltic				0 .	1 1 =	
EQUIPME	EQUIPMENT SERIAL #'S:										it serial #'s:	1400	5/32	~ 1023	28 H	or.be-(JLW !	0319	9
	ART TIME:				TO TO			RGED:		· PURGE STA	I ART TIME:	9918	PURGE EN	D TIME: Ø	936 MPLE END	TOTAL VO	DLUME PUR	ged: <u>9</u> 1	do .
				ELD PARA								7	_a FII	ELD PARA	METERS		16 Mes		
Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb.	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)	Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
			6.2		41		.74			1 (1919)	50	101	6.47	7.34	13.1	3.15	18.97	-36	1204
	. T.	163			24	7,				6021	514	23/3	6.1	736	19.8	1 17	18.52	-15/	12.06
						-				1927	7/262	DOY	6.77	7.32	17.7	0,92	10.40	-156	12.09
			<u> </u>				\			0921 0924 0927 0930	-	Zaa	6.78	7.28	11.0	0.82	18.31	-157	12.09
										0933		750	6.79	7.25	4.7	7.76	18.34	-157	12.09
										0936	4	9,00	6.79	7.21	0.0		8.32	-155	12.09
											100		TEACH T	(1 1 <u>-9</u>	NIW	SKI	201.6		
															5 18	M		1	
												+	NA		7				- 1
														9/7	123				
															- A VI				
									1			30. 97	,	- 11/1	د الله	Mess	J- 3/0	PINI	`
Recorded B	y:				QA					Recorded E	y: Na	1/2	_			QA:	m 2.13	m c	1/7/27

90 DATE: 9/7/23	DATE: 16/4/23
FIELD CREW: Nothon Gross, Jaren King Withess: None.	FIELD CREW: LON Hours & Jard
WEATHER: 80° Sugar	WEATHER: Partly Cloudy, 78°F
WEATHER: OU COMMY NOS 9 17 1/28	WEATHER: Pasty Cooky, 10 to
DAILY TASK ACTIVITY: 0800-Met at 5/APS to calibrate and local eguipment. Safety topic: Working around tribes. 2840-Deported for 5LDS.	DAILY TASK ACTIVITY: \$\phi 830 - Meet w 15 ad equipment for Se 2 5 = diment sanding.
to set up and semile.	9915 - Arrive at CWC 9945- Complete Sampling of 1915- Assive at CWCE
1910 - Signed out. Depended for North County. 1930 Agrical at High County, Seened Jample and	1055- Complete sampling of cut
1130 Daily log continued in the HSD CWC	1200 - Complete sampling of C 1225 - Assine at Cucops 1300 - Complete sampling o
daily logbook.	1320-Arrive at Cuceso7 1330-Complete sampling of
Note: Mable to sample DWH. Water level below pump.	to secure samples and
Recorded By: 2/7/23 QA: Jun 1/7/23	Recorded By: July (0 4/33

to the same of the	91
DATE: 16/4/27	
FIELD CREW: Lon Hours & Jaird King	Witness: none
(A-11-)	15 mg 350
THE PARTY OF THE P	ANM " "
WEATHER: Pastly Closdy, 78°F	
TH 14.4.23	1 -
ि विभी कर्म है।	(Page)
DAILY TASK ACTIVITY: \$30- Meet ut SLAIS	to calibrate Horiba and
bad equipment for Semi-ann	val cuc sustance custo
2 5-diment sanding.	74F0
9915 - Arrive at cwcoll to co	ollect samples.
0940- Complete Sampling of Che	
1915 - Asside at CWC \$180 to c	ellect samples.
1055- Complete sampling of cutors and	
1110 - Assive at CWC 009 to co	
1200 - Complete sompling of curpog.	
1725 - Assire at Cucops to collec	t smples.
1300 - Complete sampling of CWC	BP & and more to rept location
1320-Arrive at CWCD07 to col	lect somples.
1330 - Complete sampling of cur 007	and move to SLAFS
1330-Complete sampling of cut \$057 to secure samples and off-load	equipment.
pd (0.4.8	
Recorded By: July (0/y/3)	A. 1/1/19-11-20

R					Þ					11
DATE:			_					3.4.5		DATE: 10 23 23
FIELD CR	SEW.									
WEATHE	R:		8					7.		FIELD CREW: Lon Hoover? Just King Witness: none
WELL ID:				SA	AMPLE ID:			7		PH 10.23.73
TOTAL DE	EPTH:	$\overline{}$		w	ELL DIAME	ETER:	/	5		+ 11 \ (\psi \ \psi \psi
SCREEN II	NTERVAL:	$\overline{}$		M	IDDLE OF S	CREEN:				WEATHER: Mostly Suny, 56°F
STARTING	G WATER LEVEL	.:	$\overline{}$	FI	NAL WATE	R LEVEL:				
	TION METHOD:		$\overline{}$							THE 14.23.33
	NT SERIAL #'S: ART TIME:		PURGE EN	ID TIME		ADTAL VO	LUME PUR	·GFD·		DAILY TASK ACTIVITY:
	START TIME:				MPLE END	TIME:				- 0900 - Meet at SLAPS to load equipment for complètensite
) Ai	ELD PARA	METERS					water level mensusements at SLDS. All levels ett. BTOC:
T:	Purge Rate	mLs	p l fq	Sp. Cond.	Turb.	D.O.	Temp.	ORP	Water Level	
Time	(mL/min)	Removed	(SUs)	(μS/cm)	(NTÙs)	(mg/L)	(°C)	(mV)	(ft/BTOC	
		Fo. 1	₽ A ≪							B16W065 = 37.57 DW19RD = 40.83 B16W066 D= 41.04 DW14 = *
				31.4						
										DW21=12.96
				 						DU16 = * B[6 W125 = 18.52
										1010 W125 = 18.52
							\			DU15=45.35
										DW 17 = *
							$\overline{}$			B16W070 = 43.71
							$\overline{}$			DW18-45.13
										#= Water level below pump.
								1		
Recorded B	Ву:					QA:				Recorded By: (N) 14(25/23 QA Janin 10/26/23

DATE:	101	123/2	3		Lew	302023-	03ML	88"	and i	1.0
FIELD CRI	EW:	Loa	bow	i. Java	d King	g braze	- F at	witnes:	5: no	ne
WEATHER	E:	Most	ly Sona	1,560		9024	- Alen	[] p3	bo //	
WELL ID:	B	1661	15	612		MPLE ID:	SLO 2	170 142	14	
TOTAL DE	PTH: _		20.1'		w	ELL DIAME	TER:	4"		
SGREEN IN	ITERVAL	.: <u>I</u> .	10-1'-	20.1'				15.	<u> </u>	
STARTING	WATER	LEVEL	18.	54	FII	NAL WATE	R LEVEL: _	19.1	\$	
EVACUATI	ON MET	HOD: L #'S:	Microp	unge u	11/h pe	vistalt:	CPUN	ys. L = 68	W143	1228
pe	esista	1976	I'ma =	0149	bφ 5 (3)	285 '	- 4	HERO W	de e g	19
PURGE STA	ART TIMI	E:	1025	PURGE ENI	D TIME:	1114	TOTAL VO	LÚME PURC	GED: <u>38</u>	75 mL
SAMPLE ST	TART TIN	ИЕ:	11/4		SA	MPLE END	гіме:	1139	,	
وز	der.	(= Y		FIE	ELD PARAI	METERS	est pripas	1.0239	= well	l volume.
Time	Purge (mL/n		mLs Removed	pH (SUs)	(n.S/em) Sp. Cond. (uS/cm)	Turb.	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
1925	85			7.05	1.27 60	42-1	9-14	17.53	288	18.65
1928		:61	255	7.05		39.8	7.89	17.51	175	18.47
1031		- 6	510	7.06	1.28	39.4	6.79	17.59	76¢	18.69
1034	183	110	765	7.0L	1.27	35,70	4.05	17.49	252	18.70

Time	Purge Rate (mL/min)		mLs Removed	pH (SUs)	Sp. Cond. (uS/cm)	Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOC)
1925			# WES	7.05	1.27 600	42-1	8-14	17.53	288	18.65
1928		16)	255	7.05	1.28	39.8	7.89	17.51	175	18.47
1031		- 6	510	7.06	1.28	39.4	6.79	17.59	76¢	18.69
1434	183	- 9	765	7.¢4	1.27	35.74	4.05	17.49	252	18.70
1937	141	- 3	1020	7.07	1.27	34.84	2.60	17.54	245	18.72
1040	£4)	¥ 8	1275	7.07	1.27	34.40	2.39	17.42	240	18.74
1043	51,	= 1	1530	7.07	1.27	33.80	2.01	17.64	224	18.79
946	Stabil	9	1785	7.02	1.27	31.90	1.84	17.57	215	18.79
1049	10	DOM:	-040	7.07	1.27	29.95	1.45	17.58	129	18.82
1052	841	- 10	2295	7.07	1.27	30.19	1.70	17.60	195	18.83
1055	部门	× 3/	2550	7.47	1.27	29.47	1.68	17.59	199	(8.83
1160	U E/-		2975	7.07	1.27	18.49	1.58	17.65	179	18.84
1105	1		3416	7.01	1.77	28.63	1.49	17.13	169	18.89
1110	1		3825	7.07	(1.27	27.93	1.44	17.76	165	18.92

Recorded By: A.S. 100m 10 (33 >3

14 GOC: LE 10302023 - 06 TA LE 10302023 - 05 ML										
DATE:	10/24/2	13	_	i (m spame	5 - 10 3 1			9-6		
	FIELD CREW: Loa Goover & Jaird King Witness: None									
WEATHER: Mostly Cloudy, 65°F										
	DWI	1	125		AMPLE ID:	510 170	147	115		
WELL ID: UU 18 SAMPLE ID: SLO 274 148 TOTAL DEPTH: 55 WELL DIAMETER: 2"										
SCREEN INTERVAL: 43.4 - 53.4 MIDDLE OF SCREEN: 53.4										
	WATER LEVEL			F						
			י סייא יל	with	Bladde	Pun	0.			
EVACUATION METHOD: Micro pune with Bladges Pump. EQUIPMENT SERIAL #'S: Pump controller = GLW 103285										
WLI = GLW 143218										
	ART TIME:							40 8500		
900 ml	- remound be	المامل عدم	9 legel	ELD PARA	METERS	well	volume :	= 5959	mL.	
Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	(nolon)	Turb.	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)	
1101	300	\$ V	7.03		36.4	13.75	17.35	-129	45.16	
1014	50 3	900	1.05	2.12	23.3	2.79	16-96	-15¢	45.16	
1017	day Pr	15/200	7.05	2.06	17.7	2.46	16.96	-156	45.16	
1424	+4	15/00	7.05	2.07	12.9	1.74	16-9\$	-158	45.16	
1023	19.24	1990	7.05	2.06	16.6	1.52	16.95	-161	45.16	
1426	b E Q1	2100	7.05	2.06	4.5	1.39	16.98	-163	45.16	
1029	TV 5 1 63	55400	7.\$5	2.06	7.4	(.24	16.98	-165	45.16	
1052		6300	7.05	2.06	6.1	1.20	16.99	-164	45:16	

within an additional

2.07

2.47

2.07

2.07

5.6

4.8

3,

3.7

16.94

16.91

16.81

hour 10/20/22

-168

-170

Begin to

Recorded By: On 7. He

10200

11100

14100

17100

18099

1445

1048

1058

1108

1111

				COC: L	5 10302073 E 10302073	23-05	mL			15			
OATE: 1	0/24/	123		_									
IFLD CR	EW:_	Josed	King :	Lon H	over	£.	ω	itress:	none				
VEATHE	R: <u>M</u>	ostly	Cloudy	65°F	te	of Some		incept. In	7111				
WELL ID:				<u>.</u>		SAMPLE ID:							
TOTAL DE					w	ELL DIAME	TER:	2.4					
			53.00-	63.0	M	IDDLE OF S	CREEN: _	58.0					
			L: 45.		FI	NAL WATE	R LEVEL:	45.33	0. 41				
					Micro								
PURGE ST	T = GL ART TIM	₩ (Ø : 1E:	3228 150 1235	PURGE EN	D TIME: N	235 MPLE END	TOTAL VO	LUME PUR					
Time	Purge	e Rate /min)	mLs Removed	pH (SUs)	Sp. Cond.	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)			
1150		5	-	6.75		23.1	9.57			45.33			
1153	ä	<u></u>	735	6.74	5.07	15.3	2.69		-135	45.33			
1156	. 277		1470	6.74	5.11	11.6	1.69	18.35	-141	45.33			
1159	TIME:	SCA PATE	2205	6.74	5.11	8.6	1.36	18.35		45, 33			
1202			2940	6.74	5.10	5.2	1.11	18.35	-143	45.33			
1205	4,40 %	<u>.</u>] =	3675	6.73	5.09	4.3	Ø.98	18.35	~143	45.33			
1208			4410	6.73	5.07	3.5	Ø.88	18.34	-143	45.33			
1211			5145	6.73	5.06	2.6	Ø.82	18.34	-144	45.33			
1214			5884	6.7Z	5.05	3.6	0.78	18.35	-144	45.33			
1.41 4.54			1		_ =	Ī				i			

45.16 volumes: 45.16 45.16 1217 0.75 18.35 -144 45.33 6,615 5.03 2.9 6.72 45.1L 1224 18.35 -144 7,350 5.62 2.8 0.76 45.33 6.72 -174 48. H 1225 8,575 6.72 5.01 18.35 -144 1.5 Ø.75 45.33 -176 45.1 1230 9,800 5.01 1.8 18.35 6.73 O.76 -144 45.33 -127 45.11 11,025 6.72 1235 1.3 -144 18.35 5.02 45.33 **0.76** 10/24/23 Recorded By: 10-24-23

DATE: 14 24 33	DATE: 10/24/23
FIELD CREW: Lon Hooks & Javed King Witness: None	FIELD CREW: Javed King? Lon Hoover Witness: none
2H 14.74.93	FIELD CIG. W 13
WEATHER: Mostly Cloudy, 65°F	WEATHER: Mostly cloudy, 65°F
JH 10.74.03	WEATTER
DAILY TASK ACTIVITY:	Print = 01400 x 112
9400- Arrive at SLAPS to calibrate Horita and load agripment	DAILY TASK ACTIVITY: 1131 - Arrive at DW 15 to sample groundwater for Red ? metals.
for groundwater sampling at SLDS. Safety Topic = bidegical hazards. 19945 - Arrive at DW18 to sample groundwater for Rad. ? metals.	well volume = $(64.5^{\frac{1}{2}}45.32^{\frac{1}{2}})(.16)(3785 \text{mL})$ = 11,615 mL or 3.069
1 well volume = 1.574 g x 3785ml = 5959 m2.	1142 - Begin pumping DW15@ 245 mL/min
10832 - Complete 1st well volume/stabilization. Collect Sample.	1235 - Begin sampling DW 15 for Rad 3 metals. 12985 mls removed
after stabilization and 17877 ml removed.	prior to sampling. 1239 - Complete sampling of DW15. Packed up equipment i depart for
1115- Complete sampling of DWIS. Man to next location.	SLOS to Bignout and head back to SLAPS.
**************************************	BE SHI- 10.80 Q 7 AL 1.20 E 82.2 CEA 149.
(0.12.33	18-24-23
22 20 HAL- 20.8 3 FAC () 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Recorded By: \m 1 & 24/3 QA. Hannelf (1st) 10/21e/23	Recorded By: 10-24-23 QX Annotation 10/26/23

€00:10 COC: LE 10302023-07 ML

LG 10802023-08TA

DATE: 10 35 33 Lon Hower ? Javed King (,) HLESS: NONE FIELD CREW:

WEATHER: Ser pg. # 21

DW211 SAMPLE ID: 510270152

22.71 WELL DIAMETER: 2" TOTAL DEPTH:

17.3'- 22.3' MIDDLE OF SCREEN: 19.8' SCREEN INTERVAL:

STARTING WATER LEVEL: ____13.00° 13.27 FINAL WATER LEVEL:

EVACUATION METHOD: Micro Jurging with Peristaltic lump.

EQUIPMENT SERIAL #'S: Horiba = GLW 143285, WLI = GLW 143218,

Pump = 014005132

PURGE START TIME: 4922 PURGE END TIME: 1145 TOTAL VOLUME PURGED: 5867 AL

SAMPLE START TIME: 1(45 SAMPLE END TIME: 1(1/5

477 ml removed before justing began . FIELD PARAMETERS

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond. (µS/om)	Turb. (NTUs)	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTO
Φ922	53	_	6.82	7.19	44.8	7.10	17-93	-119	13.27
P925	e Ben	159	6.83	7.22	23.0	3.01	18.87	-132	13.27
P92-8	an who	318	6.83	7.21	17.8	2.31	18.86	-135	13.27
4931		417	6.83	7.19	13.4	2.08	18.82	-137-	13.27
0934	4	636	6.83	7.16.0	12.5	1.89	18.77	-135	13.17
1937	~	795	6.83	7.13	11.8	1.78	18.75	-135	13-27
494		954	6.83	7.10	(1.3	1.71	18.76	-140	13.27
क्षपु	,	1113	6.83	7.07	10.1	1.59	18.76	4142	13.27
\$946		1272	6.83	7.44	Ιφ. 5	1.56	18.77	-142	13.47
P949		1431	6.83	7.01	7.0	1.53	18.79	-141	13.87
ककश		2478	683	7.41	9.2	1.44	18.80	- 144	13.27
1427		3445	6.82	7.06	8.7	1.38	18.85	-142	13.37
1046		4452	681	7.05	6.9	1.29	19.00	-141	13.27
1145	Vo	5867	6-81	7.06	6.2	1.13	19.41	- (42	13.27
ecorded B	y: 009	- John 1	d 25 27	<u>_</u> go		OA: Janua	t alla	10/26/3	3

COC: LE 10302023 - 09 ML LE 10302023 - 10TA

DATE: 10 (76/23 FIELD CREW: Lon Hoour & Hannah Hotton Witness: none

WEATHER: Mostly Cloudy, 72°F

WELL ID: BIGWAGO SAMPLE ID: 540270 136

TOTAL DEPTH: 1507 89.11 WELL DIAMETER:

SCREEN INTERVAL: 69.7-79.7' 74.7 MIDDLE OF SCREEN: FINAL WATER LEVEL: 4(.5' STARTING WATER LEVEL: 41.5

EVACUATION METHOD: Micro purging with bladder pump

EQUIPMENT SERIAL #'S: Horiba = GLW 143285, WLI = GLW 143228, ;

pump controller = 6 LW 103249

PURGE START TIME: 4924 PURGE END TIME: 1125 TOTAL VOLUME PURGED: 18,826 ...L

SAMPLE START TIME: 1125 SAMPLE END TIME: 135

3,000 ml remard before pursing began. FIELD PARAMETERS

Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond.	Turb.	D.O. (mg/L)	Temp.	ORP (mV)	Water Level (ft/BTOC)
\$92¢	200	見して	6.70	8.35	8.7	1.98	17.20	-99	41.5
6923		600	6.69	8.80	4.1	1.39	17.14	-114	41.5
4926		1299	6.71	8.04	3.8	1.17	1711	-121	41.5
4922		1899	6.71	7.88	3.6	1.08	17.89	-123	41.5
0932		2400	6.74	7.84	2.7	1.00	(7.10	-125	41.5
4935		3000	6.70	7.78	2.8	Ø.93	17.11	-126	41.5
6945		5000	6.70	7.74	2.7	4.81	(7.3φ	-129	41.5
4955		8000	6.72	7.65	(.8	φ.66	17.17	-134	41.5
1005		は、女女の	6.71	7-58	1.6	Ф.63	17.18	-136	41.5
1015		12,000	6.71	7.54	1.7	Ø.₹-1	17.20	-131	41.5
1035		16,000	6.71	7.39	1.(0.41	17.09	-132	41.5
1455		20,000	6.67	7.23	1.4	Ø.63	17.65	-132	41.5
1115		24,000	6.68	7.20	0.9	Ø.56	17.06	-132	41.5
1125	*, (26,400	6.70	7.18	1.3	4.59	16.95	-133	41.5
Recorded B	y: 600 7	mags.		6 23	de de	QA	M	OH III	107/22

DATE:	10/30/27							4 17 9		DATE: 10 25 73
FIELD CR	EW:_lon	Hooved	Jaird	King	MAIN A	Wi	tress:	Nove		
WEATHE	R: Mosth	Sunne	1, 360			CF 146				FIELD CREW: Lon Hour ? Javed King Wifness: none
WELL ID:	B16W	065	sie.	SA	AMPLE ID:	5002	70137	4)4	-	7H 14-25.23
	EPTH:			w	ELL DIAME	ETER:	4"	· MA		
	NTERVAL:			M	IDDLE OF S	CREEN:	37.6	>''		M. Hu Clash, Sad D. Brans & 110F
STARTING	WATER LEVE	L: 37	.6φ'	FI	NAL WATE	R LEVEL:	NI			WEATHER: Mostly Cloudy Spotty Rain, Breezy : 66°F
EVACUAT	ION METHOD:	Micto	purging	WHL B	ladder	pomp.	w.l.k			74 14.75.27
EQUIPMEN	NT SERIAL #'S:	Horib	a = GLW	103285	WLI	= 62W 1	es 228	,		7F 10
		powo	control	141 = GL4	119324	وقده الحا	eo Netr	Q.	2 57 200	
PURGE STA	ART TIME:	4927	PURGE EN	D TIME:	MPLE END	TOTAL VO	PLUME PUR	GED: N	/A	DAILY TASK ACTIVITY: DAILY TASK ACTIVITY: DE
	Purge Rate	mLs	рН	(M5 Con) Sp. Cond. I	1	D.O.	Temp.	ORP	Water Level	
Time	(mL/min)	Removed	(SUs)	(µS/em)		(mg/L)	(°C)	(mV)	(ft/BTO	0913 - Begin pumping of DWAL @ 53 mL/min.
4927	150	8	7.11	4.969	129	12.12	14.99	187	36.74	- 0932 - Purging start time. 468 ml purped before purging short time.
	711- 0	Tell II		17 127	10 1	9	E/O		CAR	1105 - Degin soupling DW 21 For Rad? metals. 5867 m2 removed
TELL P	Sec. O.	- A		10 2		1 60	10		7.33	before sompling.
Rop	3:1- 0	200		10 43	b 6.	.1 6			7/25	WE Consider Smaller of Dull Man to SIARS to
3.05	0.01 1	3 1	0.0	1	0.30	17	-57			- secure samples and off-load equipment.
2-14	P41- 0	1	1.0 -	11	j= 04	15 60	42		7119	secure samples and off load equipment.
3-74	400- 5	81 4	1.6	.11. 713	1	1 60	98			The state of the s
3-12	417- 8	F1 E3	ф. а	1 83		0.00	g/b	· ·		a free contract to the field of
7014	101- 15	TY IF	b +				NA.		1-310	10.25.83
13.40	151 -131	F1 11	0	4 FJ		vel 14		,	7	1 H
3.14	5 -133	183	\$ 0 1 0	d fi	FF	7 1 /20	MI		3 5 5	100 10 = 100 C SESSIFIC (6.84) 1 10 - 25 23
346	76 - 135	EL 15	-9 EF	-	# 8	500	建基 市		7	The state of the s
milds.	1	1 P 2	3 0	1 81	1 1	1. 199	, lon	34	1	
Recorded B	y: JAM.	pour	10 30 8	ት)	Car !	O.C.	10	1/02/123	- 1	Recorded By: 2 2. 1000 10 25 23 QA James 10/20/23

DATE: 10.15.13

Witness , none FIELD CREW: Jored King . Hannah Hutton

WEATHER: Partly Cloudy, 75°F

DAILY TASK ACTIVITY:

1230 - Met up at SLAPS and loaded equipment for comprehensive

mater level messurements at HISS and SLAPS. All levels @ ft. BTOC:

PW45 = 9.77 HIGS-01 = 12.92

PW44 = 7.95 HISS-10 = 10.05

PW 36 = 9.99 HISS-06A = 10.09

PW35 = 9.80 853W065 = 16.74

853WOID=10.55 MW3298=17.88

BE3WDIS = 14.94 BE3WO 70=10.78

PW46 = 16.67 B53 WØ75 = 21.13

HISS 195 = 14.79 PW43=19.30 1430 - Return to SLAPS to :

HW= 16.93 PW42 = 10.48 out away equipment 3

853W095=17.39 HW23 = 9.92 check-in vehicle,

MW3198=19.20 HISS175=9.29

B53W175= 16.84 HISS 11 A = 13.81

10-25.23

DATE: 14 (30(23 FIELD CREW: Low Hoover ; Juled King Witness: none WEATHER: Mostly How 5-may 360F WELL ID: 366080 SAMPLE ID: 540 279 139 TOTAL DEPTH: 70.8'-WELL DIAMETER: 2" SCREEN INTERVAL: 58.21 _ 68.6' MIDDLE OF SCREEN: 63.4' 43.12' STARTING WATER LEVEL: 43.12 FINAL WATER LEVEL: EVACUATION METHOD: Micro Purging with Bladder Pump. EQUIPMENT SERIAL #'S: Hosiba = GLW 103285, WLI = GLW 103228, Pump controlled = GLW103249 PURGE START TIME: 1027 PURGE END TIME: 1122 TOTAL VOLUME PURGED: 16,715 ml SAMPLE START TIME: 1122 SAMPLE END TIME: U 3¢

1960 and removed before 1007 FIELD PARAMETERS

		46		(m5/cm)	4000				Water
220	Purge Rate	mLs	pН	Sp. Cond.	Turb.	D.O.	Temp.	ORP	Level
Time	(mL/min)	Removed	(SUs)	(µS/em) 1	(NTUs)	(mg/L)	(°C)	(mV)	(ft/BTOC)
1427	280	_	6.85	1.93	23.6	4.70	15.62	-76	43.12
1030		840	6.86	1.94	14.4	2.46	15.82	-121	43.12
1633		1689	6.86	1.94	11.9	1.75	15.83	-125	43.12
1036		2520	6.86	1.93	7.8	1.53	15.83	-128	43.12
1039		336B	6.86	1.93	4.6	1.40	15.00	-129	43.12
1042	_	4290	6.86	1.93	3.7	1.31	15.89	-130	43.12
1045		5040	6.86	1.93	2.0	1.20	16.01	-132	43.12
1048		5924	6.86	1.92	1-4	1.08	15.94	-133	43.12
1051		6760	6.86	1.92	1.0	1.05	15.98	-134	47.12
1054		7600	6.87	1.92	1.4	1.43	(6.46	-134	43.12
1101		9560	6.86	1.92	Q.4	φ.99	16.03	-134	43.12
1148		11520	6.86	1.92	Ø.5	9.92	16.04	-135	43.12
1115		12364	6.86	1.92	9.4	9.88	16.00	-135	43.12
1122	V ₀	14320	686	1.9(0.5	4.86	16.03	-135	43.12
Recorded B	y: Jon?	Home	10/34	33		QA:	M	- 11/07	123

DATE: 10 (26) 73
FIELD CREW: Lon Hoover : Hannah Hutton Witness: Mone
ZH 16.26.23
WEATHER: Mostly Cloudy, 72°F
XH 10.50.33
DAILY TASK ACTIVITY: 0800 - Arrive at SLAPS to celibrate Horibe and
load equipment for GW sampling at SLOS. Safety Topic = defavired in
0900 - Arrive at BIGWOOD to sample for Radis Metals.
9905 - Beyon punping BIGWAGD @ 200 ml Inin. (See pg.#19)
well volume = (29.1" - 41.5') (4.16) (3785)
n = 7.6/6g or 29,826 ml 6.46g or 24466 ml
0920 - Bezin purging of B160060.
1125 - Complete purging of B16W060 and begin sample collection. 1155 - Complete sampling of B16W060. Move to SLAIS to SECUTE Samples and off-load equipment.
1135 - Complete sampling of BIGU \$60. Move to SLAIS to
Secure samples and off-load equipment.
10.76.7
1 511
Recorded By: om 5. Horm 10/26/23

14/04/23		
DATE: 10(30/27		2.7 17 1901
FIELD CREW: Lou toou	ur? Jaird King	Witness: none
6-1-5	YH (0.30.13	
PA.	IK/ (a	for gra
WEATHER: Mostly Source	, 36°F	= 'p' tu
	2K 19.30.23	
8205NI	JH 16.	
DAILY TASK ACTIVITY: Ø §!	5- meet at GLAPS	to calibrate Horiba
	for groundwated sampling	
Safety Topic = Co	ld weather quasenes	5 •
0905 - Arrive	at BIGWOGS to sample	ie for had . 5 Metals.
I well volum	e = (42.9' - 37.6') (d	.65) (3785) = 13,039 mL
	ping B16 WO65 at 150 etciminated that when w	
4938 - It was do	etermined that when u	r decided began
pruping the water	r level stabilized belo	w the middle of
sciren and th	erefore it was decide	d that was the reason
	taflow from pump	
this well is histo	steally between 100 2 150	nt min.
Coaclusion =	Not easigh water in	well to get an
adequate porqu	e. Move to BIbwoss	to sauple for Rad. & metals
1000 - At BIGUPTS well	(volume = (38.5'-36.84')	to sample for Rad. & metals (0.65) (3785) = 5,314 mL
1005 - After meas	uring water level of 13/61	Ud85, it was found
ES all 110 CON III	AND RESIDENCE NO. 1	Madle of sent
Recorded By:	M 10/30/23	Janoblub 11/07/2023

COC: LE 11022023 - 10 ML LE 11102023-11TA

LE11022023-11TA DATE: 10 31 33 Witness: None FIELD CREW: Lon Hoover & Jarred King WEATHER: Mostly Sunny, 36° F SAMPLE ID: 5LD 24p 131 (-11-2) WELL ID: 060070 WELL DIAMETER: _ 2" SCREEN INTERVAL: 65.9' - 76.2' MIDDLE OF SCREEN: 71.1 FINAL WATER LEVEL: 42.69' STARTING WATER LEVEL: 42.69 EVACUATION METHOD: Micro purging with bladder pump. EQUIPMENT SERIAL #'S: Holiba = GLW 103 285, WLI = GLW 103 228, pump controlled = GCW103249 PURGE START TIME: 4917 PURGE END TIME: 1432 TOTAL VOLUME PURGED: 121401 SAMPLE END TIME: 105 1032 SAMPLE START TIME:

1890 ml removed before purging beg FIELD PARAMETERS

Time	_	e Rate /min)	mLs Removed	pH (SUs)	Sp. Cond.	ሲ ንኒ.ክ Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOC
2917	27	ф	_	6.82	2.23	200	6.82	16.37	241	42.69
4920	(5-0)	110 73	810	6.85	2.22	143	3.31	16.49	-67	42.69
0923	17.25	s Aug	1620	6.85	2.21	57.6	2.03	16.57	-112	42.69
0926	w 6	o Lug	2430	6.85	2.20	45.8	1.60	16.61	-125	42.69
0929	J. J.L.	25. V	3240	6.85	2.20	35.9	1.34	16.58	-132	42.69
p932	LDS		4050	6.85	2.20	25.5	1.16	16.57	-137	42.69
Ø935			4860	6.85	2.20	18.9	1.04	16.60	-139	42.69
Φ938		-	5670	6.85	2.21	13.3	0.95	15.58	-141	42.69
0947	. 4		8100	6.85	2.26	5.¢	QB1	16.05	194	42.69
0956	9.	1 14	10530	6.85	2.29	4.8	9.75	16.47	-145	42.69
1005	-0	100	12960	6.85	2.30	3.9	0.69	16.46	-145	42.69
1014			15390	6.85	2.31	3.4	4.63	16.45	-146	42.69
1023	£ 78	1	17824	6.85	2.37	2.9	0.65	16.44	-146	42.69
1032		7/	20250	6.85	2.34	2.2	4.62	16.41	-146	42.69

DATE: 19/31/13	Ce 18 100
FIELD CREW: Lon Hoour ; Jaird	ting Witness: uone
WEATHER: Mostly Suns, 36°F	1 Y/St. Hears Stylett
	SAMPLE ID: 5LD 27-Ф 141
	WELL DIAMETER: 2"
	MIDDLE OF SCREEN: 49.4'
	FINAL WATER LEVEL: 38.87
EVACUATION METHOD: Micuo purging	
EQUIPMENT SERIAL #'S: Hosing = 6 CWI43	3285, WLI = GLW (43228
Dung contilles =	WH 6LW 193249
	1213 TOTAL VOLUME PURGED: (2470)

SAMPLE START TIME: 1213

____ SAMPLE END TIME: 172Φ

llGØ an_	Purge F (mL/m	Rate	mLs Removed	pH (SUs)	ELD PARAN (w5/cn) Sp. Cond.	*0U/.e.	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOC)
1134	299	5	A	6.78	3.17	150	11.20	17.18	26	38.87
1(27		P	87-0	6.82	3.44	138	2.18	17.48	-93	38.87
140	27		174Φ	6.83	3.48	112	1.32	17.62	-/12	38.87
143	111	Į	2610	6.83	3.49	109	1.41	17.68	-118	38.87
1146		J.A	3480	6.87	3.49	113	6.89	17.84	-121	38.87
११११	45	3	4750	6.83	3.48	113	P.81	17.84	-122	78.87
152	£(0) =	ħ	5720	6.83	3.47	103	0.72	17.81	- 124	38.87
155	- RG -	3	6090	6.84	3.46	95.0	g.(8	17.96	-125	38.87
158	1 98		6969	6.84	3.45	86.9	p.64	17.91	-126	38.87
١.6(44g	7870	6.84	3.45	79.8	φ·59	18.01	-128	38.87
LO4	8T =	- 1	8700	6.84	3.44	75.6	0.57	17.98	-128	38.87
节	124 -	13	9570	6.84	3.44	59.1	0.55	17.92	-129	38.87
ग्रक	-7.3		10 440	6.84	3.44	55.3	Ø53	17.89	-179	38.87
713	V	1635	11310	6.84	3.44	56.1	4.57	17.90	-129	38.87
corded B		6	. form	10/31	23		QACAGA	note	n 11/	07/23

COC: 11022023-01 mL 11022023-02TA

•
- 14
ml

1050 ML removed belove purging began FIELD PARAMETERS

Purge Rate (mL/min)	mLs Removed	pH (SUs)	Sp. Cond./\ (\text{\tin}\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\ti}\text{\text{\text{\text{\text{\text{\texi\crin{\texi{\texi}\\ \ti}\text{\text{\text{\text{\texi}\text{\texit{\text{\text{	Turb. (NTUs)	D.O. (mg/L)	Temp. (°C)	ORP (mV)	Water Level (ft/BTOO	1010 - Setting
150	g~ 08	6.75	1.82	36.2	4.61	16.16	53	40.07	I well udome
ET AT	450	6.85	1.82	28.0	1.99	16.09	-71	44.07	100 A
51, 6	900	6.87	1.83	22.0	1310	16.13	-101	40.07	for - begin
	135Φ	6.87	1.83	17.1	1.07	16.14	-111	40.07	1927 - Bogin p
	1800	6.88	1.82	11-5	Ø.93	16.19	-117	40.07	1122 - Begin su
6 - 22	2250	6.88	1.82	6.2	4.81	16.[8	-122	40.07	time ()
PS: - 18	2700	6.88	1.82	4.9	4.78	16.19	-123	The second secon	1138. Complete 5
34- 9	-	6.88	1.82	3.9	4.23	16.15	-129		To secuso sam
10 - 12		6.88	1.81	2.6	\$69	16.11	-126	49.97	1684
egi I te	4950	6.88	1.81	Ф.6	Q.63	16.18	-128	40.07	
841- 8	5850	6.88	1.80	4.0	0.57	16-16	-128	44.07	
PAIL SI	6750	6.89	1.86	p.q	ゆると	16.21	-129	44.87	AT AT
1916 1	7800	6.89	1.79	0.0	0.51	16.24	-129	40.07	428.0
- A	8700	note:	discount			Sample	ord, ours 3	40.07	
	150	150 ~ 450 900 1350 1800 2250 2700 2700 5850 6750 7800	150 ~ 6.75 1 450 6.85 900 6.87 1350 6.87 1800 6.88 2750 6.88 2700 6.88 2700 6.88 4050 6.88 4950 6.88 5850 6.88 6750 6.89 7800 6.89 N 8700 Note:	150 ~ 6.75 1.82 150 ~ 6.85 1.82 900 6.87 1.83 1350 6.88 1.82 2250 6.88 1.82 2700 6.88 1.82 2700 6.88 1.82 3150 6.88 1.82 4950 6.88 1.81 4950 6.88 1.81 5850 6.88 1.80 6750 6.88 1.80 7800 6.89 1.79 N 8700 Note: discount	150 ~ 6.75 1.82 36.2 1 450 6.85 1.82 28.0 900 6.87 1.83 22.0 1350 6.87 1.83 17.1 1800 6.88 1.82 6.2 2700 6.88 1.82 6.2 2700 6.88 1.82 6.2 2700 6.88 1.82 3.9 4050 6.88 1.81 2.6 4950 6.88 1.81 2.6 4950 6.88 1.81 0.6 5850 6.88 1.80 0.2 7800 6.89 1.79 0.0 8700 Note: discount d Hos	150 ~ 6.75 1.82 36.2 4.61 150 ~ 6.85 1.82 28.0 1.99 900 6.87 1.83 22.0 1.31 1350 6.87 1.83 17.1 1.07 1800 6.88 1.82 6.2 0.81 2700 6.88 1.82 6.2 0.81 2700 6.88 1.82 6.2 0.28 3150 6.88 1.82 3.9 0.23 4950 6.88 1.81 2.6 0.63 5850 6.88 1.81 0.6 0.63 5850 6.88 1.80 0.2 0.57 6750 6.89 1.80 0.2 0.51 N 8700 Note disconnetd Howard	150 ~ 6.75 1.82 36.2 4.61 16.16 1 450 6.85 1.82 28.0 1.99 16.09 900 6.87 1.83 22.0 1.31 16.13 1350 6.87 1.83 17.1 1.07 16.14 1800 6.88 1.82 11.5 0.93 16.19 2750 6.88 1.82 6.2 0.81 16.18 2700 6.88 1.82 4.9 0.78 16.19 3150 6.88 1.81 2.6 0.67 16.15 4050 6.88 1.81 2.6 0.67 16.11 4950 6.88 1.81 2.6 0.67 16.18 5850 6.88 1.80 0.2 0.57 16.16 6750 6.89 1.80 0.7 0.57 16.21 7800 6.89 1.79 0.00 0.51 16.21 7800 6.89 1.79 0.00 0.51 16.24	150 - 6.75 1.82 36.2 4.61 16.16 53 1 450 6.85 1.82 38.0 1.99 16.09 -71 900 6.87 1.83 22.0 1.31 16.13 -101 1350 6.87 1.83 17.1 1.07 16.14 -111 1800 6.88 1.82 11.5 0.93 16.19 -117 2250 6.88 1.82 6.2 0.81 16.18 -122 2700 6.88 1.82 4.9 0.78 16.15 -129 4050 6.88 1.81 2.6 0.69 16.16 -128 4950 6.88 1.81 2.6 0.63 16.18 -128 5850 6.88 1.80 0.0 0.57 16.16 -128 6750 6.89 1.80 0.0 0.51 16.21 -129 7800 6.89 1.79 0.0 0.51 16.21 -129	150 ~ 6.75 1.82 36.2 4.61 16.16 53 40.09 1 450 6.85 1.82 28.0 1.99 16.09 71 40.07 900 6.87 1.83 22.0 1.31 16.13 -101 40.07 1350 6.87 1.83 17.1 1.07 16.14 -111 40.07 1800 6.88 1.82 11.5 0.93 16.19 -117 40.07 2750 6.88 1.82 6.2 0.81 16.18 -122 40.07 2700 6.88 1.82 6.2 0.81 16.18 -123 40.07 3150 6.88 1.82 3.9 0.87 16.15 -129 40.07 4050 6.88 1.81 2.6 0.67 16.11 -126 40.07 4950 6.88 1.81 2.6 0.67 16.18 -128 40.07 5850 6.88 1.80 0.0 0.57 16.16 -128 40.07 7800 6.89 1.80 0.0 0.51 16.21 -129 40.07 7800 6.89 1.80 0.0 0.51 16.21 -129 40.07

ATE: 19 (36) 17	
ELD CREW: Lou Hoover 4, Jas	ed King Witness: none
719	(Q.36.23
EATHER: Mosly Sunny, 36°F	Filt was to death
EATHER: WORLD CO	
2# K	e.30.33
ALLY TASK ACTIVITY: Continued from	n pg. # 27:
- that the owns intake (mid	dly of scieen) was above the water
level of well. Conclosion =	= not able to purge water from
This well. Move to B161	
/ well udume = (70.8)	1080 to sample for Rad. ? metals. (70.8'-43.2') (0.16) (3785) = 16,715 m
1020 - Degin pumping B164	1080 at 280 mL/min.
1927 - Bosin pursing of	016W480.
1027 - Bosin purging of 1	316W48D.
1136 - Complete sompling of B	164080 and return to SLAPS
to secuse samples and o	ff-load equipment.
1 (348 c) . I charlest	6) (FB 8E-3 87) (0.
0.5	Q -4 APO CHIEF To enfower tend by
	14 19.30.33
ALL THE WAY AND A PERSON OF THE PERSON OF TH	company for printing the same of the
	Transaction of the second
corded By: Jn 2. Hom 10(30/3	
corded By: On " Many (4)30 3	3 Qx Jamp Later 11/07/2023

DATE: 10 31 13	(12 (40) Page 1
FIELD CREW: Lou Hoover ? Jated King	Witness: NONA
ZH 14.31.33	
WEATHER: Mostly Sunny , 36°F	Property of the Charles
7# (0.31.23)	
DAILY TASK ACTIVITY: 0800 - Meet at SLAJ	to calificate equipment
ond lond for groundwater compling at a 0850 - Arrive at BIGWCP70 to so note = This location is the QAIQU	SLDS.
0850 - Acciva at B16W070 to 5	audle For Red. ; metals.
note - This location is the QA/QI	well seally all and a seal
well volump = (78.5-42.69) (4.	16) = (35.81) (0.16)=5.839.
5.739 Y37B5 mL = 21,68	
0910 - Begin pumping B16W070 at 2	70 ml/min.
0917 - Begin purging of BIGWATD.	Mars - Programme Inc
1972 - Complete shipling of BIGWO71	and begin sampling.
1105 - Complete sampling of B16W970.	and the same states a solution
1117. Arrive at 016W090 to sample f	or Rad & metals.
well volume = (55.5-38.87) (0.16) (3785) = 10071 mL.
1179 - Begin pumping of B16W09D@ 290	
1134 - Roch survive at BIGW1691	900
1213 - Complete purging and begin soundling of 1220 - Complete Sampling of 1316 WOOD. Mon	BIGWATD.
Recorded By: 7 or 7. 90m 10/3/37	QA James July 11/2/23

ATE	11/1/3			11022					
AIL.	EW: 5	e na d	4 3d						
			7 4	1	35525				
EATHE	A . 1	Δ.				- 1/4/21			
VELL ID:	1) W19	<u>(1)</u>	4		AMPLE ID:			Ø	
OTAL DE	PTH: 14 11.	8.97 5 5.5	5 5	3.5° W	ELL DIAME	TER:	211		
CREEN IN	ITERVAL:	42.51	_ \$2.	<u> </u>	IDDLE OF S	CREEN: _	47.5	<u>'</u>	
TARTING	WATER LEVE	<u> 4</u>	P. P7	FI	NAL WATE	R LEVEL: _	ЧΦ.	47	
VAGUAT	ION METHOD:	Se	e pg.	# 3	3	Slig byo	i.Ili		
	IT SERIAL #'S:	54	e Da.	# 30				24	
		1	K /	turil -	- 10050-5	distrib	99		
	TART TIME:	1134			MPLE END	тіме:	٠	1/2/24	ad • firms
Time	Purge Rate (mL/min)	mLs Removed	pH (SUs)	(MS/cm) Sp. Cond.	111.6.2.	D.O. (mg/L)	We [[Temp. (°C)	ORP (mV)	Water Level (ft/BTOC)
002	15Φ	10500	6.88	1.79	ф. Ф	Ø.48	16.09	-129	40.07
613-	45.	1275 P	6.90	1.78	Q.4	0.47	16-16	-124	44.47
272	724	15000	6-24	1.78	φ.φ	4.46	16.16	-126	40,00
147	EQ14 (1)	1725Q	6.89	1.7B	Φ.Φ	φ. 42	16.21	-127	44.07
10×	fra a	19500	6.89	1.78	φ.φ	4.39	(6.18	-128	40.07
(17	-011	21750	6.89	1.72	φ.φ	Q.35	16.14	-129	4007
1132	al. 39	24000	6.89	1.77	Ø.0	Ф.34	16.04	-129	40.07
1134	V	27000	6.89	1.77	Φ.φ	4.72	16.48	-129	40.07
	"场 禁		Y Y	34		- 5	tio 4		1-180
题中	891	1 3	. 0	i) 64,	J. 81	Là M	94	ļ .	4.50
Bo. P	193 J.	-di 33		84	1 ===	90	2		4893
2	85L B	31 31	3 1	1		11.1.3	7		WED
10.8	P. G	1 2	41 5	1	B 71	. 4			DOFT
10.10	19 N 91	1 48	, t	4 81	30	· 6) · 44	20 L. V		Figh
	y: Jug.	Hope	141/23		12.4	QAdlo	7.4		_

St. Louis Downtown Site An	nual Environmental Monitoring Data and Anal	lysis Report for CY 2023	
	Ţ,	•	
	THIS PAGE INTENTIONALLY	Y LEFT BLANK	
	700:		

St. Louis Downtown Site Annual Environmental Monitoring Data and Analysis Report for CY 2023
APPENDIX G
DOSE ASSESSMENT ASSUMPTIONS

St. Louis Downtown Site An	nual Environmental Monitoring Data and Analysis Report for CY 2023	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	
	THIS PAGE INTENTIONALLY LEFT BLANK	

DOSE ASSESSMENT ASSUMPTIONS

DOSE TO A MAXIMALLY EXPOSED INDIVIDUAL

An off-site, worker-based receptor is the most realistic choice to represent the hypothetical maximally exposed individual, because of the proximity of the receptor, approximately 75 m north of the SLDS Plant 6 loadout area and because of the time the individual will spend at this location. Thus, a realistic assessment of dose can be performed using conservative assumptions of occupancy rate and distance from the source.

The following dose assessment is for a maximally exposed individual who works full-time (2,000 hours per year) at a location approximately 75 m north of the SLDS loadout area.

Airborne Radioactive Particulates

An EDE of 0.4 mrem per year to the receptor was calculated by using activity fractions to determine a source term, and then combining the dose results for all SLDS excavation areas. The USEPA CAP88-PC modeling code was used to calculate dose to the receptor from the SLDS excavation and loadout areas (Leidos 2024b). The distances and directions of the maximally exposed receptor from the excavated areas are presented on Figure B-1 of Appendix B. Details related to calculation of EDE for the maximally exposed receptor are contained in Appendix B.

External Gamma Pathway

Stations DA-3 was closest to the receptor. The average TLD results from this location was used for the dose calculations. The station DA-3 TLDs measured an average annual exposure, above background, of 3.8 mrem per year, based on 8,760 hours of continuous detector exposure. The EDE due to gamma exposure for the maximally exposed individual is estimated by assuming that the site approximates a line source with a source strength (H₁) that is the average of the TLD measurements between the source and the receptor (Cember 1996).

$$H_1 = 3.8 \text{ mrem/year}$$

Based on 100 percent occupancy rate, the exposure rate (H₂) to the receptor was calculated as follows:

$$H_2 = H_1 \times \frac{h_1}{h_2} \times \frac{\tan^{-1}(L/h_2)}{\tan^{-1}(L/h_1)}$$

$$H_2 = 1.7 \text{ mrem/year}$$

where:

 H_2 = exposure rate to the receptor

 H_1 = exposure rate to the TLDs

 h_2 = distance from the source to the receptor = 75 m

 h_1 = distance from the source to the TLDs = 50 m

L = average distance from centerline of the line source (H₁) to the end of the line source = 25 m

The actual dose to the maximally exposed individual, who is only present during a normal work year, is calculated as follows:

$$H_{\text{MEI}} = H_2 \times \frac{2,000 \text{ hours/work year}}{8,760 \text{ hours/total year}}$$

$$H_{MEI} = 0.4 \text{ mrem/year}$$

Airborne Radon Pathway

The radon data from Station DA-9 was used to determine dose due to radon and decay chain isotopes because this was the only monitoring station that detected above background concentrations at the SLDS. Although the monitoring station closest to the critical receptor, DA-3, detected no radon above background, the DA-9 data was used to calculate a radon dose from Station DA-3 to the critical receptor. Appendix C presents the radon results at all stations. Station DA-9 ATDs measured annual exposures above background of 0.01 pCi/L based on 8,760 hours of continuous exposure.

$$S_1 = \left[\frac{(0.01) pCi/L}{1}\right] = 0.01 pCi/L$$

The actual radon exposure dose to the hypothetical maximally exposed individual was calculated as follows:

$$S_{MEI} = S_1 \times F \times DCF \times T \times C_1 \times C_2$$

 $S_{MEI} = 0.6 \text{ mrem/year}$

where:

 S_1 = fenceline average of ATD measurements between source and receptor

 S_{MEI} = radon exposure to the hypothetical maximally exposed individual

F = Equilibrium fraction based on NCRP 97, Section 4, one (1) WL = 100 pCi/L and 0.7 outdoor equilibrium factor

DCF = dose conversion factor (USEPA 1989) = 1,250 mrem per WLM

T = exposure time for the hypothetical maximally exposed receptor = 2,000 hours per year

 C_1 = occupancy factor constant = 1 month per 170 hours

C₂ = dispersion factor = 0.63 [diffusion factor from source to receptor verses source to detector (50 m to detector and 75 m to receptor)]

WL = working level (concentration unit)WLM = working level month (exposure unit)

Total Effective Dose Equivalent

TEDE = CEDE (airborne particulates) + H_{MEI} (external gamma) + S_{MEI} (airborne radon) TEDE = 0.4 mrem/year + 0.4 mrem/year + 0.6 mrem/year = 1.5 mrem/year

where:

CEDE = committed effective dose equivalent