

DEPARTMENT OF THE ARMY ST. LOUIS DISTRICT, CORPS OF ENGINEERS 8945 LATTY AVENUE BERKELEY, MISSOURI 63134

July 25, 2002

Formerly Utilized Sites Remedial Action Program

Subject: Transmittal of Second Quarter of Calendar Year 2002 Discharge Report for NPDES Permit MO-0111252 and Applicable or Relevant and Appropriate Requirements (ARARs) for Discharges to the Waters of the State at the St. Louis Airport Site (SLAPS), St. Louis, MO

Mr. Kurt Riebeling Chief, Water Unit Missouri Department of Natural Resources 10805 Sunset Office Dr., Suite 100 St. Louis, MO 63127-1038

Dear Mr. Riebeling:

In accordance with NPDES Permit MO-0111252 for the Hazelwood Interim Storage Site (HISS), and the substantive requirements for storm-water discharge to the waters of the state at the St. Louis Airport Site (SLAPS), St. Louis, MO, this letter transmits the storm-water discharge monitoring report for the second quarter of Calendar Year (CY) 2002. Attachment A of this report contains the available analytical results for the second quarter of CY 2002 for storm-water Outfalls 001, 002, and 003 at HISS. Attachment B contains the analytical results for storm-water Outfalls 001a, 001b, 002, and 003 at SLAPS.

• Hazelwood Interim Storage Site (HISS)

During the second quarter of CY 2002, permit-specified parameters were measured in April, May, and June. Data results indicate that total organic halogen (TOX) values were positive for all outfalls; therefore, volatile (VOC) and semi-volatile (SVOC) organic compounds were taken to identify the specific constituent as specified in the permit. Acetone and toluene were present at estimated quantities below the detection limit in all samples at all outfalls. These constituents are often associated with laboratory contamination.

St. Louis Airport Site (SLAPS)

During the second quarter of CY 2002 there were seven rainfall events. For the data that has been received to date, one exceedence was noted per the monitoring requirements of the permit. On April 8, 2002 a compliance sample at Outfall 001a exceeded the daily maximum limit of 84 ug/L for total recoverable copper. The result reported was 100 ug/L. The May 15, 2002 letter notification is attached. (See Attachment C).

Outfall 003 is still plugged to accommodate excavation activities in the area. The water from Outfall 003 is collected in a temporary sedimentation basin and pumped to another sedimentation basin, which then flows to Outfall 001a.

Extreme rainfall during event 4 necessitated pumping from the sedimentation basin at Outfall 001a through emergency Outfall 001b. Over 250,000 gallons were pumped to Outfall 001b and compliance samples were collected.

As per MDNR letter, dated February 19, 2002, sampling at Outfall 002 has been reduced to once a year.

If you have any questions concerning this report, please contact Mr. Ron Frerker, (314) 260-3936, or Dr. Greg Hempen, (314) 260-3939.

Sincerely,

Sharon R. Cotner

FUSRAP Program Manager

Attachments

ATTACHMENT A

SECOND QUARTER CY 2002 RESULTS FOR THE HAZELWOOD INTERIM STORAGE SITE

	Rainfall	Maximum Daily Flow (MGD) ¹					
Date	(inches)	Outfall 001	Outfall 002	Outfall 003			
01-Apr-02		FME	FME				
02-Apr-02	0.01	FME	FME				
03-Apr-02		FME	FME				
04-Apr-02		FME	FME				
05-Apr-02		FME					
06-Apr-02		FME					
07-Apr-02	0.09	FME					
08-Apr-02	0.44	FME	0.02				
09-Apr-02		FME					
10-Apr-02		FME					
11-Арг-02		FME					
12-Apr-02	0.02	FME					
13-Арг-02		FME					
14-Apr-02	0.02	FME					
15-Apr-02		FME					
16-Apr-02	0.03	FME					
17-Apr-02		FME					
18-Apr-02		FME					
19-Apr-02	0.98	FME	0.11				
20-Apr-02	0.46	FME	0.05				
21-Apr-02	0.11	FME	0.03				
22-Apr-02		FME					
23-Apr-02	0.01	FME					
24-Apr-02	0.03	FME					
25-Jan-02		FME					
26-Apr-02		FME					
27-Apr-02	0.91	FME	0.07				
28-Apr-02		FME					
29-Apr-02		FME					
30-Apr-02	<u> </u>	FME					
	Average	<u> </u>	0.012	0.00			

	Rainfall	Maximu	m Daily Flo	w (MGD) ^I
Date	(inches)	Outfall 001	Outfall 002	Outfall 003
I-May-02		FME		FME
2-May-02	0.07	FME		FME
3-May-02		FME	l	
4-May-02	0.01	FME		
5-May-02		FME		
6-Feb-02	0.47	FME	0.03	0.01
7-May-02	1.19	FME	0.16	0.12
8-May-02	0.41	FME	0.05	0.01
9-May-02	0.61	FME	0.07	
10-May-02		FME		
11-May-02	0.01	FME		
12-May-02	1.64	FME	0.13	
13-May-02	0.40	FME	0.07	0.01
14-May-02		FME		
15-May-02		FME		
16-May-02	0.41	FME	0.03	0.01
17-May-02	0.50	FME	0.07	0.04
18-May-02		FME		
19-May-02		FME		
20-May-02		FME		
21-May-02		FME		,
22-May-02		FME		
23-May-02		FME		
24-May-02	0.16	FME		
25-May-02	0.01	FME		
26-May-02		FME		
27-May-02		FME		
28-May-02	0.35	FME		
29-May-02		FME		
30-May-02		FME		
31-May-02		FME		
Monthly A	verage		0.02	0.032

	Rainfall	Maximum	Daily Flo	w (MGD) ^l
Date	(inches)	Outfall 001	Outfall 002	Outfall 003
1 1 02		EME.		
1-Jun-02		FME		
2-Jun-02		FME		
3-Jun-02		FME		
4-Jun-02	0.00	FME		
5-Jun-02	0.99	FME	0.07	0.06
6-Jun-02		FME	0.01	
7-Jun-02		FME		
8-Jun-02		FME		<u> </u>
9-Jun-02	0.15	FME		
10-Jun-02	0.41	FME		<u> </u>
11-Jun-02	1.34	FME	0.04	
12-Маг-02	1.13	FME	0.21	0.02
13-Jun-02		FME		
14-Jun-02		FME		
15-Jun-02		FME		
16-Jun-02		FME		
17-Jun-02		FME		
18-Jun-02		FME		
19-Jun-02		FME		
20-Jun-02		FME		
21-Jun-02		FME		
22-Jun-02		FME		İ
23-Jun-02		FME		
24-Jun-02	0.01	FME		
25-Jun-02	0.21	FME		
26-Jun-02		FME		
27-Jun-02		FME		
28-Jun-02		FME		
29-Jun-02	· · · · · · · · · · · · · · · · · · ·	FME		
30-Jun-02		FME	·	<u> </u>
	Average		0.03	0.04
L		<u>-1</u>		3.04

NOTES:

FME = Flow Meter Error. No flow data available.

Flow was measured continuously using ISCO Model 4210 Ultrasonic flow meters installed at each outfall.

¹Daily maximum flow values are based on 24-hour flow and recorded as million gallons per day.

²Monthly Average does not include FME fields

					Detection		validation
utfall	Sample ID	Date Collecte		Result	Limit	Units	Qualifier
HN01	HIS66616	04/08/02	Settleable Solids (SS)	0	0.2	mL/L/hr	U
HN01	HIS66619	05/06/02	Settleable Solids (SS)	0	0.2	mL/L/hr	U
HN01	HIS66622	06/05/02	Gross Alpha	9.9	9.3	pCi/L	J
HN01	HIS66622	06/05/02	Gross Beta	5.3	26	pCi/L	UJ
HN01	HIS66622	06/05/02	Radium-226	0	1.7	pCi/L	UJ
HN01	HIS66622	06/05/02	Settleable Solids (SS)	0	0.2	mL/L/hr	U
HN01	HIS66622	06/05/02	1,1,1-Trichloroethane	5	5	ug/L	U
HN01	HIS66622	06/05/02	1,1,2,2-Tetrachloroethane	5	5	ug/L	U
HN01	HIS66622	06/05/02	1,1,2-Trichloro-1,2,2-trifluoroethane	5	5	ug/L	.U
HN01	HIS66622	06/05/02	1,1,2-Trichloroethane	5	5	ug/L	U
HN01	HIS66622	06/05/02	1,1-Dichloroethane	5	5	ug/L	U
HN01	HIS66622	06/05/02	1,1-Dichloroethene	5	5	ug/L	U
HN01	HIS66622	06/05/02	1,2-Dichloroethane	5	5	ug/L	ប
HN01	HIS66622	06/05/02	1,2-Dichloroethene (Total)	10	10	ug/L	U
HN01	HIS66622	06/05/02	1,2-Dichloropropane	5	. 5	ug/L	U
HN01	HIS66622	06/05/02	2-Butanone	20	20	ug/L	Ü
HN01	HIS66622	06/05/02	2-Hexanone	- 20	20	ug/L	U
HN01	HIS66622	06/05/02	4-Methyl-2-pentanone	20	20	ug/L	U
HN01	HIS66622	06/05/02	Acetone	6.4	20	ug/L	U
HN01	HIS66622	06/05/02	Benzene	5	5	ug/L	U
HN01	HIS66622	06/05/02	Bromodichloromethane	5	5	ug/L	U
HN01	HIS66622	06/05/02	Bromoform	5	5	ug/L	· U
HN01	HIS66622	06/05/02	Bromomethane	10	10	ug/L	U
HN01	HIS66622	06/05/02	Carbon disulfide	5	5	ug/L	Ü
HN01	HIS66622	06/05/02	Carbon tetrachloride	5	5	ug/L	Ú
HN01	HIS66622	06/05/02	Chlorodibassassassas	5	5	ug/L	Ū ·
· HN01	HIS66622	06/05/02	Chlorodibromomethane	. 5	5	ug/L	U ·
HN01	HIS66622	06/05/02	Chloroethane	10	10	ug/L	11
HN01	HIS66622	06/05/02	Chloroform	5	5	ug/L	U
HN01	HIS66622	06/05/02	Chloromethane	10	10	ug/L	U
HN01	HIS66622	06/05/02	cis-1,3-Dichloropropene	5	5	ug/L	. U
HN01	HIS66622	06/05/02 06/05/02	Ethylbenzene Methylene chloride	5 5	5	ug/L	U
HN01	HIS66622	06/05/02	Styrene		5 .	ug/L	U
HN01	HIS66622 HIS66622	06/05/02	Tetrachloroethene	. 5 . 5	5 5	ug/L	U
HN01 HN01	HIS66622	06/05/02	Toluene	1.8	5 5	ug/L	U
HN01	HIS66622	06/05/02	trans-1,3-Dichloropropene	1.0 5	5 5	ug/L	U U
HN01	HIS66622	06/05/02	Trichloroethene	5	5	ug/L	
HN01	HIS66622	06/05/02	Vinyl chloride	· 5	5	ug/L ug/L	U U
HN01	HIS66622	06/05/02	Xylenes, total	. 10	10		IJ
HN01	HIS66622	06/05/02	1,2,4-Trichlorobenzene	10	10	ug/L ug/Ļ	Ŭ
HN01	HIS66622	06/05/02	1.2-Dichlorobenzene	10	10	ug/L ug/L	Ü
HNOI	HIS66622	06/05/02	1,3-Dichlorobenzene	10	. 10	ug/L ug/L	Ü
HN01	HIS66622	06/05/02	1,4-Dichlorobenzene	10	10	ug/L	Ŭ
HNOI	HIS66622		2,4,5-Trichlorophenol	10	10	ug/L	Ŭ
HN01	HIS66622	06/05/02	2,4,6-Trichlorophenol	10	, 10	ug/L	Ŭ
HN01	HIS66622	06/05/02	2,4-Dichlorophenol	10	10	ug/L ug/L	Ŭ
HN01	HIS66622	06/05/02	2,4-Dimethylphenol	. 10	10	ug/L	Ŭ
HNOI	HIS66622	06/05/02	2,4-Dinitrophenol	50	50	ug/L ug/L	Ŭ
HN01	HIS66622	06/05/02	2,4-Dinitrotoluene	10	10	ug/L	Ü
HN01	HIS66622	06/05/02	2,6-Dinitrotoluene	10	. 10	ug/L	Ü
HN01	HIS66622	06/05/02	2-Chloronaphthalene	10	10	ug/L	Ü
HNOI	HIS66622	06/05/02	2-Chlorophenol	10	10	ug/L	Ŭ
HN01	HIS66622	06/05/02	2-Methylnaphthalene	10	10	ug/L	ŭ
HN01	HIS66622	06/05/02	2-Methylphenol	10	10	ug/L	ŭ
HN01	HIS66622	06/05/02	2-Nitroaniline	50	, 5 0	ug/L	Ŭ
HN01	HIS66622	06/05/02	2-Nitrophenol	10	10	ug/L	Ŭ
HN01	HIS66622	06/05/02	3,3'-Dichlorobenzidine	50	50	ug/L	Ŭ
HN01	HIS66622	06/05/02	3-Nitroaniline	50	50	ug/L	Ŭ
	HIS66622	06/05/02	4,6-Dinitro-2-methylphenol	50	50	ug/L	•

					Detection		Validation
utfall	Sample ID	Date Collecte	d Analyte	Result	Limit	Units	Qualifier
HN01	HIS66622	06/05/02	4-Bromophenyl phenyl ether	10	10	ug/L	U
HN01	HIS66622	06/05/02	4-Chloro-3-methylphenol	10	10	ug/L	Ū
HN01	HIS66622	06/05/02	4-Chloroaniline	10	10	ug/L	U
HN01	HIS66622	06/05/02	4-Chlorophenyl phenyl ether	10	10	ug/L	U
HN01	HIS66622	06/05/02	4-Methylphenol	20	20	ug/L	Ü
HN01	HIS66622	06/05/02	4-Nitroaniline	50	50	ug/L	U
HJ101	HI\$66622	06/05/02	4-Nitrophenol	50	50	ug/L	Ü
HN01	HIS66622	06/05/02	Acenaphthene	10	· i0	ug/L	Ü
HN01	HIS66622	06/05/02	Acenaphthylene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Anthracene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Benzo(a)anthracene	10	i O	ug/L	U
HN01	HIS66622	06/05/02	Benzo(a)pyrene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Benzo(b)fluoranthene	10	10	ug/L	Ü
HN01	HIS66622	06/05/02	Benzo(g,h,I)perylene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Benzo(k)fluoranthene	10	10	ug/L	U
100H	HIS66622	06/05/02	Bis(2-chloroethoxy) methane	10	10	ug/L	U
HN01	HIS66622	06/05/02	Bis(2-chloroethyl) ether	10	10	ug/L	U
HN01	HIS66622	06/05/02	Bis(2-chloroisopropyl) ether	10	10	ug/L	U
HN01	HIS66622	06/05/02	Bis(2-ethylhexyl) phthalate	10	10	ug/L	U .
HN01	HIS66622	06/05/02	Butyl benzyl phthalate.	10	10	ug/L	U [
HN01	HIS66622	06/05/02	Carbazole	10	10	ug/L	. U
HN01	HIS66622	ი6/05/02	Chrysene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Di-n-butyl phthalate	10	10	ug/L .	U
HN01	HIS66622	06/05/02	Di-n-octyl phthalate	10	10	ug/L	U
100H	HIS66622	06/05/02	Dibenzo(a,h)anthracene	. 10	10	ug/L	U
HN01	HIS66622	06/05/02	Dibenzofuran	10	. 10	ug/L	U
HN01	HIS66622	06/05/02	Diethyl phthalate	10	10	ug/L	U
FU/01	111866622	06/05/02	Dimethyl phthalate	10	10	ng/L	IJ
HN01	HIS66622	06/05/02	Fluoranthene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Fluorene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Hexachlorobenzene	10	10	ug/L	U .
HN01	HIS66622	06/05/02	Hexachlorobutadiene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Hexachlorocyclopentadiene	50	50	ug/L	U
HN01	HIS66622	06/05/02	Hexachloroethane	10	10	ug/L	U
HN01	HIS66622	06/05/02	Indeno(1,2,3-cd)pyrene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Isophorone	10	10	ug/L .	U
HN01	HIS66622	06/05/02	N-Nitroso-di-n-propylamine	10	10	ug/L	Ŭ
HN01	HIS66622	06/05/02	N-Nitrosodiphenylamine	10	10	ug/L	U
HN01	HIS66622	06/05/02	Naphthalene	10	10	ug/L	Ŭ
HNOI	HIS66622	06/05/02	Nitrobenzene	10	10	ug/L	U
111101	HIS66622	06/05/02	Pentachlorophonol	50 .	50	ug/L	U
HN01	HIS66622	06/05/02	Phenanthrene	10	10	ug/L	Ū
HN01	HIS66622	06/05/02	Phenol	10	10	ug/L	บ
HN01	HIS66622	06/05/02	Pyrene	10	10	ug/L	U
HN01	HIS66622	06/05/02	Total Organic Halogens (TOX)	21.7	10	ug/L	=
HN01	HIS66622	06/05/02	Total Organic Carbon (TOC)	15.5	2.	mg/L	=
HN01	HIS66622	06/05/02	Thorium-228	1.76	1.58	pCi/L	ĵ
HN01	HIS66622	06/05/02	Thorium-230	6.5	0.6	pCi/L	J
HN01	HIS66622	06/05/02	Thorium-232	0.2	0.6	pCi/L	UJ
HN01	HIS66622	06/05/02	Uranium-234	2.6	0.54	pCi/L	J
HN01	HIS66622	06/05/02	Uranium-235	. 0	0.7	pCi/L	, U
HN01	HIS66622	06/05/02	Uranium-238	0.7	1.2	pCi/L	ບາ
HN02	HIS66617		Settleable Solids (SS)	0	0.2	mL/L/hr	U
HN02	HIS66620	05/02/02	Settleable Solids (SS)	0	0.2	mL/L/hr	. U
HN02	HIS66623	06/05/02	Gross Alpha	51	9.2	pCi/L .	=
HN02	HIS66623	06/05/02	Gross Beta	7.5	25.6	pCi/L	ŪJ
HN02	HIS66623	06/05/02	Radium-226	1.9	1.75	pCi/L	J
HN02	HIS66623	06/05/02	Settleable Solids (SS)	0	Q.2	mL/L/hr	U
HN02	HIS66623	06/05/02	I,I,I-Trichloroethane	5	5	ug/L	Ü
HN02	HIS66623	06/05/02	1,1,2,2-Tetrachloroethane	5	5	ug/L	U

	 			Detection Validation				
Outfall -	Sample ID	Date Collected	Analyte	Result	Limit	Units	Qualifier	
HN02	HIS66623	06/05/02	1,1,2-Trichloro-1,2,2-trifluoroethane	5	5 .	ug/L	U	
HN02	HIS66623	06/05/02	1,1,2-Trichloroethane	5	5	ug/L	U	
HN02	H1S66623	06/05/02	1,1-Dichloroethane	5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	1,1-Dichloroethene	5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	1,2-Dichloroethane	5	5	ug/L	Ü	
HN02	HIS66623	06/05/02	1,2-Dichloroethene (Total)	10	10	ug/L	Ũ	
HN02	HIS66623	06/05/02	1,2-Dichloropropane	5	5	ug/L	Ü	
HN02	HIS66623	06/05/02	2-Butanone	20	20	ug/L ug/L	Ü	
HN02	HIS66623	06/05/02	2-Hexanone	20	20	ug/L ug/L	Ü	
HN02	HIS66623	06/05/02	4-Methyl-2-pentanone	20	20			
		06/05/02				ug/L	U	
HN02	HIS66623		Acetone	7.7	20	ug/L	U	
HN02	HIS66623	06/05/02	Benzene	5	5	ug/L	U	
HN02	HIS66623	06/05/02.	Bromodichloromethane	5	5	ug/L	U	
HN02	HIS66623	06/05/02	Bromoform	5	5	ug/L	. U	
HN02	HIS66623	06/05/02	Bromomethane	10	10	ug/L	U	
HN02	HIS66623	06/05/02	Carbon disulfide	5 .	5	ug/L	U	
HN02	HIS66623	06/05/02	Carbon tetrachloride	5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	Chlorobenzene	5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	Chlorodibromomethane	5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	Chloroethane	. 10	10	ug/L	Ū	
HN02	HIS66623	06/05/02	Chloroform	5	5	ug/Ĺ	Ū	
HN03	HIS66623	06/05/02	Chloromethane	14	in	ug/L	ຳນ	
HN02	HIS66623	06/05/02	cis-1,3-Dichloropropene	. 5	5	ug/L	Ü	
HN02	HIS66623	06/05/02	Ethylbenzene	. 5 5	5	ug/L	Ü	
HN02	HIS66623	06/05/02	Methylene chloride	5	5	ug/L	Ü	
HN02 HN02	HIS66623	06/05/02	Styrene	. 5	5	ug/L	Ū	
HN02	HIS66623	06/05/02	Tetrachloroethene	5	5	ug/L ug/L	Ü	
		06/05/02	Tolucne	0.6	5	-		
HN02	111366623		•			ug/L	U	
HN02	HIS66623	06/05/02	trans-1,3-Dichloropropene	5	5	ug/L	U	
HN02	HIS66623	06/05/02	Trichloroethene	. 5	5	ug/L	U	
HN02	HIS66623	06/05/02	Vinyl chloride	5	5	ug/L	U	
HN02	HIS66623	06/05/02	Xylenes, total	10	10	ug/L	Ū	
HN02	HIS66623		l,2,4-Trichlorobenzene	10	10	ug/L	U	
HN02	HIS66623	06/05/02	1,2-Dichlorobenzene	10	10	ug/L	Ū	
HN02	HIS66623	06/05/02	1,3-Dichlorobenzene	10	10	ug/L	U	
HN02	HIS66623	06/05/02	1,4-Dichlorobenzene	10 .	10	ug/L	U	
HN02	HIS66623	06/05/02	2,4,5-Trichlorophenol	10	10	ug/L	Ū	
HN02	HIS66623	06/05/02	2,4,6-Trichlorophenol	10	10	ug/L	Ū	
HN02	HIS 66623	06/05/02	2,4-Dichlorophenol	. 10	10	ug/L	υ	
HN02	HIS66623	06/05/02	2,4-Dimethylphenol	10	10	ug/L	Ū	
HN02	H1S66623	06/05/02	2,4-Dinitrophenol	50	50	ug/L	Ū	
HN02	HIS66623	06/05/02	2,4-Dinitrotoluene	10	10	ug/L	Ū	
	HIS66623	06/05/02	2,6-Dinitrotoluene	10	10	ug/L ug/L	Ū	
HN02		06/05/02	2-Chloronaphthalene	10	10	_	Ū	
HN02	HIS66623			10		ug/L		
HN02	HIS66623		2-Chlorophenol		10	ug/L	Ū	
HN02	HIS66623	06/05/02	2-Methylnaphthalene	10	10	ug/L	U	
HN02	HIS66623	06/05/02	2-Methylphenol	10	10	ug/L	U	
HN02	HIS66623	06/05/02	2-Nitroaniline	50 .	50	ug/L	U	
HN02	HIS66623	06/05/02	2-Nitrophenol	10	10	ug/L	U	
HN02	HIS66623	06/05/02	3,3'-Dichlorobenzidine	50	-50	ug/L	U	
HN02	H1S66623	06/05/02	.3-Nitroaniline	50	50	ug/L	U	
HN03	HIS66623	ስቒ/ስร/በን	4.6.Dinitro=2-methylphenol	50	50	ng/L.	rı .	
HN02	HIS66623	06/05/02	4-Bromophenyl phenyl ether	10	10	ug/L	· U	
HN02	HIS66623	06/05/02	4-Chloro-3-methylphenol	10	10	ug/L	Ū	
HN02	HIS66623	06/05/02	4-Chloroaniline	. 10	10	ug/L	Ü	
HN02	HIS66623	06/05/02	4-Chlorophenyl phenyl ether	10	10	ug/L	Ü	
HN02	HIS66623	06/05/02	4-Methylphenol	. 20	20	ug/L	n o	
	HIS66623	06/05/02	4-Nitroaniline	50	50	ug/L	. U	
HN02			4-Nitrophenol	50	50 50			
HN02	HIS66623	06/05/02	•			ug/L	Ū.	
HN02	H1S66623	06/05/02	Acenaphthene	10	. 10	ug/L	U	

				· · · · · · · · · · · · · · · · · · ·	Detection		Validation
outfall	Sample ID	Date Collected	Analyte	Result	Limit	Units	Qualifier
HN02	HIS66623	06/05/02	Acenaphthylene	10	10	ug/L	U
HN02	HIS66623	06/05/02	Anthracene	10	10	ug/L	U
HN02	HIS66623	06/05/02	Benzo(a)anthracene	10	10	ug/L	U
HN02	HIS66623	06/05/02	Benzo(a)pyrene	10	10	ug/L	= .
HN02	HIS66623	06/05/02	Benzo(b)fluoranthene	10	. 10	ug/L	=
HN02	HIS66623	06/05/02	Benzo(g,h,l)perylene	. 10	10	ug/L	U
HN02	HIS66623	06/05/02	Benzo(k)Iluoranthene	10	10	ug/L	Ú
HN02	HIS66623	06/05/02	Bis(2-chloroethoxy) methane	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Bis(2-chloroethyl) ether	10	10	ug/L	Ū
HN02	HIS66623	06/05/02	Bis(2-chloroisopropyl) ether	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Bis(2-ethylhexyl) phthalate	10	10	ug/L	U
HN02	HIS66623	06/05/02	Butyl benzyl phthalate	10	10	ug/L	U
HN02	HIS66623	06/05/02	Carbazole	10	10	ug/L	Ū
HN02	HIS66623	06/05/02	Chrysene	10	10	ug/L	Ü
. HN02	HIS66623	06/05/02	Di-n-butyl phthalate	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Di-n-octyl phthalate	10	10	ug/L	υ
HN02	HIS66623	06/05/02	Dibenzo(a,h)anthracene	10	10	ug/L	Ū
HN02	HIS66623	06/05/02	Dibenzofuran	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Diethyl phthalate	10	10	ug/L	Ŭ
HN02	HIS66623	06/05/02	Dimethyl phthalate	10	10	ug/L	ŭ
HN02	HIS66623	06/05/02	Fluoranthene	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Fluorene	10	10	ug/L ug/L	Ü
HN02	HIS66623	06/05/02	Hexachlorobenzene	10	10	ug/L ug/L	U
		06/05/02	Hexachlorobutadiene	10	10		Ü
HN02	HIS66623	06/05/02		50		ug/L	
HN02	HIS66623		Hexachlorocyclopentadiene		50	ug/L	U
HN02	HIS66623	06/05/02	Hexachloroethane	10 10	10	ug/L	U
HN02	HI S66623	06/05/02	Indeno(1,2,3-cd)pyrene		10	ug/L	U
HN02	HIS66623	06/05/02	Isophorone	10	10 .	ug/L	U
HN02	HIS66623	06/05/02	N-Nitroso-di-n-propylamine	10	10	ug/L	U
HN02	HIS66623	06/05/02	N-Nitrosodiphenylamine	10	10	ug/L	.U
HN02	HIS66623	06/05/02	Naphthalene	10	10	ug/L	. U
HN02	HIS66623	06/05/02	Nitrobenzene	10	10	ug/L	บ
HNÖ2	HIS66623	06/05/02	Pentachlorophenol	50 .	50	ug/L	U .
HN02	HIS66623	06/05/02	Phenanthrene	10	10	ug/L	Ü
HN02	HIS66623	06/05/02	Phenol	10	10	ug/L	Ú
HN02	H1S66623	06/05/02	Pyrene	10	10	ug/L	U
HN02	HIS66623	06/05/02	Total Organic Halogens (TOX)	17.7	10	ug/L	=
HN02	HIS66623	06/05/02	Total Organic Carbon (TOC)	9.4	2	mg/L	=
HN02	HIS66623	06/05/02	Thorium-228	1.18	1.76	pCi/L	Ωĵ
HN02	HIS66623	06/05/02	Thorium-230	5.13	1.26	pCi/L	J
HN02	HIS66623	06/05/02	Thorium-232	0	0.57	pCi/L	U
HN02	HIS66623	06/05/02	Uranium-234	19.1	0.53	pCi/L	=
HN02	HIS66623	06/05/02	Uranium-235	0.72	0.65	pCi/L	J
HN02	HIS66623	06/05/02	Uranium-238	19	0.53	pCi/L	=
HN03	HIS66618	04/08/02	Settleable Solids (SS)	0	0.2 .	mL/L/hr	U
HN03	HIS66621	05/06/02	Settleable Solids (SS)	0	0.2	mL/L/lir	, U
HN03	HIS66624	06/05/02	Gross Alpha	2.43	9.21	pCi/L	ប្រ
HN03	HIS66624	06/05/02	Gross Beta	13.27	25.7	pCi/L	ບເ
HN03	HIS66624	06/05/02	Radium-226	0.48	0.66	pCi/L	บมั
HN03	HIS66624	06/05/02	Settleable Solids (SS)	0	0.2	mL/L/hr	U
HN03	HIS66624	06/05/02	1,1,1-Trichloroethane	· 5	5	ug/L	U
HN03	HIS66624	06/05/02	1,1,2,2-Tetrachloroethane	5	5	ug/L	U
HN03	HIS66624	06/05/02	1,1,2-Trichloro-1,2,2-trifluoroethane	5	. 5 . 5	ug/L	U
HN03	HIS66624	06/05/02	1,1,2-Trichloroethane	5		ug/L	U
HN03	HIS66624	06/05/02 -	I,I-Dichloroethane	5	5	ug/L	U
HN03	HIS66624	06/05/02	1,1-Dichloroethene	5	5	ug/L	U
ни03 .	HIS66624	06/05/02	1,2-Dichloroethane	5	5	ug/L	U
HN03	HIS66624	06/05/02	1,2-Dichloroethene (Total)	10	- 10	ug/L	U
HN03	HIS66624	06/05/02	1,2-Dichloropropane	5	5	ug/L	, U
HN03	HIS66624	06/05/02	2-Butanone	20	20	ug/L	. U

utfall	Sample ID	Date Collecte	d Analyte	Result	Detection Limit	Units	Validation Qualifier
HN03	HIS66624	06/05/02	2-Hexanone	20	20	ug/L	U
HN03	HIS66624	06/05/02	4-Methyl-2-pentanone	20	20	ug/L	U
HN03	HIS66624	06/05/02	Acetone	5.4	20	ug/L	U
HN03	HIS66624	06/05/02	Benzene	5	5	ug/L	U
HN03	HIS66624	06/05/02	Bromodichloromethane	5	5	ug/L	U
HN03	HIS66624	06/05/02	Bromoform	5	5	ug/L	Ŭ
HN03	HIS66624	06/05/02	Bromomethane	10	10	ug/L	U
HN03	HIS66624	06/05/02	Carbon disulfide	5	5	ug/L	ប
HN03	HIS66624	06/05/02	Carbon tetrachloride	5	5	ug/L	U
HN03	HIS66624	06/05/02	Chlorobenzene	5	5	ug/L	U
HN03	HIS66624	06/05/02	Chlorodibromomethane	5	. 5	ug/L	Ŭ
HN03	HIS66624	06/05/02	Chloroethane	10	10	ug/L	U
HN03	H1S66624	06/05/02	Chloroform	5	5	ug/L	U
HN03	HIS66624	06/05/02	Chloromethane	10	10	ug/L	U
HN03	HIS66624	06/05/02	cis-1,3-Dichloropropene	5	5	ug/Ĺ	υ
HN03	HIS66624	06/05/02	Ethylbenzene	5	5	ug/Ĺ	υ
HN03	HIS66624	06/05/02	Methylene chloride	5	5	ug/Ĺ	U ·
HN03	HIS66624	06/05/02	Styrene	5	5	ug/L	U
HN03	HIS66624	06/05/02	Tetrachloroethene	5	5	ug/L	U
HN03	HIS66624	06/05/02	Toluene	1.2	5	ug/L	U
HN03	HIS66624	06/05/02	trans-1,3-Dichloropropene	5	5	ug/L	= .
HN03	HIS66624	06/05/02	Trichloroethene	5	5	ug/f_	=
HN03	· HIS66624	06/05/02	Vinyl chloride	5	5	ug/L	U
HN03	HIS66624	06/05/02	Xylenes, total	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	1,2,4-Trichlorobenzene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	1,2-Dichlorobenzene	10	10	ug/L	บั
HN03	HIS66624	06/05/02	1,3-Dichlorobenzene	10	10	ug/L	Ü
- HN03	H1S66624	06/05/02	1,4-Dichlorobenzene	. 10	10	ug/L	ŭ
HN03	HIS66624	06/05/02	2.4,5-Trichlorophenol	-10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	2,4,6-Trichlorophenol	10	10	ug/L	ũ
HN03	HIS66624	06/05/02	2,4-Dichlorophenol	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	2,4-Dimethylphenol	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	2,4-Dinitrophenol	50	50	ug/L	Ŭ
HN03	HIS66624	06/05/Q2	2,4-Dinitrotoluene	10	10	ug/L	. Ŭ
HN03	HIS66624	06/05/02	2,6-Dinitrotoluene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	2-Chloronaphthalene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	2-Chlorophenol	10	10	ug/L ug/L	Ŭ
HN03	HIS66624	06/05/02	2-Methylnaphthalene	10	10	ug/L	Ü
HN03	H1S66624	06/05/02	2-Methylphenol	10	10	ug/L	Ū
HN03	HIS66624	06/05/02	2-Nitroaniline	50	50	ug/L	Ü
HN03	HIS66624	06/05/02	2-Nitrophenol	10	io	ug/L	Ŭ
	HIS66624	06/05/02	3,3'-Dichlorobenzidine	50	50	ug/L ug/L	Ŭ
HN03	HIS66624	06/05/02	3-Nitroaniline	50	50	ug/L ug/L	Ü
HN03	HIS66624	06/05/02	4,6-Dinitro-2-methylphenol	50	50	ug/L	Ŭ
HN03	HIS66624	06/05/02	4-Bromophenyl phenyl ether	10	10	ug/L	Ū
HN03		06/05/02	4-Chloro-3-methylphenol	10	10	ug/L ug/L	Ŭ
HN03	HIS66624			10			
HN03	HIS66624	06/05/02 06/05/02	4-Chloroaniline 4-Chlorophenyl phenyl ether	10	10 10	ug/Ĺ ug/Ĺ	U U
HN03	HIS66624		4-Methylphenol	20	20	ug/L ug/L	<u>.</u>
HN03	HIS66624	06/05/02 06/05/02	4-Nitroaniline	50	50 50	ug/L ug/L	Ŭ
HN03	HIS66624	06/05/02	4-Nitrophenol	50	50	ug/L ug/L	Ū
HN03	HIS66624		<u>.</u>	10	. 10		ñ
HN03	HIS66624	06/05/02 06/05/02	Acenaphthylene			ug/l.	
HN03	HIS66624	06/05/02	Acenaphthylene	10 10	10	ug/L	U
HN03	HIS66624	06/05/02	Anthracene		10	ug/L	U
HN03	HIS66624	06/05/02	Benzo(a)anthracene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Benzo(a)pyrene	10	, 10	ug/L	U
HN03	HIS66624	06/05/02	Benzo(b)fluoranthene	10	10	ug/L	U.
HN03	HIS66624	06/05/02	Benzo(g,h,l)perylene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Benzo(k)fluoranthene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Bis(2-chloroethoxy) methane	10	10	ug/L	Ŭ

	 				Detection		validation
outfall	Sample ID	Date Collecte	d Analyte	Result	Limit	Units	Qualifier
HN03	HIS66624	06/05/02	Bis(2-chloroethyl) ether	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Bis(2-chloroisopropyl) ether	10	10	ug/L	U
HN03	HIS66624	06/05/02	Bis(2-ethylhexyl) phthalate	10	10	ug/L	U
HN03	HIS66624	06/05/02	Butyl benzyl phthalate	10	10	ug/L	U
HN03	HIS66624	- 06/05/02	Carbazole	10	10	ug/L	. U
HN03	HIS66624	06/05/02	Chrysene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Di-n-butyl phthalate	10	10	ng/L	(J
HN03	HIS66624	06/05/02	Di-n-octyl phthalate	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Dibenzo(a,h)anthracene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Dibenzofuran	. 10	10	ug/L	U
HN03	HIS66624	06/05/02	Diethyl phthalate	10	10	ug/L	U
HN03	HIS66624	06/05/02	Dimethyl phthalate	10	10	ug/L	U
HN03	HIS66624	06/05/02	Fluoranthene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Fluorene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Hexachlorobenzene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Hexachlorobutadiene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Hexachlorocyclopentadiene	50	50	ug/L	Ŭ
HN03	HIS66624	06/05/02	Hexachloroethane	10	10	ug/L	υ·
HN03	HIS66624	06/05/02	Indeno(1,2,3-cd)pyrene	10	10	ug/L	U
`HN03	HIS66624	06/05/02	lsophorone	10	10	ug/L	ប
HN03	HIS66624	06/05/02	N-Nitroso-di-n-propylamine	10	10	ug/L	Ū·
HN03	HIS66624	06/05/02	N-Nitrosodiphenylamine	10	10	ug/I	Ħ
HN03	HIS66624	06/05/02	Naphthalene	10	10	ug/L	Ŭ
HN03	HIS66624	06/05/02	Nitrobenzene	. 10	10	ug/L	· U
HN03	HIS66624	06/05/02	Pentachlorophenol	50	50	ug/L	U U
HN03	HIS66624	06/05/02	Phenanthrene	10	10	ug/L	U
HN03	HIS66624	06/05/02	Phenol	10	10	ug/L	U
HN03	HIS66624	06/05/02	Pyrene	. 10	10	ug/L	υ
HN03	HIS66624	06/05/02	Total Organic Halogens (TOX)	10.2	10	ug/L	=
HN03	HIS66624	06/05/02	Total Organic Carbon (TOC)	9.89	2	mg/L	=
HN03	HIS66624	06/05/02	Thorium-228	0.23	2.09	pCi/L	UJ
HN03	HIS66624	06/05/02	Thorium-230	4.95	0.61	pCi/L	1
HN03	HIS66624	06/05/02	Thorium-232	0.45	0.61	pCi/L	ΩJ
HN03	HIS66624	06/05/02	Uranium-234	1.23	1.34	pCi/L	U
HN03	HIS66624	06/05/02	Uranium-235	0.14	1.65	pCi/L	UJ
HN03	HIS66624	06/05/02	Uranium-238	0.89	0.6	pCi/L	J

U indicates that the analyte was analyzed for but was not detected above the reported sample quantitation limit.

J indicates that the analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

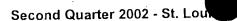
UJ indicates the analyte was not detected above the detection limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

⁼ indicates that the analyte has been positively identified and the associated concentration value is accurate.

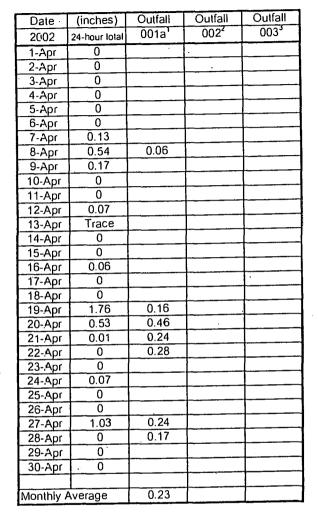
Second Quarter 2002 - Storm-w Discharge Monitoring Report Hazelwood Interim Storage Site, St. Louis, MO

FACILITY NAME	PERMIT NUMBER	COUNTY	OWNER FACILITY CONTACT					
Hazelwood Interim Storage Site (HISS)	MO-0111252	St. Louis	Jarboe Realty In		S.R. Cotner, Program	ı Manager, USACE		
OPERATOR OF FACILITY			TYPE OF FAC	ILITY				
United States Army Corps of Engineers (USAC	CE)		Standard Industri	ial Classification –99	99, non-classifiable ¹			
REQUIRED FREQUENCY OF MONITOR	RING					THIS REPORT COV		
Flow and rainfall - daily; Settleable solids - me	onthly; Other parameters2 - qui	rterly				2 nd Quarter- April 2002	- June 2002	
SAMPLES COLLECTED BY								
Nick Tweston and Lon Hoover						·		
ANALYSIS PERFORMED BY							· · · · · · · · · · · · · · · · · · ·	
Sevem-Trent (chemical analyses) and FUSRAL	Laboratory (radiological analy	yses)		·				
SAMPLE LOCATION	MONTII and TIME		MONTH and T	INIE		MONTH and TIME		
Outfall 1	4/8/02@850		5/6/02@1234			6/5/02@1230		
Outfall 2	4/8/02@855		5/6/02@1240			6/5/02@1245		
Outfall 3	4/8/02@900		5/6/02@1245	•		6/5/02@1255		
MONITORING FARAMETER	LIMITS ³	UNITS	ANALYTICAL	L RESULTS AND E	ATA QUALIFIERS	SAMPLE TYPE	REMARKS ami COMMENTS	
			OUTFALL 1	OUTFALL 2	OUTFALL 3			
Settleable solids ³ : April	Daily max=1.5	mUUhr	0	0	0	Grab		
	Monthly avg=1.0	ml/L/lir	10	 		Grab		
May		mDDhr mDDhr	10	0	0	Composite		
DH June	6.0-9.0	SU	6.75	7.67	7.64	Composite	 	
Specific conductance	Monitor Only	umhos/cm	0.375	0.359	0.274	Composite	 	
Total organic carbon ⁶	Monitor Only	mg/L	15.5	9.4	9.89	Composite		
	Monitor Only	nig/L	21.7	17.7	10.2	Composite	· 	
Total organic halogen ⁶	Monitor Only	pCi/L	9.9	51	9.217	Composite		
Gross alpha Gross beta	Monitor Only	pCi/L	267	25.67	25.71	Composite		
Lead 210	Monitor Only	pCi/L	1.7'	1.9	0.667	Composite	Assumes secular	
Lead 210	Monator Only	PCFL	,	1.7	0.00	Composite	equilibrium with Ra-226	
Radium 226	Monitor Only	pCi/L	1.77	1.9	0.667	Composite	 	
Radinm 228	Monitor Only	pCi/L	1.76	1.76	2.097	Composite	Assumes secular equilibrium with Th-228	
Uranium, total	Monitor Only	pCi/L	4.57	38.82	3.887	Composite	Calculated Value: addition of iso-analysis	
Thorium 230	Monitor Only	pCi/L	6.5	5.13	4.95	Composite		
Thorium 232	Monitor Only	pCi/1.	0.6	0.57	0.61	Composite		
Rainfall	Monitor Only	inches	See Table I	See Table 1	See Table 1	24-hr total	Continuous recorder	
Flow	Monitor Only	MGD	See Table 1	See Table 1	See Table 1	24-lir total	Continuous recorder	
REPORT APPROVED BY OWNER		tree	for US	army Co	port Engr	DATE 7/2	5-/02	

NOTES:


- HISS is a CERCLA NPL.
- Collect quarterly samples in the months of March, June, September, and December for: pH, specific conductance, total organic carbon (TOC), total organic halogen (TOX), gross alpha, gross beta, Pb-210, Ra-226, Ra-228, Uranium (total), Th-230, and Th-232.
- Final limits as specified in the permit for settleable solids and pH, (*) indicates monitoring requirement only.
- Results are reported in required units per permit.

 Settleable Solids Sample Method = EPA 160.5. Sec Table 2 for Data Qualifiers.


 See Table 2 for VOC and SVOC data.
- Reporting MDA as the result was reported below the MDA for the analysis.

ATTACHMENT B

SECOND QUARTER CY 2002 RESULTS FOR THE ST. LOUIS AIRPORT SITE

port Site Rainfall and Flow

Date	(inches)	Outfall	Outfall	Outfall	Outfall
2002	24-hour total	001a	001b ¹	002 ²	0033
1-May	Trace				
2-May	0.13				
3-May	0				
4-May	0.03				
5-May	0				
6-May	0.51	0.07			
7-May	1.40	0.48			<u> </u>
8-May	0.86	0.58	C.13		
9-May	0.19	0.63	C.12		<u> </u>
10-May	0	0.18	C.03		<u> </u>
11-May	0.01	0.01		<u> </u>	<u> </u>
12-May	2.18	0.59			<u> </u>
13-May	0.48	1.10	C.14	<u> </u>	<u> </u>
14-May	0	0.31		<u> </u>	·
15-May	Trace		ļ	<u> </u>	<u> </u>
16-May	0.47	0.17			<u> </u>
17-May	0.72	0.48		<u> </u>	<u> </u>
18-May	0	0.21	<u> </u>	ļ	ļ
19-May	0.		<u> </u>	ļ	ļ
20-May	0	0.16	<u> </u>	ļ	ļ
21-May	0		<u> </u>	<u> </u>	<u> </u>
22-May	0:		<u> </u>	<u> </u>	<u> </u>
23-May	0		L	ļ	ļ
24-May	0.19		ļ	ļ	<u> </u>
25-May	0		ļ	ļ	ļ
26-May	0		<u> </u>	<u> </u>	
27-May	0			<u> </u>	
28-May	0.57		<u> </u>	<u> </u>	ļ
29-May	0		<u> </u>	<u> </u>	<u> </u>
30-May	0.05		ļ	<u></u>	
31-May	0			<u> </u>	
Monthly A	Average	0.38	0.11	<u> </u>	

Data	(inches)	Outfall	Outfall	Outfall
Date	(inches)	001a1	002 ²	0033
2002	24-hour total	outa	002	- 003
1-Jun	0			ļ
2-Jun	0			ļ
3-Jun	0		ļ	L
4-Jun	0.56		ļ	
5-Jun	0.58	0.18	ļ	
6-Jun	0	L		ļ
7-Jun	0	0.11	 	
8-Jun	0			<u></u>
9-Jun	0.15		<u></u>	
10-Jun	0.44	0.01	L	<u> </u>
11-Jun	1.53	0.30		
12-Jun	0.96	1.07		
13-Jun	Trace	0.37		<u></u>
14-Jun	0			<u> </u>
15-Jun	0			<u> </u>
16-Jun	0			
16-Jun	0.47			<u> </u>
17-Jun	0			ļ
18-Jun	0			<u> </u>
19-Jun	0	,. —		ļ
20-Jun	0			
21-Jun	0			
22-Jun	0			<u></u>
23-Jun	0		L	
24-Jun	1.01			
25-Jun	0.03			<u></u>
26-Jun	0			
27-Jun	Trace			<u> </u>
28-Jun	0		ļ	
29-Jun	0			
30-Jun	0			
Monthly A	Average	0.34		

Notes:

Flow measurements for the three outfalls are reported in million gallons per day (MGD) and reported to two significant digits. All blank spaces represent zero flow.

¹A flow meter and automatic sampler are currently installed at Outfall 001a. Outfall 001b is an emergency spillway only.

²Outfall 002 is sampled annually per MDNR letter dated 2/19/02, as a result flow is not measured until a sample is collected.

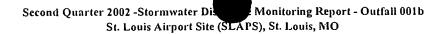
³ Outfall 003 is currently plugged due to construction activities.

	FINAL EFFLUEN	r Limitations		ANALYTICAL RESULTS Outfall 301a					REMARKS and		
MONITORING PARAMETER	Daily Maximum	Monthly Average	UNITS	<u> </u>	Chemical Parameters				SAMPLE TYPE	COMMENTS	
				Ap	ril	M	ay	June			
Flow	Monitor only	Monitor only	MGD	0.058		0.970		0.176		24-hr estimate	
Oil and Grease	15	10	mg/L	non-c	letect	non-detect		non-detect		Grab	
Total Petroleum Hydrocarbons	10	10	mg/L	non-c	letect	non-detect		non-detect		Grab	
pH-Units	6.0-9.0	NA	SU	7.	8	7.	9	7.8		Grab	
Chemical Oxygen Demand	120	90	ກາຍ/L	non-c	letect	non-detect		non-det	ect	Grab	
Settleable Solids	1.5	1	mL/L/hr	0.	.1	non-c	letect	non-det	ect	Grab	$DL^2 = 0.1 \text{ mL/L/hr}$
Arsenic, Total Recoverable	100	100	րց/Լ	non-c	letect	non-c	letect	non-det	ect	Grab	
Lead, Total Recoverable	190	190	μg/L	non-c	letect	non-c	letect	non-det	ect	Grab	
Chromium, Total Recoverable	280	280	րց/L	non⊸	letect	non-c	letect			Grab	
Copper, Total Recoverable	84	84	μ <u>u</u> /L	10	00	ı	5	24		Grab	
Cadmium, Total Recoverable	94	94	μg/L	non-detect		no11-0	non-detect		ect	Grab	
Polychlorinated Biphenyls	No release	No release	րջ/L	non-detect		non-detect		non-detect		Grab	$DL^2 = 1 \mu g/L$
				Rad		idiological Parameters ^{3,6}			_		
				Event I	Event 2	Event 3	Event 4	Event 5	<u> </u>		
Uranium, Total ^{4.5}	Monitor only	Monitor only	րց/L	3.70E+02	2.2E+02	3.09E+02	2.1E+02	3.2E+02	11.	Grab	Calculated estimates
Radium, To:al ^{4.5}	Monitor only	Monitor only	րբ/L	2.E-06	5.E-06	4.E-06	6.E-07	1.E-06		Grab	Calculated estimates
Thorium, Total ^{4.5}	Monitor only	Monitor only	րբ/Լ	5.E-04	6.E-01	5.E+00	4.E+00	7.E-01		Grab	Calculated estimates
Gross Alpha 4	Monitor only	Monitor only	pCi/L	3.0E+02	2.4E+02	2.8E+02	1.9E+02	3.2E+02		Grab	
Gross Beta	Monitor only	Monitor only	pCi/L	2.E+01	4.E+01	3.E+01	6.E+01	5.E+01		Grab	
Protactinium-2314	Monitor only	Monitor only	pCi/L	1.7E-01	9.E-01	8.E-01	2.6E-01	5.E-01	1.5.000	Grab	
Actinium-227⁴	Monitor only	Monitor only	pCi/L	1.7E-01	9.E-01	8.E-01	2.6E-01	5.E-01	2 31.50	Grab	
Radon	Monitor only	Monitor only	pCi/L	CONTRACT	To a constitution	2.3250	李常镇等的	48, 85, 5	32 13 1 2 13	Grab	
				Event 6	Event 7	是不到这	建设	法数据	31.		
Uranium, Total ^{4,5}	Monitor only	Monitor only	րg/L	,	,	10000000000000000000000000000000000000	問題地統	经营工的		Grab	Calculated estimates
Radium, Total ^{4.5}	Monitor only	Monitor only	μg/L	,	,	3344				Grab	Calculated estimates
Thorium, Total ^{4,5}	Monitor only	Monitor only	րg/L	,	7	"被常数"的	のなが、	对解释区外	13.3	Grab	Calculated estimates
Gross Alpha4	Monitor only	Monitor only	pCi/L	"	7	10000000000000000000000000000000000000	TO SECURE		- '-	Grab	
Gross Beta	Monitor only	Monitor only	pCi/L	7	7	子生的	では、	THE STATE OF		Grab	
Protactinium-2314	Monitor only	Monitor only	pCi/L	7	7	TO STATE	30 M	27.00		Grab	
Actinium-2274	Monitor only	Monitor only	րCi/L	7	7					Grab	

Results are reported in required units.

² DL= Detection Limit

DL= Detection Limit


Nature reported is based on a volume weighted average of analyte activity concentrations for samples collected during the defined event. Corresponding radiological samples were collected on the same date as chemical samples, however, the radiological results are incorporated into the volume weighted average for the specified event.

⁴ As specified in the permit, radionuclides require monitoring only, and limits are not permit specified.

Total nuclide values in ug/L units were calculated using the activity concentration values reported by the laboratory and values for specific activity listed in Table 8.4.1 of The Health Physics and Radiological Health Handbook, 1992 Edition

⁶ It is assumed that Ra-228 and Th-228 are in secular equilibrium with Th-232, therefore, Th-232 results are used to estimate Ra-228 and Th-228 values.

⁷ Waiting on data results from the laboratory.

	CINIAL PROLITOR	r I IAMERATRIONE			4 N		DECIII TC				
	FINAL EFFLUEN	LIMITATIONS	-	ANALYTICAL RESULTS Outfall 001b					1	REMARKS and	
MONITORING PARAMETER.	Daity Maximum	Monthly Average	UNITS		Chemical Parameters			SAMPLE TYPE	COMMENTS		
		<u> </u>		Ар	ril	M	ау	June			
Flow	Monitor only	Monitor only	MGD	2		6,1	33	2		24-hr estimate	
Oil and Grease	15	10	mg/L	2		non-d	leteci	2		Grab	
Total Petroleum Hydrocarbons	10	10	mg/L	2		1105-0	letect	2		Grab	
pH-Units	6.0-9.0	NA	su	2		7.	.5	2		Grab	
Chemical Oxygen Demand	120	90	mg/L	2		non-c	letect	2		Grab	
Settleable Solids	1.5	1	mL/L/hr	2	1	0.	.1	2		Grab	$DL^3 = 0.1 \text{ mL/L/hr}$
Arsenic, Total Recoverable	100 .	100	րջ/L	2	1	non-c	letect	2		Grab	
Lead, Total Recoverable	190	190	րբ/L	2		6.	.7	2		Grab	
Chromium, Total Recoverable	280	280	hia/F	2	2	1	0	2		Grab	
Copper, Total Recoverable	84	84	րջ/L	2		1	0			Grab	
Cadmium, Total Recuverable	94	94	μg/L	2		non-d	letect	2		Grab	
Polychlorinated Biphenyls	No release	No release	րg/L	2				1		Grab	$DL^3 = 1 \mu g/L$
					Ra	utiotogical Pa	mameters ^{4,7}				
				Event 1	Event 2	Event 3	Event 4	Event 5			<u></u>
Uranium, Total ^{5,6}	Monitor only	Monitor only	ր <u>ա</u> /L	2	2	2	1.0E+02	, ,	17.7	Grab	Calculated estimates
Radium, Total ^{5,6}	Monitor only	Monitor only	μg/L	2 .	2	2	7.E-08	2	100	Grab	Calculated estimates
Thorium, Total ^{5.6}	Monitor only	Monitor only	րջ/L	2	2	2	7.E+00	2		Grab	Calculated estimates
Gross Alpha ⁵	Monitor only	Monitor only	pCi/L	2	2	2	1.E+02	2	30 7	Grab	
Gross Beta ⁵	Monitor only	Monitor only	pCi/L	2	2	2	4.E+01	2		Grab	
Protactinium-2315	Monitor only	Monitor only:	pCi/L	2	2	2	9.E-02	2		Grab	
Actinium-2275	Monitor only	Monitor only	pCi/L	2	2	2	9.E-02	2		Grab	
Radon	Monitur only	Monitor only	pCi/L	生/定體				以微微變的	The last	Grab	
				Event 6	Event 7	局開於	1. A 25 See	TIME SERVE	4.00		
Uranium, Total ^{5.6}	Monitor only	Monitor only	յւg/L	2	2	STATE OF THE STATE	2000年	门始初维	2.4	Grab	Calculated estimates
Radium, Total ^{5,6}	Monitor only	Monitor only	րջ/L	2	2	接触探察	42 KT	不管理事	72.77 X	Grab	Calculated estimates
Thorium, Total 5.6	Monitor only	Monitor only	րջ/L	2	2	等。	整件 计		製料	Grab	Calculated estimates
Gross Alpha ⁵	Monitor only	Monitor only	pCi/L	2	2	的形象的	Marine and	产的数据	化验证	Grab	
Gross Bela ⁵	Monitor only	Monitor only	pCi/L	2	2				787	Grab	
Protactinium-231 ⁵	Monitor only	Monitor only	pCi/L	2	2	***	9.M2 6 %	**************************************	學變色	Grab	
Actinium-227 ⁵	Monitor only	Monitor only	pCi/L	2	2		***		7.5 44.1	Grab	

¹ Results are reported in required units.

ND = No Discharge

³ DL= Detection Limit

⁴ Value reported is based on a volume weighted average of analyte activity concentrations for samples collected during the defined event. Corresponding radiological samples were collected on the same date as chemical samples, however, the radiological results are incorporated into the volume weighted average for the specified event.

⁵ As specified in the permit, radionuclides require monitoring only, and limits are not permit specified.

⁶ Total nuclide values in ug/L units were calculated using the activity concentration values reported by the laboratory and values for specific activity listed in Table 8.4.1 of The Health Physics and Radiological Health Handbook, 1992 Edition

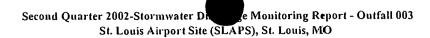
¹ It is assumed that Ra-228 and Th-228 are in secular equilibrium with Th-232, therefore, Th-232 results are used to estimate Ra-228 and Th-228 values.

Second Quarter 2002-Stormwater Die Ge Monitoring Report - Outfall 002 St. Louis Airport Site (SLAPS), St. Louis, MO

	FINAL EFFLUEN	T LIMITATIONS			AN.		SAMPLE	REMARKS and			
MONITORING PARAMETER	Daily Maximum	Monthly Average	UNITS'		Outfall 002 Chemical Parameters					TYPE	
MONTONINOTANAMETER	Danj Mannen	, , , , , , , , , , , , , , , , , , ,	3		pril	r	lay	Jun	e	1 11.5	
Flow	Monitor only	Monitor only	MGD		2 .		:	3		estimate	
Oil and Grease	15	10	mg/L		2		2	2		Grab	
Total Petroleum Hydrocarbons	10	10	mg/L		2		2	:		Grab	
pH-Units	c.0-9.0	NA	su		2		2	2		Grab	
Chemical Oxygen Demand	120	90	mg/L		2	ł	2	2		Grab	
Seitleable Solids	1.5	li	mL/L/hr		2	l	2	2		Grab	$DL^2 = 0.1 ant / L/hr$
Arsenic, Total Recoverable	:00	100	μg/L		:		3	2		Grab	
Lead, Total Recoverable	190	190	րջ/L	. <u> </u>	2	1	2	2		Grah	
Chromium, Total Recoverable	: 80	280	μg/L		2		2	2		Grab	
Copper, Total Recoverable	14	84	μg/L		2		3	2		Grab	
Cadmium, Total Recoverable	94	94	μg/L	_1	2		3	2		Grab	·
Polychlorinated Biphenyls	No release	No release	rig/L		2		2			Grab	$DL^2 = 1 \mu g/L$
					Radiological Parameters 4,7						
				Event 1	Event 2	Event 3	Event 4	Event 5	187		
Uranium, Total ^{5.6}	Monitor only	Mouilor only	μg/L	2		2	2	3	能能力	Grab	Calculatec estimates
Radium, Total ^{5.6}	Monitor only	Monitor only	μg/L	2		3	2	2		Grab	Calculatec estimates
Thorium, Total ^{5.6}	Monitor only	Monitor only	μg/L	3		2	2	3	Section in	Grab	Calculatec estimates
Gross Alpha ⁵	Monitor only	Monitor only	pCi/L	2	:	2	2	2	(神)	Grab	
Gross Beta ⁵	Monitor only	Monitor only	pCi/L	2	:	2	3	2		Grab	
Protactinium-2315	Monitor only	Monitor only	pCi/L	2		3	3	2	26.00	Grab	
Actinium-227 ⁵	Monitor only	Monitor only	pCi/L	2	•	3	3	2	清解的	Grab	
Radon	Monitor only	Monitor only	pCi/L	建建筑等	A SHIPS	\$50 AV-7	550 (V) (V	7/4000部	表现污染	Grab	
		· -		Event 6	Event 7	254400	#### (F.M.	177	3/19/5-40		
Uranium, Totaf ^{5,6}	Lionitor only	Monitor only	μg/L	2	:	30 m X	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		\$ 180 PM	Grab	Calculatec estimates
Radium, Total ^{5.6}	Monitor only	Monitor only	μg/L	2	:	PATE .		学和研究	地域社	Grab	Calculatec estimates
Thorium, Total ^{5.6}	Litonitor only	Monitor only	μg/L	2	. :	新的	14 95 PH.		WARRY	Grab	Calculatec estimates
Gross Alpha ⁵	Lonitor only	Monitor only	pCi/L	2	:	為經濟	3		经 类量	Grab	
Gross Beta ⁵	Monitor only	Monitor only	pCi/L	2		18 C	\$200 E	7.50		Grab	
Protactinium-2315	Monitor only	Monitor only	pCi/L	2	:	建筑线			PMAR	Grab	
Actinium-227 ⁵	Monitor only	Monitor only	pCi/L	2	:	计图像介 数			77 2 2 2 2 2	Grab	

¹ Results are reported in required units.

² As per MDNR letter from Matthew S kes addressed to Sharon Cotner dated 02/19/02, sampling at outlail 002 has been reduced to once a year.


³ DL= Detection Limit

⁴ Value reported is based on a volume weighted average of analyte activity concentrations for samples collected during the defined event. Corresponding radiological samples were collected on the same dat: as chemical samples, however, the radiological results are incorporated into the volume weighted average for the specified event.

⁵ As specified in the permit, radionuclides require monitoring only, and limits are not permit specified.

⁶ Total nuclide values in ug/L units were calculated using the activity concentration values reported by the laboratory and values for specific activity listed in Table 8.4.1 of The Health Physics and Radiologica: Health Handbook, 1992 Edition

¹ It is assumed that Ra-228 and Th-228 are in secular equilibrium with Th-232, therefore, Th-232 results are used to estimate Ra-228 and Th-228 values.

	FINAL EFFLUENT L	IMITATIONS			AN	ALYTICAI	L RESULT	s			
	•		1	Outfall 003			SAMPLE	REMARKS and			
MONITORING PARAMETER	Daily Maximum	Monthly Average	UNITS	ļ		Chemical Pa				TYPE	COMMENTS
			ļ		pril		lay 2		3	ļ <u>.</u>	
Flow	Monitor only	Monitor only	MGD		- · · · · · · · · · · · · · · · · · · ·	l	<u>-</u>	1	· ·	estimate	
Oil and Grease	15	10	mg/L	J	<u>-</u>		<u>-</u>	J	2	Grab	
Total Petroleum Hydrocarbons	10	10	mg/L		2	L	-	L	-	Grab	
pH-Units	6.0-9.0	NA	SU		2	L	· 	L	-	Grab	
Chemical Oxygen Demand	120	90	mg/L	1	-	1	-	<u> </u>	2	Grab	
Settleable Solids	1.5	<u> </u>	mL/IJhr			L	<u>.</u>		-		$DL^3 = 0.1 \text{ mL/L/hr}$
Arsenic, Total Recoverable	100	100	pg/L		2			l		Grab	
Lead, Total Recoverable	190	190	րքե		1		2	L	2	Grab	
Chromium, Total Recoverable	280	280	րg/L		2	<u> 1 – – </u>	2	·	2	Grab	
Copper, Total Recoverable	84	84	րg/L		2	l	:	L	2	Grab	
Cadmium, Total Recoverable	94	94	րg/L		2		2	L	:	Grab	
Polychlorinated Biphenyls	No release	No release	րg/L		2 .	<u> </u>	2	L	2	Grab	DL ³ = 1 μg/L
					Radiological Parameters 4,7						
				Event 1	Event 2	Event 3	Event 4	Event 5	1		
Uranium, Total ^{5.6}	Monitor only	Monitor only	րg/L	2	2	2	3	2		Grab	Calculated estimates
Radium, Total ^{5.6}	Monitor only	Monitor only	μg/L	1	2	2	2 '	2		Grab	Calculated estimates
Thorium, Total ^{5,6}	Monitor only	Monitor only	µg/L	2	3	2	2	2	45.00	Grab	Calculated estimates
Gross Alpha ⁵	Monitor only	Monitor only	pCi/L	2	2	3	3	2	\$4.\$F5.	Grab	
Gross Beta ⁵	Monitor only	Monitor only	pCi/L	2	3	2	2		and the second	Grab	
Protactinium-2315	Monitor only	Monitor only	pCi/L	3	= =	2	2		17.75	Grab	
Actinium-227 ⁵	Monitor only	Monitor only	pCi/L	3	1	2	2	2	14/19/19/19	Grab	
Radon	Monitor only	Monitor only	pCi/L	1.7	3.数据集8	金牌技术				Grab	
				Event 6	Event 7	新香草树	34 25 B	A Committee			
Uranium, Total ^{5,6}	Monitor only	Monitor only	μg/L	2	:			-Y-7 43 1847		Grab	Calculated estimates
Radium, Total ^{5,6}	Monitor only	Monitor only	μg/L	2	:	建筑建筑	ST.	TO SERVICE SERVICE	***	Grab	Calculated estimates
Thorium, Total ^{5,6}	Monitor only	Monitor only	րբ/Լ	2 .	:	(100 M/SK	Kiziyi n.S	14 TO 16		Grab	Calculated estimates
Gross Alpha ⁵	Monitor only	Monitor only	pCi/L	2	_ ::	· ·	影響。		No. C.	Grab	
Gross Beta ⁵	Monitor only	Monitor only	pCi/L	2	:	学教教院		4.25	學為數學。	Grab	
Protactinium-231 ⁵	Monitor only	Monitor only	pCi/L	;	÷			17 T 18 17 19	geological and	Grab	
Actinium-227 ⁵	Monitor only	Monitor only	pCi/L	2	:	1	\$.45. C	10 10 1	联月44 。	Grab	

¹ Results are reported in required units.

² Outfall plugged due to construction activities

³ DL= Detection Limit

⁴ Value reported is based on a volume weighted average of analyte activity concentrations for samples collected during the defined event. Corresponding radiological samples were collected on the same date as chemical samples, however, the radiological results are incorporated into the volume weighted average for the specified event.

⁵ As specified in the permit, radionuclides require monitoring only, and limits are not permit specified.

⁶ Total nuclide values in ug/L units were calculated using the activity concentration values reported by the laboratory and values for specific activity listed in Table 8.4.1 of The Health Physics and Radiological Health Handbook, 1992 Edition

¹ It is assumed that Ra-228 and Th-228 are in secular equilibrium with Th-232, therefore, Th-232 results are used to estimate Ra-228 and Th-228 values.

Second Quarter 2002 -Stormward scharge Monitoring Report St. Louis Airport Site (SLAPS), St. Louis, MO

FACILITY NAME	PERMIT NUMBER	COUNTY	OWNER	FACILITY CONTACT	
•				•	
	No permit exists, currently			,	
_	working to the ARAR provided		U.S. Army Corps of Engineers,		
St. Louis Aimort Site (SLAP)		St. Louis		S.R. Cotner, Program Manag	er, USACE
OPERATOR OF FACILIT			TYPE OF FACILITY	· · · · · · · · · · · · · · · · · · ·	
United States Army Corps of	Engineers (USACE)		Standard Industrial Classification		
REQUIRED FREQUENCY				THIS REPORT COVERS	
	ate, Effluent Parameters- Chemical				
discharge; Raciological2: per	rainfall event that results in a discha-	ge; Radon-semi-annually	during rainfall that results in a	,	
discharge; Maniforing Repo				2nd Quarter- April 1 through	June 30, 2002
SAMPLES COLLECTED I	ву				<u> </u>
Environmenta Dimensions, l			<u> </u>	<u> </u>	
ANALYSIS PERFORMED					
ARDL for chemical analysis:	HISS on-site laboratory for radiologi	cal analysis; Radon in water	er analysis performed by General E	ngineering Laboratories.	
	· ·				
SAMPLE LOCATION	EVENT ³ I	EVENT 2	EVENT 3	EVENT 4	EVENT 5
Outfall 001a	4/8/2002	04/19/02-04/23/02	04/27/02-04/28/02	05/06/02-05/14/02	05/16/02-05/20/02
Outfall 001b	4	1		05/08/02-05/10/02,05/13/02	1
Outfall 0025	5	5	5	5	, ,
Outfall 003	6	б	6	6	6
SAMPLE LCCATION	EVENT 6	EVENT 7			
Outfall 00 la	06/5/02-06/07/02	06/10/02-06/13/02			
Outfall 0023)	,			
Outfall 003	6	6			
REPORT APPROVED BY	OWNER Fragon Colour	w for USACE		DATE 7/25/02	
		1			

¹ Collect monthly grab samples for the following parameters: oil and grease, total petroleum hydrocarbons, plf, chemical oxygen demand, settleable solids, total recoverable arsenic, total recoverable lead, total recoverable chromium, total recoverable copper, total recoverable cadmium, polychlorinated biphenyls, total uranium, total radium, total thorium, gross alpha, gross beta, protactinium-231, and actinium-227.

² Collect grab samples per rainfall event for the following parameters: total uranium, total radium, total thorium, gross alpha, gross beta, protactinium-231, and actinium-227.

An event is defined as a measurable increase in discharge rate from precipitation producing 0.1 inch or more of liquid in a 24 hour period, or from pumping operation (such as following treatment). An event may exceed duration of 24 hours, and two events experienced within 48 hours may be reported together.

⁴ND = No Discharge

³ As per MDNR letter from Matthew Sikes addressed to Sharon Cotner dated 02/19/02, sampling at outfall 002 has been reduced to once a year.

[&]quot;Outfall plugged due to construction activities

ATTACHMENT C

ST. LOUIS AIRPORT SITE MAY 15, 2002, "NOTIFICATION OF EXCEEDANCE" LETTER

DEPARTMENT OF THE ARMY

ST. LOUIS DISTRICT, CORPS OF ENGINEERS 8945 LATTY AVENUE BERKELEY, MISSOURI 63134

REPLY TO ATTENTION OF:

May 15, 2002

Formerly Utilized Sites Remedial Action Program

SUBJECT: Applicable or Relevant and Appropriate Requirements (ARARs) Discharges to Waters of the State at the St. Louis Airport Site (SLAPS), "Notification of Exceedence" for Outfall 001a

Philip A. Schroeder Chief, Permit Section Missouri Department of Natural Resources Water Pollution Control Program P.O. Box 176 Jefferson City, MO 65102-0176

Dear Mr. Schroeder:

On April 8, 2002, compliance samples were collected according to the Applicable or Relevant and Appropriate Requirements (ARARs), Discharges to Waters of the State at the St. Louis Airport Site (SLAPS) Outfall 001a. The results of the data were received on May 7, 2002 and an exceedence of the daily maximum limit of 84 µg/L for total recoverable Copper was observed. The result reported was 100 µg/L. All other sample results were within the limits of the permit. Mr. Ron Frerker of the Corps verbally reported the exceedence on May 7, 2002 at 5:30 p.m. The message was left on the voice mail of Mr. Sikes. Due to Mr. Sikes' leave of absence, the message was also left on the voicemail of Mr. Laux on May 9, 2002.

Historically there have been no problems with elevated Copper results except occasionally during heavy (typically those greater than .5 inches in 5 hours) rain events. On the subject date compliance samples were collected as a result of a 0.54-inch rain event in a 5-hour period as reported by the onsite weather station. There have been two other similar elevated results for Copper analysis at Outfall 003, both occurred during heavy rain events. Although this most recent rain event was not quite the same magnitude as the two previous events that resulted in elevated Copper readings, the rain was impacting newly backfilled areas on the East End of the SLAPS. Outfall 003, which drains a majority of the East End, is currently plugged due to the ongoing backfilling effort. The watershed area that would normally exit there has been diverted to the sedimentation basin and Outfall 001a.

Corrective actions undertaken to date include inspecting the erosion control measures in the area to ensure they were still in working order and completion of backfill to final grade on the East End so vegetation can be established in the affected areas as soon as possible. It is also important to note that the acceptable range for duplicate analyses of total Copper is +/-20%. Therefore it is possible that this result is anomalous, which means it can statistically occur on the average of once in twenty analyses. While an anomaly is possible, the USACE will continue to investigate the exceedence. Additionally, the United States Army Corps of Engineers (USACE) waste profile for the soils at SLAPS does not indicate a potential problem with Copper levels (TCLP results for Copper are 0.004 –0.0066 mg/L).

Please contact Ron Frerker at 314-260-3936 or Dr. Greg Hempen at 314-260-3939, if you have any questions on this matter.

Sincerely,

Sharon Cotner

FUSRAP Program Manager

CF: Mr. Thomas Siegel, MDNR-DEQ Mr. Eric Gilstrap, MDNR-FFS

FUSRAP Document Management System

Year ID 3315		Further Info?
Operating Unit Site North County	Area	MARKS Number FN:1110-1-8100g
Primary Document Type Site Management	Secondary Document Type Correspondence	
0111252 and Applicable or Re Waters of the State at SLAPS	er of Calendar Year 2002 Discharge Report elevant and Appropriate Requirements (AR	
Author/Originator Sharon Cotner	Company CEMVS-PM-R	Date 7/25/2002
Recipient (s) Kurt Riebeling	Company (-ies) MDNR	Version Final
Original's Location Central Files	Document Format Paper	Confidential File?
	Include in which AR(s)?	
SAIC number Bechtel ID	☐ North County ☐ Madison ☐ Downtown ☐ Iowa	Filed in Volume
· ·		

