2022 Water Quality Report

U.S. Army Corps of Engineers Saint Louis District

Carlyle Lake Water Quality Conditions: 1971-2022

October 2023

Carlyle Lake Water Quality Conditions: 1971-2022

Prepared for

United States Army Corps of Engineers Saint Louis District 1222 Spruce Street Saint Louis, MO 63103-2833

Prepared by:

Ben Greeling Environmental Specialist

EXECUTIVE SUMMARY

The United States Army Corps of Engineers (USACE) commitment to environmental compliance and protection of estuaries, rivers, lakes, and navigable waters arises from the national policy and directives expressed in Federal Statutes, Executive Orders, and internal regulations. These regulations were designed to minimize pollution, maximize recreation, protect aesthetics, preserve natural resources, and promote the comprehensive planning and use of water bodies to enhance the public interest rather than private gain. Therefore, USACE, in the design, construction, management, operation, and maintenance of its facilities, will exert leadership within existing authorities and appropriations in the nationwide effort to protect, enhance, and sustain the quality of the nation's resources. It is USACEs policy to comply with requirements of the Clean Water Act and not to degrade existing water quality conditions to the maximum extent that is practicable, consistent with project authorities, Federal legal and regulatory requirements, the public interest, and water control manuals.

The United States Army Corps of Engineers, Saint Louis District (CEMVS), implemented a water quality monitoring program during the 1970s to evaluate how its civil projects may be affecting water resources. Data collected from this effort serves as an invaluable tool for evaluating the significance of annual water quality measurements and tracking long-term trends. Water quality data is provided to the Missouri Department of Natural Resources and the Illinois Environmental Protection Agency to be used as a screening mechanism for the Missouri and Illinois Water Quality Report which is required every two years by the Clean Water Act Sections 303(d) and 305(b).

The National Water Quality Inventory Report to Congress (305(b) report) is the primary vehicle for informing law makers and the public about general water quality conditions in the United States. This document characterizes our water quality, identifies widespread water quality problems of national significance, and describes various programs implemented to restore and protect our waters. Currently the Illinois Environmental Protection Agency (IEPA, 2020) has listed Carlyle Lake as impaired for total phosphorous and mercury while the Kaskaskia River upstream from the Lake is impaired for fecal coliform, and mercury. In addition, the North Fork Kaskaskia River is impaired for phosphorus, Atrazine, and Terbufos. The lists of sources for these impairments are contaminated sediments, crop production, and unknown sources. The entire Kaskaskia watershed is impaired by the above parameters as well as many others.

Water quality sampling in 2022 revealed the following concerns at Carlyle Lake: dissolved oxygen, temperature, bacteria, total phosphorus, iron, pH, and chlorophyll a.

TABLE OF CONTENTS

INTRODUCTION	5
CARLYLE LAKE WQMP COVERAGE	6
Sample Location Summary Table	8
METHODS AND ANALYSIS: WATER QUALITY	9
Data Collection and Historical Reference Data	9
Statistical Summary and Comparison to Applicable Water Quality Standards	9
Quality Assurance	9
Water Quality Parameters and Criteria	10
Laboratory Methods and Water Quality Criteria Summary Table	15
RESULTS AND SUMMARY STATISTICS: WATER QUALITY	17
DISCUSSION: WATER QUALITY	33
MONITORING PROGRAM RECOMMENDATIONS	36
WORKS CITED	37
APPENDIX A: FIELD DATA	38
APPENDIX B: LABORATORY DATA	42

INTRODUCTION

The Carlyle Lake watershed encompasses approximately 1,663 square miles and includes all or portions of Bond, Clinton, Effingham, Fayette, Marion, Shelby, and Montgomery counties. The watershed includes the Kaskaskia River between Carlyle Lake Dam and Lake Shelbyville Dam and major tributaries of the Kaskaskia River, including: Big, Richland, Robinson, Becks, Ramsey, Old Hickory, and Hurricane Creeks (respectively) and the East Fork Kaskaskia River. Agriculture is the predominant land use within the watershed. Currently, 82% of the land is used for agricultural purposes. Of that 82%, 63% is cropland and 19% grassland. Since 1978, the number of farms has decreased by 25% and the acreage tilled has decreased by only 6%. Corn and soybeans are important to the region, but producers also grow 25% of the entire state's crop of wheat. Livestock production, including dairy, swine, poultry, and beef cattle is a significant industry, especially in Clinton, Randolph, and Washington Counties.

Carlyle Lake is located in south central Illinois at river mile 94.2 on the Kaskaskia River, upstream from its confluence with the Mississippi River and about one-half mile upstream from the town of Carlyle, Illinois. Carlyle is located in Clinton County, approximately 50 miles east of St. Louis, Missouri. Carlyle Lake is the largest manmade lake in the state and is approximately 12 miles long and 1-3 miles wide and has approximately 24,710 acres of water surface at summer pool elevation 445.0 feet NGVD (National Geodetic Vertical Datum). There are 88 miles of shoreline and approximately 12,800 acres of public land associated with the project. The lake is situated in gently rolling land with alluvial valleys with moderately low relief. The lake provides outdoor recreation opportunities for over 2.5 million visitors annually, which generates over \$80 million in visitor spending within 30- miles of the Lake. There are 41 recreation areas that include: 424 picnic sites, 726 campsites, 670 marina slips, 24 boat ramps, and 25 miles of hiking trails. The CEMVS manages and operates two large reservoirs on the Kaskaskia River, Lake Shelbyville and Carlyle Lake, as well as the 36 mile long navigable channel and lock and dam at the Kaskaskia River Project.

Carlyle Lake is managed and operated by the CEMVS for the authorized purposes of flood risk management, navigation, water supply, water quality, fish and wildlife conservation, and recreation. The lake serves as a heavy recreational usage lake. The land surrounding the lake is used predominately for agriculture. Surrounding communities have existing industrial/commercial operations and residents which discharge wastewater into municipal wastewater treatment plants that ultimately discharge treated water into the Kaskaskia River basin. Agricultural runoff and municipal wastewater treatment facilities are the primary potential source of pollution into the Carlyle Lake watershed. Additional sources are marinas, recreational watercraft discharges and wildlife fecal material runoff.

Water quality is of paramount importance for sustaining ecological integrity and services provided by the Kaskaskia River and Carlyle Lake. Water quality is influenced by a range of both point and nonpoint pollution sources, which may include natural

processes, industrial and municipal effluents, and surface runoff from agricultural arenas.

The USACE has implemented a Water Quality Management Plan (WQMP) as part of the operation and maintenance activities associated with managing USACEs' civil works projects throughout the District which includes, among other reservoirs and rivers, the Kaskaskia River and Carlyle Lake. The WQMP addresses surface water quality management issues and adheres to the guidance and requirements specified by Clean Water Act (CWA), as well as the self-imposed Engineering Regulation (ER) 1110-2-8154, "Water Quality and Environmental Management for USACE Civil Works Projects" (USACE, 2018). Water quality monitoring is implemented to fulfill five primary objectives that drive the CEMVS WQMP:

- 1) Establish baseline conditions, identify significant water quality trends, and document problems and accomplishments.
- Ensure that surface water quality, as affected by CEMVS projects, is suitable for project purposes, existing water uses, public health and safety, and in compliance with applicable state and federal water quality standards.
- 3) Provide support to water control, project operations, and navigation for regulations and modifications.
- 4) Investigate special problems, design and implement modifications, and improve water management procedures
- 5) Establish and maintain strong working partnerships and collaborations with appropriate entities within and outside USACE regarding water quality.

This report is intended to document and assess water quality conditions occurring at Carlyle Lake. The report describes conditions observed in 2022, as well as baseline data collected from 1971-2021. Data are available upon request.

CARLYLE LAKE WQMP COVERAGE

The WQMP for Carlyle Lake includes water samples taken at the following locations: major tributaries (CAR-13 and CAR-12), main body of the lake (CAR-4, CAR-2, and the marinas), and just downstream of the dam (CAR-1). See figure 1 and Table 1 for a site map and site coordinates.

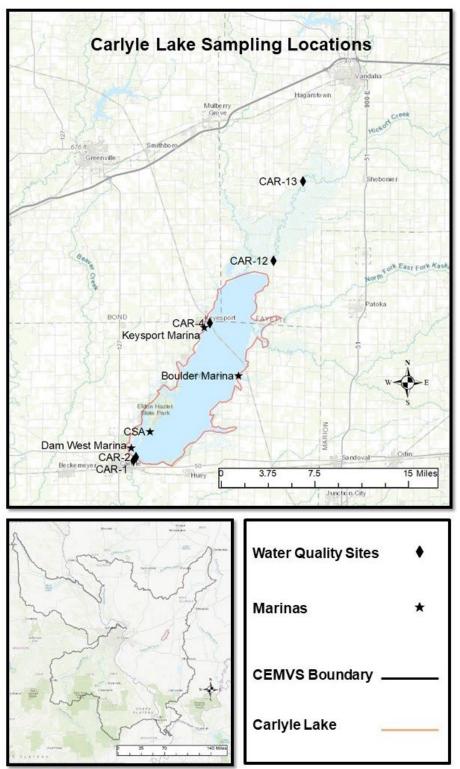


Figure 1. Water Quality (WQ) Sampling Locations in 2022 at Carlyle Lake

Sample Location Summary Table

Sample Location Type	Abbreviation	Site Name	Latitude	Longitude
Major Tributary	TRIB	CAR-13	38.868961	-89.159605
	TRIB	CAR-12	38.868961	-89.193475
Main Reservoir Surface	RS	CAR-2	38.619492	-89.352747
	RS	CAR-4	38.740632	-89.267266
	RS	CAR-BL	38.693092	-89.234040
	RS	CAR-DW	38.627955	-89.358246
	RS	CAR-KP	38.736930	-89.273674
	RS	CAR-CSA	38.642647	-89.336805
Reservoir Benthic	RB	CAR-2-10	38.619492	-89.352747
Tail Race (below dam)	TR	CAR-1	38.616240	-89.355828

 Table 1: Sample Location Summary and Geographic Location (NAD 1983)

Samples at Marinas are not always taken in the exact same location. *BL=Boulder Marina, DW=Dam West Marina, KP=Keyesport Marina, CSA=Carlyle Sailing Association.*

METHODS AND ANALYSIS: WATER QUALITY

Data Collection and Historical Reference Data

During 2022, water quality samples were collected and analyzed for 10 locations during four separate sampling events (n=40; Table 1). One duplicate sample was also collected during each sampling event for quality control purposes. Samples were collected from the upper one meter of the water column, preserved, and transported to the Applied Research and Development Laboratory (ARDL) in Mount Vernon, Illinois for analysis.

For the purpose of this report, historical reference data refers to water quality data collected during the previous years ranging as far back as 1971 (parameter dependent) at Carlyle Lake. Historical reference data are intended to represent the current condition of Carlyle Lake.

Statistical Summary and Comparison to Applicable Water Quality Standards

Statistical analyses were performed on water quality monitoring data collected for 10 locations, and classified as TRIB (n= 2), RS (n=6, RB (n=1), and TR (n=1). For comparison, statistical analyses were also performed on historical water quality monitoring data and, although some sampling locations may have been removed, they were classified in the same manner. Descriptive statistics were calculated to describe central tendencies and boxplots created to illustrate comparisons between groups. Monitoring results were compared to applicable water quality standard criteria established by the appropriate state agencies pursuant to the Federal Clean Water Act. If state water quality standard criteria were not available, recommended criteria from the literature were considered.

Seasonal data are classified as: Winter (December 01 - March 14), Spring (March 15 – May 31), Summer (June 1 – September 15), Fall (September 16 – November 30).

Quality Assurance

The United States Army Corps of Engineers, Saint Louis District quality assurance procedures considers two primary focus areas: (1) those that involve laboratory analysis of samples, and (2) those concerning the collection and processing of the water samples in the field.

Since 2012, ARDL has analyzed water quality samples for CEMVS. Their quality assurance program includes the use of quality control charts, check standards, field and in-house matrix spikes, laboratory blanks and performance evaluation samples. In addition, one blind duplicate sample is submitted for at least every 20 samples, or, in this case, every sampling event (one event/day at Carlyle Lake has 6 lab samples and one duplicate).

Internal checks are also used for field sampling. This includes adherence to operating procedures for data collection and periodic evaluation of sampling personnel. Field sampling equipment and multimeters are calibrated/serviced in accordance with factory recommendations.

Water Quality Parameters and Criteria

Parameters used to characterize water quality have been generally accepted criteria for assessing aquatic life and human health include:

Temperature (Temp) is important because it controls several aspects of water quality. Colder water holds more dissolved oxygen which is required by aquatic organisms. Plants grow more rapidly and use more oxygen in warmer water. Decomposition of organic matter which uses oxygen is accelerated in warmer water. Temperature can also determine the availability of toxic compounds such as ammonia. Since aquatic organisms are cold blooded, water temperature regulates their metabolism and ability to survive. The number and kinds of organisms that are found in streams or lakes is directly related to temperature. Certain organisms require a specific temperature range, such as Salmonids, which require water temperatures below 20°C. Water temperature criteria for warm water bodies in Illinois is within 2.8°C of the seasonal norm.

Dissolved Oxygen (DO) refers to the measurement of free oxygen molecules (O₂) that are not bonded to any other elements; thus, oxygen bonded in water (H₂O) would not be considered in a measurement of dissolved oxygen. Oxygen is dissolved in surface waters through interactions with the atmosphere and as a waste product of photosynthesis (CO₂ + H₂O (CH₂O) + O₂) from phytoplankton and aquatic vegetation. Additional factors influencing DO include temperature, pressure, and salinity.

Dissolved oxygen is required for most aquatic life including fish, invertebrates, bacteria, and plants. Fish and invertebrates utilize DO for respiration through gills and cutaneous breathing, and plants

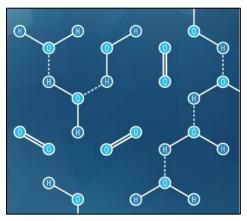


Figure 1: Dissolved oxygen (O_2) vs oxygen bonded in water (H_2O) .

require dissolved oxygen for respiration when photosynthesis is not possible. Smaller microbes and bacteria utilize DO for decomposition of organic materials, a process essential for nutrient cycling. Bottom feeders such as worms and mussels can persist when DO is \geq 1mg/L, while most inland fish species require a minimum DO of 4mg/L. The DO water quality criteria for Illinois is \geq 5mg/L.

Potential of Hydrogen (pH) is a measure of how acidic or basic water is. Potential of Hydrogen is reported on a logarithmic scale ranging from 0 - 14, with 7.0 being neutral. As pH increases from 7.0, water increases in alkalinity, whereas a decrease from 7.0 indicates an increase in acidity. Since pH is measured on a logarithmic scale, every

one-unit change in pH indicates a 10-fold change in acidity; thus, a pH of 6.0 is ten times more acidic than a pH of 7.0 and a pH of 4.0 would be one-thousand times more than a pH of 7.0.

The pH of water varies considerably beyond the local level. Natural variation in bedrock and soil composition through which water moves has been reported as one of the most influential factors. Additional factors include decomposition of organic materials, acidity of local precipitation, discharge of effluents and chemicals, and mining operations.

Most freshwater streams and rivers have a natural pH ranging from 6 to 8. As pH approaches 5 (acidic), less tolerant fish and aquatic invertebrate assemblages may be extirpated, and a pH below 4.5 would be without most desired aquatic life. Conversely, when pH exceeds 9.5 (alkaline), aquatic fish and invertebrate begins to rapidly decrease and beyond 10, fish become extirpated. The pH water quality criteria for Illinois ranges from 6.5 - 9.0.

Conductivity is a measure of water's ability to conduct electrical current. In its purist form, water has a *near* neutral charge, indicating that it is an inefficient conductor of electrical current. Thus, the ability to carry electrical current is driven by water soluble ions (atoms and molecules with a charge) such as salts and other inorganic materials. Conductivity is also influenced by water temperature; as temperature increases, conductivity increases. For this reason, conductivity is commonly reported as Specific Conductivity (SpCond), which is the measurement of conductivity at 25 degrees Celsius.

Conductivity in streams and rivers is affected by the geology of the area. Streams running through granite tend to have lower conductivity due to granite being composed of inert material; materials that do not ionize or dissolve into ionic compounds in water. Conversely, streams that run through areas of limestone or clay soils tend to have higher conductivity readings because of the presence of materials that ionize. Conductivity is useful as a general measure of water quality. A stream tends to have a relatively constant range of conductivity that, once established, can be used as a baseline. Significant changes, either increases or decreases, might indicate a source of pollution has been introduced into the water. The pollution source could be a treatment plant, which raises the conductivity, or an oil spill, which would lower the conductivity. In general, there are no water quality criteria for SpCond. The District threshold of 500 μ S/cm is a rule of thumb value that is often associated with some form of biological impairment.

Oxidation Reduction Potential (ORP) is a measurement of the net status of all the oxidation and reduction reactions in a given water sample. Oxidation involves an exchange of electrons between 2 atoms. The atom that loses an electron is oxidized and the one that gains an electron is reduced. Oxidation reduction potential sensors measure the electrochemical potential between the solution and a reference electrode. Readings are expressed in millivolts. Positive readings indicate increased oxidizing potential and negative readings increased reduction. Oxidation reduction potential

values are used much like pH values to determine water quality. While pH readings characterize the state of a system relative to the receiving or donating hydrogen ions (base or acid), ORP readings characterize the relative state of losing or gaining electrons. Generally, ORP readings above 400mV are harmful to aquatic life; however, ORP is a non-specific measurement, which reflects a combination of effects of all the dissolved materials in the water. Therefore, the measurement of ORP in relatively clean water has only limited utility unless a predominant redox-active material is known to be present.

Total Suspended Solids (TSS) concentrations, which cause the photosynthetic activity to be reduced by more than 10% from the seasonably established norm, can have a detrimental effect on aquatic life. Soil particles, organic material, and other debris comprise suspended solids in the water column. Turbidity (FNU) measurements are inverse to suspended solid measurements. As TSS increases, the FNU or water transparency decreases. Total suspended solids can be an important indicator of the type and degree of FNU. Total Suspended Solids measurements represent a combination of Volatile Suspended Solids (VSS), which consist of organic material, and Nonvolatile Suspended Solids (NVSS), which is comprised of inorganic mineral particles in the water. In order to more accurately determine the types and amounts of suspended solids, VSS are analyzed. Volatile suspended solid concentration represents the organic portion of the total suspended solids. Organic material often includes plankton, and additional plant and animal debris present in water. Total VSS indicates the presence of organics in suspension; and, therefore, show additional demand levels of oxygen. The Illinois Environmental Protection Agency suggests that generally NVSS above 15 mg/L could highly impair recreational lake use while NVSS of 3 to 7 mg/L may cause slight impairment (Hudson, 1998). Illinois does not currently have standard criteria for TSS, NVSS or VSS.

Total Organic Carbon (TOC) is a measure of the amount of organic carbon in a water body. In addition to natural organic substances, TOC includes insecticides and herbicides, as well as domestic and industrial waste. Industrial waste effluent may include carbon-containing compounds with various toxicity levels. Further, a high organic content means an increase in the growth of microorganisms which contribute to the depletion of oxygen supplies.

Currently, there are no state or federal water quality standard criteria set for TOC. Because carbon occurs naturally, its concentration varies based on physical and chemical attributes in a watershed; thus, this study relies on historical reference conditions to identify unfavorable conditions.

Metals Iron (TFe) and Manganese (TMn) (T=total) are nutrients for both plants and animals. Living organisms require trace amounts of metals. However, excessive amounts can be harmful to the organism. Heavy metals exist in surface waters in three forms, colloidal, particulate, and dissolved. Water chemistry determines the rate of adsorption and desorption of metals to and from sediment. Metals are desorbed from the sediment if the water experiences increases in salinity, decreases in redox potential,

or decreases in pH. Metals in surface waters can be from natural or human sources. Metal levels in surface water may pose a health risk to humans and the environment.

Pesticides are commonly used throughout much of the agricultural landscape that the Kaskaskia River flows. This study considers one insecticide and seven herbicides. Atrazine and Alachlor herbicides are commonly used agricultural chemicals which can be readily transported by rainfall runoff. Both compounds are suspected of causing cancer; and therefore, were monitored for the protection of human and aquatic health. Herbicides which are pesticides used to kill vegetation are the most widely used and sampled. Two of the most widely used herbicides are Atrazine and Alachlor. Atrazine is a preemergence or postemergence herbicide use to control broadleaf weeds and annual grasses. Atrazine is most commonly detected in ground and surface water due to its wide use, and its ability to persist in soil and move in water. Alachlor is a Restricted Use Pesticide (RUP) due to the potential to contaminate groundwater. The water quality standards for the pesticides sampled are located in Table 2.

Nitrogen occurs naturally in water through several forms including nitrogen (N2), nitrite (NO2-N), nitrate (NO3-N), ammonia (NH3), and ammonium (NH4). Nitrates are the most commonly reported form of nitrogen and may have a meaningful influence on a water body's trophic status. Algae and other plants use NO3-N as a food source, thus excess levels of NO3-N can promote increases in algae production and hypereutrophic conditions.

In general, NO3-N does not have a *direct* effect on fish or aquatic insects. Illinois has set criteria standards for NO3-N to 10 mg/L to accommodate safe drinking waters for human and livestock; however, this threshold likely exceeds the concentration that is appropriate for assessing ecosystem health.

<u>Total Ammonia Nitrogen (TAN)</u> includes NH3 and NH4. Total ammonia nitrogen is a colorless gas with a strong pungent odor. Ammonia occurs naturally and is a biological requirement for aquatic life, however elevated concentrations can be toxic to freshwater organisms. Unnatural sources of ammonia include, accidental releases of ammonia rich fertilizer, effluent from sewage treatment plants, improper disposal of ammonia products, and livestock waste.

Toxic concentrations for freshwater organisms range from 0.53 – 22.8 mg/L and are strongly dependent on both pH and temperature. In general, an increase in pH and/or temperature corresponds with an increase in toxicity. Additional information in regard to the relationship between pH, temperature, and ammonia, as it relates to toxicity, can be reviewed in Aquatic Life Ambient Water Quality Criteria for Ammonia – Freshwater (USEPA 2013).

Total Phosphorus (TP) is analyzed as phosphorus and has been monitored due to the potential for uptake by nuisance algae. Levels of phosphate can indicate the potential for rapid growth of algae (algae bloom) which can cause serious oxygen depletion during the algae decay process. Phosphorous is typically the limiting nutrient in a water

body; therefore, any addition of phosphorous to the ecosystem stimulates the growth of plants and algae. Phosphorous is delivered to lakes and streams by way of runoff from agricultural fields and urban environments. Other sources of phosphorous are anaerobic decomposition of organic matter, leaking sewer systems, and point source pollution. The general standard for phosphorous in lake water is 0.05 mg/L. Dissolved phosphorous, also called **Orthophosphate (PO₄-P)** is generally found in much smaller concentrations than total phosphorous and is readily available for algal uptake. Orthophosphate concentrations in a water body vary widely over short periods of time as plants take it up and release it.

<u>Chlorophyll a (CHL a)</u> is a measure of the number of algae growing in a waterbody, and therefore can be used to classify trophic status. Although algae are a natural part of freshwater ecosystems, too many algae can cause aesthetic problems such as green scums and bad odors and can result in decreased levels of DO.

Pheophytin a (PHEO a) is a natural degradation product or digestion of CHL_a. The ratio of PHEO_a to CHL_a can provide an indication of the decline or growth in eukaryotic algae and cyanobacteria populations.

<u>**Trophic Status</u>** is determined using a modified **Trophic State Index (TSI)**, as described by Carlson (1977). Trophic State Index is calculated from Secchi-depth transparency, total phosphorus, and chlorophyll-a measurements. Values for these three parameters are converted to an index number ranging from 0-100 according to the following equations:</u>

TSI (Seechi Depth) = 10(6 - (In SD/In 2))

TSI (Chlorophyll-a) = TSI(Chl) = 10(6 - ((2.04 - 0.68 ln Chl)/ln 2))

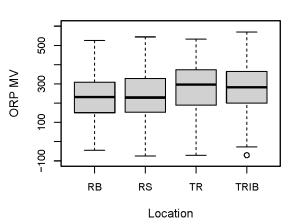
TSI (Total Phosphorus) = $TSI(TP) = 10(6 - (\ln (48/TP)/\ln 2))$

where In indicates the Natural Logarithm

A TSI average value, calculated as the average of the three individually determined TSI metrics, is used as an overall indicator of a water body's trophic state. The relationship between TSI and trophic condition is defined as follows:

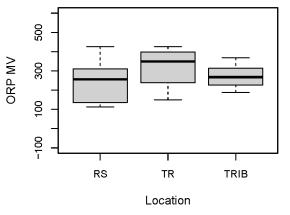
TSI	Trophic Condition
0-40	Oligotrophic
40-50	Mesotrophic
50-70	Eutrophic
70-100	Hypereutrophic

Laboratory Methods and Water Quality Criteria Summary Table

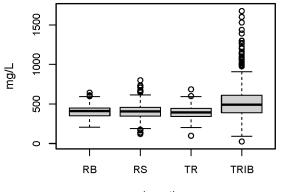

Table 2: Metrics, Methods, and Water Quality Criteria Used for Evaluating Water Quality

Metric	Abbreviation	Analysis Method	Water Quality Criteria	<u>Source</u>
Alachlor		EPA Method 8270C	< 2µg/L PWS or <1100 µg/L: aquatic life	Illinois EPA
Ammonia Nitrogen	NH₃	EPA Method 350.1	<15 mg/L	Illinois EPA
Atrazine	Atrazine	EPA Method 8270C	9 µg/L: Chronic or 82 µg/L: Acute or 3 µg/L DWS	Illinois EPA
Bacteria: E. Coliform	E Col	EPA Method 1604	< 235 E. Col per 100/mL for single sample	Illinois EPA
Chlorophyll a	Chl_a	SM Method 10200H	< 25 mg/m ³ (Eutrophic Upper Limit)	Carlson 1977
Chlorpyrifos		EPA Method 8270C	< .11 µg/L: aquatic life	Illinois EPA
Cyanazine		EPA Method 8270C	< 30 µg/L: chronic or < 370 ug/L acute (aquatic life)	Illinois EPA
Depth	Depth	Multiparameter Meter	Measurements reported at ~1 meter	
Dissolved Oxygen	DO	Multiparameter Meter	Greater than 5.0mg/L	Illinois EPA
Metolachlor		EPA Method 8270C	30.4 μg/L: Chronic or 380 μg/L: Acute	Illinois EPA
Metribuzin		EPA Method 8270C	8.4 mg/L: aquatic life or 8.3 mg/L: human health	Illinois EPA
Nitrate as Nitrogen	NO ₃	Green Method	< 10 mg/L	Illinois EPA
Non-Volatile Suspended Solids	NVSS	TSS - VSS		
Orthophosphate	Ortho	EPA Method 365.2		
Pendmethalin		EPA Method 8270C	< 30 µg/L: chronic or < 350 µg/L acute (aquatic life)	Illinois EPA
Pheophytin a	Phpy_a	SM Method 10200H		
Potential of Hydrogen	рН	Multiparameter Meter	Range: 6.5 – 9.0pH	Illinois EPA
Specific Conductivity	SpCond	Multiparameter Meter	500 μS/cm	
Temperature	Temp	Multiparameter Meter	Less than rise of 2.8°C above normal seasonal temperature	Illinois EPA
Total Dissolved Solids	TDS	Multiparameter Meter	< 500 mg/L	Illinois EPA
Total Manganese	TMn	EPA Method 6010C	< 1 mg/L	Illinois EPA

Metric	Abbreviation	Analysis Method	Water Quality Criteria	Source
Total Organic Carbon	тос	EPA Method 415.1		
Total Iron	TFe	EPA Method 6010C	< 1 mg/L	Illinois EPA
Total Phosphorus	TP	EPA Method 365.2	Less than 0.05 mg/L	Illinois EPA
Total Suspended Solids	TSS	EPA Method 160.2		Illinois EPA
Trifluralin		EPA Method 8270C	< 1.1 μg/L: chronic or < 26 μg/L acute (aquatic life)	Illinois EPA
Turbidity	Turb	Multiparameter Meter		
Volatile Suspended Solids	VSS	EPA Method 160.4		

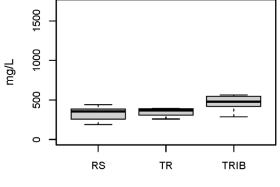

*1 mg/L is equivalent to 1 drop in two bathtubs and 1 ug/L is equivalent to 1 drop in an Olympic size swimming pool. PWS is public water supply. DWS is drinking water standard.

RESULTS AND SUMMARY STATISTICS: WATER QUALITY



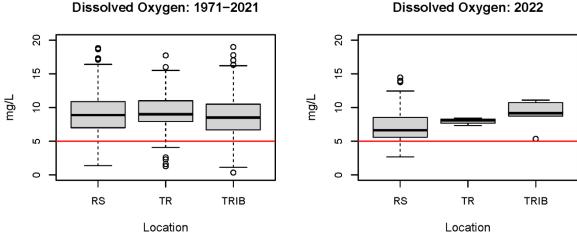
Oxidation Reduction Potential: 1986–2021

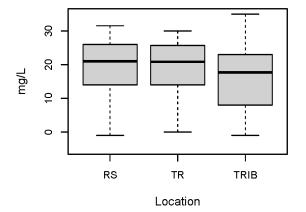
Oxidation Reduction Potential: 2022

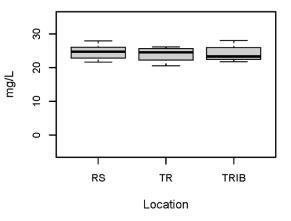


Specific Conductivity: 1971–2021

Location

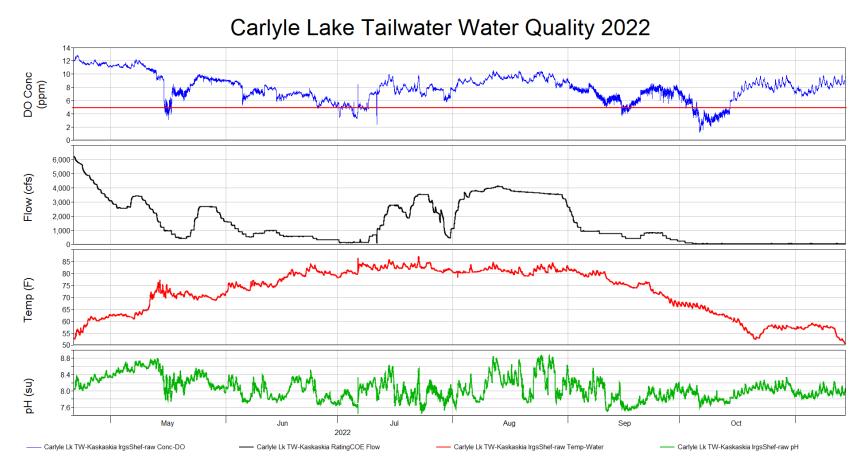

Specific Conductivity: 2022


Location

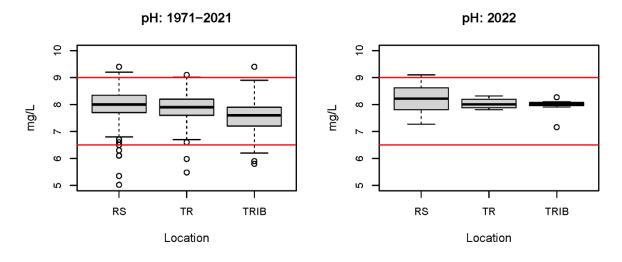

	Historical Re		<u>2022</u>				
	Location	Mean	Median	n	Mean	Median	n
ORP	RB	228.07	231.0	134			
	RS	242.74	235.0	277	150.35	161.3	16
	TR	283.03	296.0	132	208.17	172.1	3
	TRIB	278.85	286.5	172	185.70	164.5	5
SpCond	RB	405.18	411.0	239			
	RS	406.99	411.0	637	341.77	334.8	22
	TR	397.38	395.0	248	357.68	361.4	4
	TRIB	518.89	495.0	605	392.44	414.7	7

*This report does not acknowledge a water quality criteria for SpCond or ORP.

Temperature: 1971-2021

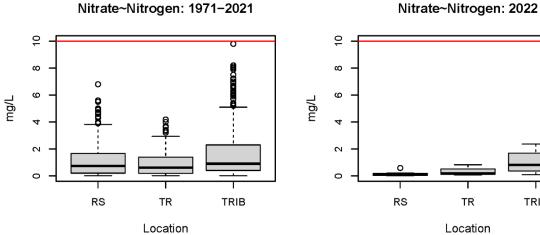


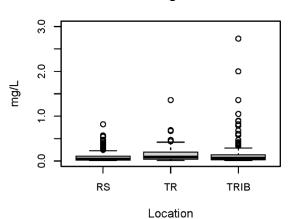
Temperature: 2022


* Red line placed at the 5 mg/L level for DO.

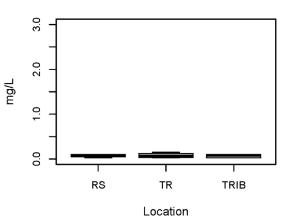
	Historical Re	ference 197		<u>2022</u>			
	Location	Mean	Median	n	Mean	Median	n
DO	RS	9.02	8.89	652	7.48	6.64	24
	TR	9.40	9.01	248	7.99	8.10	4
	TRIB	8.63	8.50	601	9.22	9.16	8
Temp	RS	19.13	21.00	661	24.56	24.76	24
	TR	18.93	20.85	254	23.95	24.58	4
	TRIB	15.74	17.71	618	24.16	23.29	8

* During the four sampling events in 2022 surface water DO was measured below the standard at CAR-4 and BL-MAR in June and at BL-MAR, DW-MAR, and KP-MAR in September. In 2022 temperature was recorded above the standard (rise of 2.8° C above the natural temperatures) during the spring. The historical seasonal mean temperature by class was used as the natural temperature.


*Data recorded by multi-parameter sonde at tail race in 2022. 15 minute data shown. DO was recorded below the standard of 5 mg/L several times throughout the year usually during low flow periods.


*Red lines indicate the upper and lower water quality criteria standards (9 and 6.5).

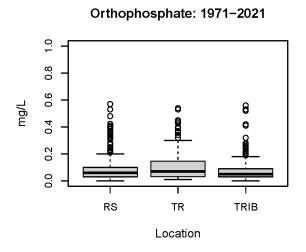
Historical Reference 1971-2021						<u>2022</u>	
	Location	Mean	Median	n	Mean	Median	n
рН	RS	7.99	8.00	649	8.22	8.22	24
	TR	7.88	7.90	250	8.04	8.01	4
	TRIB	7.56	7.60	603	7.94	8.02	8


*The pH standard was exceeded in May 2022 with readings greater than 9 at CAR-2, CAR-CSA, and CAR-KP.

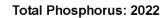
*Red line indicates the water quality standard (10 mg/L).

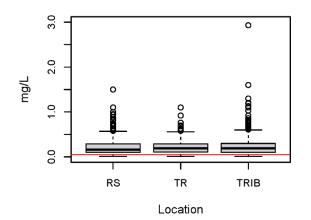
	Historical Re		<u>2022</u>				
	Location	Mean	Median	n	Mean	Median	n
NO3-N	RS	1.10	0.73	613	0.17	0.13	8
	TR	0.90	0.62	250	0.32	0.20	4
	TRIB	1.64	0.90	605	1.02	0.81	8
NH3N	RS	0.08	0.05	508	0.07	0.08	8
	TR	0.14	0.09	216	0.08	0.07	4
	TRIB	0.12	0.07	424	0.07	0.08	8

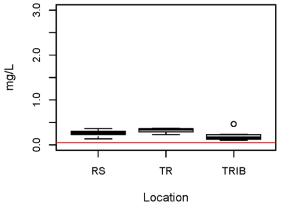
*All observations of nitrate and ammonia nitrogen were within the water quality standard.



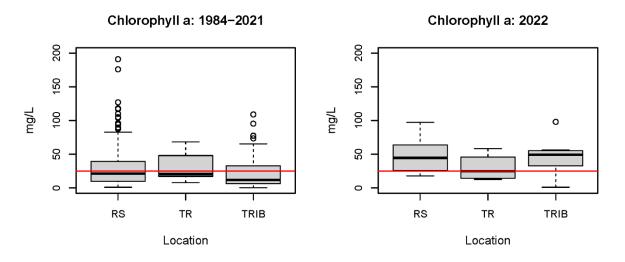
Ammonia Nitrogen: 2022


TR


Location


TRIB

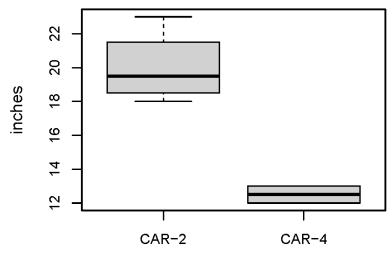
Total Phosphorus: 1971-2021



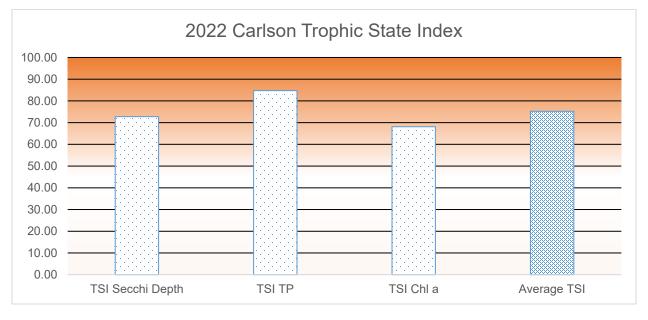
*Red line indicates the water quality	standard of 0.05 mg/	Ľ
---------------------------------------	----------------------	---

	Historical Re		<u>2022</u>				
	Location	Mean	Median	n	Mean	Median	n
PO4	RS	0.08	0.06	600			
	TR	0.10	0.07	244			
	TRIB	0.07	0.05	598			
TP	RS	0.22	0.16	620	0.26	0.27	8
	TR	0.23	0.19	249	0.32	0.35	4
	TRIB	0.24	0.19	616	0.20	0.16	8

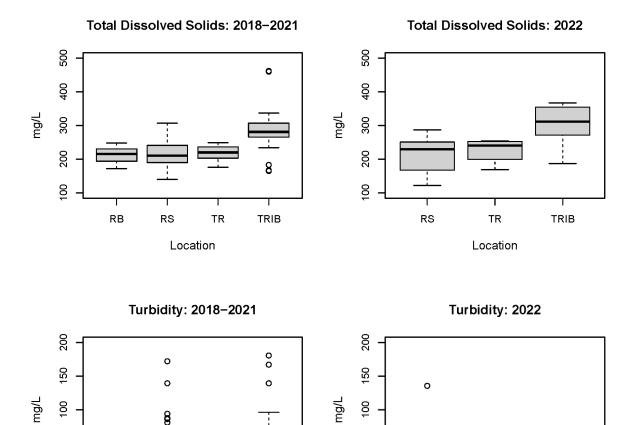
*Total phosphorus exceeded the standard of 0.05 mg/L for all locations in 2022. This study does not acknowledge a standard for orthophosphate.



*Red line indicates the reference water quality standard of 25 mg/cm³. See Carlson 1977.


Historical Reference 1984-2021						<u>2022</u>	
	Location	Mean	Median	n	Mean	Median	n
Chl_a	RS	30.31	21.40	282	47.90	44.55	8
	TR TRIB	32.30 23.62	20.50 11.90	5 68	30.10 46.71	24.90 49.30	4 8

*The reference standard for chlorophyll-a of 25mg/cm³ was exceeded at the most sites throughout 2022. This study does not acknowledge a standard for pheophytin.


Secchi Depth: 2022

Location

<40 = Oligotrophic ____ 40-50 = Mesotrophic ____ 50-70 = Eutrophic ____ >70 Hypereutrophic

	Historical Re	eference 201		<u>2022</u>			
	Location	Mean	Median	n	Mean	Median	n
TDS	RB	212.17	212.17 215.50				
	RS	215.05	210.50	78	215.13	229.50	24
	TR	216.81	220.00	16	226.00	240.50	4
	TRIB	287.16	281.00	31	303.63	311.50	8
FNU	RB	RB	24.26	19.54			
	RS	RS	39.28	25.04	36.85	21.99	24
	TR	TR	18.34	15.49	16.21	15.62	4
	TRIB	TRIB	66.40	45.74	27.85	26.11	8
* All abaanvat	ions of TDS were with	in the reference	d water avality	atandard			

20

0

RS

TR

Location

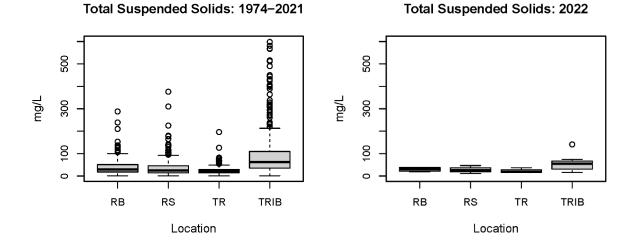
* All observations of TDS were within the referenced water quality standard.

20

0

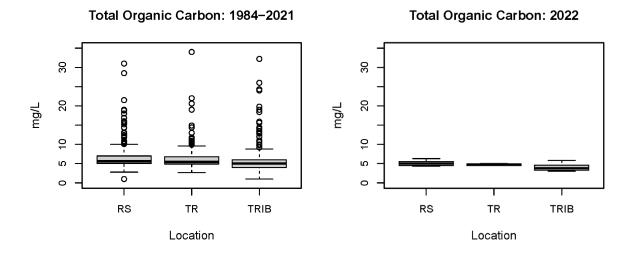
RB

RS

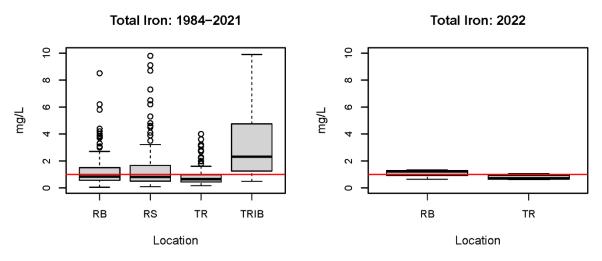

Location

TR

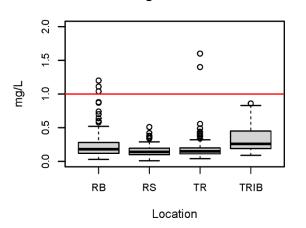
TRIB


0

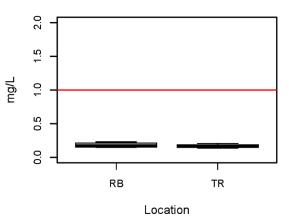
TRIB


	Historical Re	eference 197	<u>2022</u>				
	Location	Mean	Median	n	Mean	Median	n
TSS	RB	41.59	29.00	229	29.95	31.15	4
	RS	34.66	25.00	521	27.71	26.30	8
	TR	25.16	21.00	218	22.50	18.75	4
	TRIB	105.86	62.25	436	57.66	54.45	8

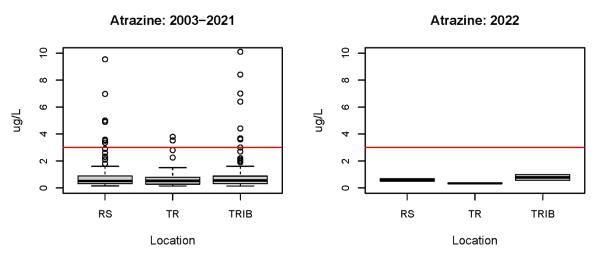
*The mean total suspended solids data measured in 2022 were lower overall when compared to the historical data. There is no numeric standard for TSS.



	Historical Re	ference 198		<u>2022</u>			
	Location	Mean	Median	Mean	Median	n	
TOC	RS	6.51	5.60	318	5.09	5.04	8
	TR	6.58	5.50	150	4.71	4.68	4
	TRIB	6.03	5.00	209	4.01	3.80	8


*This study does not recognize a water quality criteria for TOC.

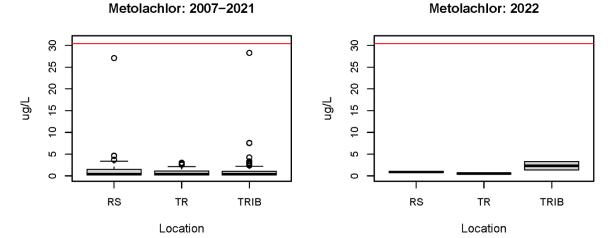
*Red line indicates the water quality standard of 1 mg/L.



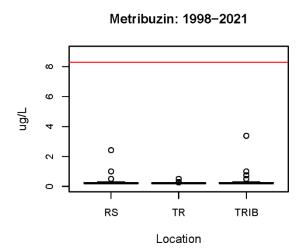
Total Manganese: 2022

*Red line indicates the water quality standard of 1 mg/L.

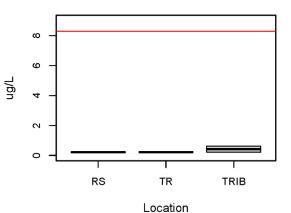
	Historical Re	ference 198		<u>2022</u>			
	Location	Mean	Mean Median		Mean	Median	n
TFe	RB	1.22	0.83	182	1.10	1.21	4
	RS	1.44	0.81	170			
	TR	0.87	0.65	151	0.78	0.72	4
	TRIB	3.82	2.31	68			
TMn	RB	0.23	0.18	182	0.18	0.18	4
	RS	0.16	0.14	160			
	TR	0.19	0.15	149	0.17	0.16	4
	TRIB	0.33	0.26	61			


*In 2022 iron exceeded the standard of 1 mg/L near the lake bottom in front of the dam in May, June, and August, and in the discharge once. Manganese did not exceed the criterion.

*Red line indicates the standard of 3 ug/L.

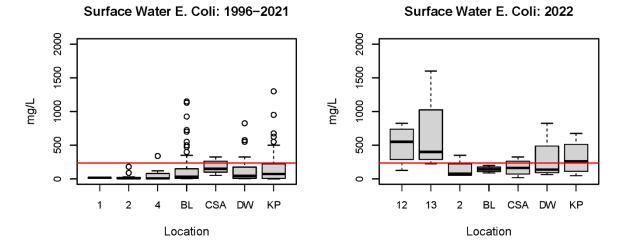

	Historical Re		<u>2022</u>				
	Location	Mean	Median	n	Mean	Median	n
Atrazine	RS	1.08	0.51	128	0.59	0.59	2
	TR	0.70	0.53	64	0.33	0.33	1
	TRIB	1.66	0.55	123	0.78	0.78	2

*Atrazine did not exceed the DWS criterion of 3 ug/L in 2022.



	Historical Re	ference 200		<u>2022</u>			
	Location	Mean	n	Mean	Median	n	
Metolachlor	RS	1.22	0.43	90	0.90	0.90	2
	TR	0.84	0.43	45	0.53	0.53	1
	TRIB	1.27	0.40	85	2.33	2.33	2

*Metolachlor did not exceed water quality criteria in 2022.



	Historical Re	ference 199		<u>2022</u>			
	Location	Mean	Median	Mean	Median	n	
Metribuzin	RS	0.33	0.21	101	0.21	0.21	2
	TR	0.22	0.21	45	0.22	0.22	1
	TRIB	0.34	0.22	93	0.42	0.42	2

*Metribuzin did not exceed water quality criteria in 2022.

*Red line indicates the water quality standard of 235 col per 100 mL.

	Historical Re	ference 200	<u>)1-2021</u>		<u>2022</u>			
	Location	Mean	Median	n	Location	Mean	Median	n
E col	1	15.25	16.50	4	12	512.50	550.00	4
	2	29.00	8.00	13	2	139.75	78.00	4
	4	494.14	6.50	14	13	656.25	400.00	4
	BL	176.00	33.50	48	BL	141.50	140.00	4
	CSA	178.71	150.00	7	CSA	167.25	162.50	4
	DW	235.68	45.00	50	DW	290.75	137.50	4
	KP	175.02	71.00	49	KP	311.75	262.50	4

*Marina bacteria levels exceeded the standard throughout the lake and in the tributaries during the four sampling events in 2022.

	<u>2022 S</u>	wimming	Beach/N	larina Ba	cteria Le	vels (E. Col	i / 100mL)	1	
							Carlyle		
							Sailing Associ	West	Trade
		Keyesp	Dam	Harbor	Coles	Boulder	ation	Access	Winds
Month/week	McNair	ort	West	Light	Creek	Marina	Marina	Marina	Marina
May/ week 1	55	43	57	112	77	43	25	75	67
2	34	54	41	156	87	65	43	154	133
3	57	78	45	154	89	120	76	88	133
4	76	67	86	133	122	75	43	122	96
June/week 1	75	56	86	186	146	122	78	122	155
2	66	45	57	166	122	95	53	75	164
3	40	20	20	170	80	60	69	45	90
4	86	54	65	120	1602	100	43	22	120
5	65	48	58	188	132	112	54	142	154
July/ week 1	77	123	65	200	148	112	58	147	165
2	76	43	78	168	142	141	76	180	160
3	58	96	112	200	154	132	54	153	175
4	112	88	74	200	189	147	66	54	76
August/ week									
1	65	76	54	190	175	65	76	88	149
2	38	75	46	122	110	79	50	105	175
3	78	114	54	187	166	153	75	119	175
4	74	66	32	167	130	122	21	112	153
Sept/week1	65	44	75	122	145	165	57	110	175
2	57	87	45	187	112	96	54	113	165
3	76	112	54	145	88	96	44	53	128
4	43	75	37	186	88	112	51	74	91
5	55	76	64	175	110	87	32	64	122

*Bacteria levels at the swimming beaches remained below the standard in 2022 with one exception in June taken at Coles Creek. Of the additional Marina bacteria samples taken, all were below the standard.

DISCUSSION: WATER QUALITY

Water quality metrics assessed by CEMVS can be sporadic and highly variable from year to year, thus long-term data collection using consistent and comparable methodology is critical to identify trends or patterns. In general, conditions observed during 2022 did not deviate far from conditions observed during the reference period (1971-2020). Nevertheless, concerns regarding dissolved oxygen, temperature, bacteria, total phosphorus, iron, and pH were evident. In addition, CHL_a and subsequent TSI levels were indicative of a hyper eutrophic system.

In 2022 all 33 ambient discrete observations of DO were within the state guidelines except for CAR-4, Boulder Marina, Dam West Marina and Keyesport Marina. On June 23 DO was recorded at 4.13 mg/L at CAR-4 and 2.66 mg/L at Boulder Marina. On September 6 DO was 2.67 mg/L at Boulder, 4.93 mg/L at Dam West, and 3.9 at Keyesport Marinas. Since 1972, there have been 31 routine lake surface measurements observed in the summer in which DO was below 5 mg/L. DO was measured at the tail race in 15-minute intervals from April 19 through November 14, 2022. DO was recorded below the standard of 5 mg/L at the tail race during the months of May, June, July, September, and October. These lower measurements occurred during periods of low or minimal outflow, in which tainter gates were cracked or shut completely with flow coming through the sluice gate. All other measurements of DO were greater than the standard. It is not abnormal during periods of warm air and water temperatures to experience low DO. DO has an inverse relationship with temperature. As temperature increases, the ability of water to contain DO decreases, therefore the DO concentration decreases. Water temperature measurements made during 2022 indicate an increase from the historical data. This finding assumes that the historical reference 1971-2021 is the normal seasonal temperature. In a comparison of 2022 mean surface temperatures to historical mean temperatures, the water quality standard of <2.8°C was exceeded during the spring (2022 overall spring average was 6.29°C greater than the historical overall spring average). Discrete measurements of temperature were exceeded at multiple locations in the lake during the spring sample events.

E. Coliform levels were observed above the swimming standard of 235 E. Coli per 100 mL (single sample) in the lake and tributaries eleven out of the 28 samples during the four sampling events. The mean E. Coliform levels were also greater than the standard for each tributary as well as Dam West and Keyesport marinas. The highest levels were recorded in the tributaries where maximum concentrations were 825 E. Coli per 100 mL at CAR-12 and 1600 E. Coli per 100/mL at CAR-13. Bacteria levels can be highly variable and high levels may not necessarily be representative of the entire system. There were significant precipitation events which proceeded or occurred during most of the higher bacteria results recorded, though not for the highest at CAR-13 on May 17, 2022. Conversely, all of the swimming beach bacteria results monitored by project staff during the recreation season were below the standard with the exception of one (1602 E. Coli per 100 mL at Coles Creek the fourth week of June). Given that 2022 high bacteria levels in the lake and tributaries are not designated swimming areas, there is a lower risk

to humans. Long term bacteria monitoring, and analyses will be important to assess changes over time.

Phosphorus levels have surpassed the 0.05 mg/L criterion for several years. In 2022 the TP criterion was exceeded at all locations with a mean concentration across all sites of 0.26 mg/L. This is 13.4% greater than the historical mean of 0.23 mg/L, but less than the 2021 mean of 0.37 mg/L. The mean surface NO3-N concentration in 2022 (0.50 mg/L) was less than the historic mean (1.21 mg/L) and did not exceed the criterion of 10 mg/L in 2022. Phosphorus is a limiting nutrient for primary producers (algae and plants) due to its relatively low amount in the environment. Higher inputs of TP and NO3-N into the lake contribute to a highly productive environment which stimulates algal growth that can lead to blooms that deplete the oxygen levels during die off. In addition, blooms can sometimes contain toxins which may be harmful to humans and wildlife.

Living organisms require trace amounts of metals, excessive levels can be harmful. TFe exceeded the criterion of 1 mg/L three times at the bottom reservoir location in front of the dam (May, June, and August) and once in May at the discharge. Comparably, there are 114 times TFe was high historically (1984-2021) at the same locations. The 2022 TFe mean concentrations are comparable (RB: 1.10 mg/L, TR: 0.78) to the historical means (RB: 1.22 mg/L, TR 0.87 mg/L). Iron cycling is a function of oxidation-reduction processes. Elevated levels of iron near the bottom of a lake are not immediately detrimental to the overall lake system. Iron oxidizes relatively rapidly (minutes to hours); therefore, any iron released through the spillway will be oxidized in a short period of time.

Most freshwater streams and rivers have a natural pH ranging from 6 to 8. As pH approaches 5 (acidic), less tolerant fish and aquatic invertebrate assemblages may be extirpated, and a pH below 4.5 would be without most desired aquatic life. Conversely, when pH exceeds 9.5 (alkaline), aquatic fish and invertebrates begin to rapidly decrease and beyond 10, fish become extirpated. The pH water quality criteria for Illinois ranges from 6.5 – 9.0. The three observations pH was greater than 9.0 in 2022 were CAR-2, CAR-CSA, and CAR-KP (9.05, 9.1, 9.05 respectively). The pH means for 2022 were 8.22 (RS), 8.04 (TR), and 7.94 (TRIB) and were greater than the historical pH means.

Although there is not a state criterion for CHL_a the proposed standard of 25 mg/cm³ was exceeded at all sites in 2022. The 2022 combined CHL_a mean concentration of 41.57 mg/cm³ was greater to the historical mean of 28.74 mg/cm³. CHL_a is an indicator of the abundance of phytoplankton. Any water environment with a level recorded above 25 mg/cm³ is considered to be eutrophic (nutrient enrichment increases algal and plant growth and negative effects). The 2022 TSI level, an average of the individual trophic state indexes for Secchi depth, CHL_a, and TP, for Carlyle Lake is 75.2. Carlyle Lake is considered hyper-eutrophic based on this TSI level. This does not necessarily mean the water quality is poor, but that its trophic level indicates nutrient levels are abundant, which can support an abundance of plants and algae. Long term monitoring and analyses are important to assess changes over time.

All remaining parameters evaluated during the 2022 water quality monitoring effort were within designated criteria or within historical reference norms.

MONITORING PROGRAM RECOMMENDATIONS

The IEPA currently has listed Carlyle Lake as impaired for total phosphorous and mercury while the Kaskaskia River upstream from the Lake is impaired for fecal coliform, and mercury. In addition, the North Fork Kaskaskia River is impaired for phosphorus, Atrazine, and Terbufos. The lists of sources for these impairments are contaminated sediments, crop production, and unknown sources. At present the only tributary being sampled by CEMVS is the Kaskaskia River. IEPA also has the following listed as impaired: Hurricane Creek, North Fork Kaskaskia, and East Fork Kaskaskia. Future sampling efforts will focus on adding these three tributaries as well as mercury in the lake to the routine sampling plan to increase the dataset and improve our ability to assess the water quality condition of Carlyle Lake.

In accordance with EM-1110-2-1201, sediment samples should be taken to monitor and assess potential impacts to aquatic and human health. Sediment sampling and analyses occurred at Carlyle Lake in 2018, and prior to that in 2007. During these last analyses multiple exceedances over the recommended criteria were observed. Identifying trends over time is much more achievable with more consistent data. Contaminated sediments may have negative impacts on ecological processes. It is recommended, if possible, to sample and analyze for sediment metals and nutrients, as well as grain size analyses yearly or every two years.

Given the above-mentioned high bacteria levels observed 2022, it is recommended to continue routine bacteria sampling at all locations. This would be useful in capturing a larger picture of bacteria coming into the lake.

WORKS CITED

- Carlson, R. E. (1977). A Trophic State Index for Lakes1. Limnology and Oceanography, 22(2), 361-369.
- USACE. (2018). Engineering and Design: Water Quality Management. USACE ER 1110-2-8154. Washington D.C.
- USACE. (1987). Engineering and Design: Reservoir Water Quality Analysis. USACE ER 1110-2-1201. Washington D.C.
- IEPA. (2020). <u>https://www2.illinois.gov/epa/topics/water-quality/watershed-management/tmdls/Pages/303d-list.aspx</u>
- Hudson, H. (1998). Illinois Environmental Protection Acency. Common Lake Water Quality Parameters. Lake Notes.

APPENDIX A: FIELD DATA

					Sp						
	•	Depth	Temp	ORP	Cond		ODO	ODO	TDS	Turbidity	Secchi
Date	Location	(m)	(°C)	(mV)	(µS/cm)	рН	(% Sat)	(mg/L)	(mg/L)	(FNU)	(in)
5/17/2022	CAR-1	0.734	20.505	326	391.1	8.32	89.4	8.04	254	19.48	
5/17/2022	CAR-12	0.663	22.382	261.7	560.3	8.27	128.1	11.1	364	26.43	
5/17/2022	CAR-13	1.097	21.743	265.8	531.3	8.02	100	8.77	345	69.83	
5/17/2022	CAR-2	1.072	22.443	250.8	358.7	9.05	143.7	12.45	233	7.73	20
5/17/2022	CAR-2	2.074	21.867	254	368.9	8.81	114.7	10.04	240	8.89	
5/17/2022	CAR-2	3.406	19.534	267.9	401.4	8.27	62.6	5.74	261	16.28	
5/17/2022	CAR-2	5.838	18.022	270.4	414.7	7.96	26.3	2.48	270	29.38	
5/17/2022	CAR-2	6.067	18.297	269.9	412.8	8.02	31.7	2.98	268	25.42	
5/17/2022	CAR-4	0.077	21.943	85	4.5	8.87	100.9	8.82	3	1.8	12
5/17/2022	CAR-4	0.978	21.946	124.8	400.3	8.68	87.2	7.63	260	44.42	
5/17/2022	CAR-4	1.91	21.615	144.7	396.5	8.79	89.9	7.91	258	45.53	
5/17/2022	CAR-4	1.934	21.684	142.9	404.4	8.47	79.3	6.96	263	53.43	
5/17/2022	CAR-4	3.043	21.553	157.4	406	8.43	73	6.43	264	64.12	
5/17/2022	CAR-4	4.2	21.459	158	404.5	8.5	72.2	6.37	263	73.48	
5/17/2022	CAR-BL-MAR	1.086	23.059	226.7	400.1	8.47	86.1	7.37	260	41.08	
5/17/2022	CAR-CSA	0.394	23.612	299	351.8	9.16	180.4	15.29	229	6.18	
5/17/2022	CAR-CSA	0.996	22.033	281.4	353.7	9.1	165.6	14.45	230	8.58	
5/17/2022	CAR-CSA	1.487	21.614	270.6	356.3	9.04	149.9	13.19	232	12.26	
5/17/2022	CAR-DW-MAR	2.13	21.67	282.3	368	8.64	100.8	8.86	239	33.31	
5/17/2022	CAR-KP-MAR	0.114	24.834	140.2	389.8	9.05	168.6	13.96	253	22.99	
5/17/2022	CAR-KP-MAR	2.601	21.78	267.3	529.6	8.12	99.7	8.75	344	70.55	
6/23/2022	CAR-1	1.615	26.142	149.8	386.6	8.06	90.6	7.32	251	15.38	
6/23/2022	CAR-12	0.323	28.036	191	430.1	8.04	140.1	10.95	280	25.91	
6/23/2022	CAR-13	1.146	26.851	187.7	485	8.01	131.9	10.53	315	27.39	
6/23/2022	CAR-13	2.097	26.88	183.9	485.3	8.03	131.1	10.45	315	30.35	
6/23/2022	CAR-2	1.16	27.97	120	374.5	8.7	176	13.77	243	8.99	19
6/23/2022	CAR-2	2.165	26.744	156.2	381	8.42	129.9	10.39	248	10.79	
6/23/2022	CAR-2	3.169	26.132	165.8	383.7	8.23	92.2	7.45	249	9.9	
6/23/2022	CAR-2	4.136	26.08	170	383.6	8.24	95.4	7.72	249	21.09	
6/23/2022	CAR-2	5.14	25.776	176.3	385.2	8.09	80.7	6.57	250	21.38	

					Sp						
-	•	Depth	Temp	ORP	Cond		ODO	ODO	TDS	Turbidity	Secchi
Date	Location	(m)	(°C)	(mV)	(µS/cm)	рН	(% Sat)	(mg/L)	(mg/L)	(FNU)	(in)
6/23/2022	CAR-2	6.112	25.521	180.1	386.7	7.94	63.7	5.21	251	23.52	
6/23/2022	CAR-4	0.433	26.537	121.7	438.4	8.24	54.4	4.36	285	41.66	13
6/23/2022	CAR-4	1.152	26.438	112.7	436.8	8.22	51.4	4.13	284	43.09	
6/23/2022	CAR-4	2.102	26.297	125.1	435.4	8.2	50.4	4.06	283	44.61	
6/23/2022	CAR-4	3.047	26.22	129.3	436.8	8.24	56.2	4.54	284	44.66	
6/23/2022	CAR-4	4.125	26.15	132.5	441.4	8.3	65.3	5.28	287	45.07	
6/23/2022	CAR-4	5.092	26.103	135.2	443.2	8.29	64.1	5.18	288	52.41	
6/23/2022	CAR-BL-MAR	0.149	29.275	179.9	389.2	8.18	85.3	6.52	253	17.58	
6/23/2022	CAR-BL-MAR	0.848	27.378	183.4	394.7	7.85	33.6	2.66	257	25.38	
6/23/2022	CAR-CSA	0.972	26.409	124.2	377.5	8.6	146.8	11.81	245	11.11	
6/23/2022	CAR-DW-MAR	0.967	26.144	141.5	383.1	8.31	101.3	8.19	249	13.91	
6/23/2022	CAR-KP-MAR	0.973	27.51	128.1	441.7	8.3	76.8	6.06	287	135.6	
8/2/2022	CAR-1	0.514	26.1	388.7	361.2	7.9	102.2	8.27	235		
8/2/2022	CAR-1	0.739	25.179	426.1	353.8	7.96	102.5	8.44	230	14.12	
8/2/2022	CAR-12	0.283	23.343	367.9	405.3	7.91	105.6	8.99	263	23.19	
8/2/2022	CAR-12	0.289	25.216	371.9	420.1	7.72	105.5	8.67	273		
8/2/2022	CAR-13	1.246	25.11	343.1	473.1	8.11	105.8	8.72	308	14.08	
8/2/2022	CAR-2	0.48	26.242	238.2	359.5	7.99	77.6	6.26	234		23
8/2/2022	CAR-2	1.214	26.26	238.7	359.5	7.99	77.6	6.26	234		
8/2/2022	CAR-2	1.219	25.378	274.8	351.9	8.1	79.2	6.49	229	18.08	
8/2/2022	CAR-2	2.416	25.325	268.4	351.9	8.08	76.7	6.29	229	20.38	
8/2/2022	CAR-2	3.21	25.253	286.7	352.1	8.06	75.7	6.22	229	20.76	
8/2/2022	CAR-2	4.138	25.238	284.6	352.2	8.05	73.9	6.07	229	20.52	
8/2/2022	CAR-2	5.362	25.221	281.6	352.3	8.04	72.3	5.94	229	23.17	
8/2/2022	CAR-2	5.982	25.222	278.9	352.3	8.03	71.9	5.91	229	24.68	
8/2/2022	CAR-4	0.535	25.669	363.2	191	7.82	82	6.69	124		13
8/2/2022	CAR-4	1.154	25.659	362.2	190.7	7.82	81.7	6.67	124		
8/2/2022	CAR-4	1.225	24.863	395.9	191.7	7.96	81.7	6.77	125	30.72	
8/2/2022	CAR-4	2.055	24.941	388.2	193	7.93	80.7	6.67	125	33.95	
8/2/2022	CAR-4	3.184	24.894	385.3	192	7.93	80.7	6.68	125	33.45	

					Sp						
		Depth	Temp	ORP	Cond		ODO	ODO	TDS	Turbidity	Secchi
Date	Location	(m)	(°C)	(mV)	(µS/cm)	рΗ	(% Sat)	(mg/L)	(mg/L)	(FNU)	(in)
8/2/2022	-	4.066	24.79	380.3	188.8	7.9	81.3	6.75	123	33.58	
8/2/2022		5.113	24.784	376	190.1	7.93	81.1	6.73	124	30.25	
8/2/2022	2 CAR-4	6.177	24.755	373	188.3	7.93	81.1	6.73	122	34.63	
8/2/2022		0.976	25.933	346.6	214.6	7.75	69	5.6	139	13.3	
8/2/2022	2 CAR-CSA	1.039	25.264	260.6	352.9	8.22	81.9	6.73	229	13.84	
8/2/2022	2 CAR-DW-MAR	1.013	25.933	298.7	345.2	8.35	91.7	7.44	224	13.41	
8/2/2022	2 CAR-KP-MAR	1.038	24.677	349.7	187.6	7.87	78.9	6.55	122	32.99	
9/6/2022	2 CAR-1	0.396	25.836	254.5	257.8	7.87	94.7	7.7	168		
9/6/2022	2 CAR-1	1.524	23.982	371.1	259.3	7.81	96.9	8.15	169	15.85	
9/6/2022	2 CAR-12	-0.144	23.233	269.3	287.9	7.16	62.7	5.35	187	9.63	
9/6/2022	2 CAR-12	0.165	24.77	186.8	232.2	7.25	52.5	4.36	151		
9/6/2022	2 CAR-13	0.692	22.552	283.3	564.5	8	107.9	9.32	367	26.3	
9/6/2022	2 CAR-2	0.512	26.708	171	253	8.5	113.6	9.1	164		18
9/6/2022	2 CAR-2	1.003	26.053	185.2	255.6	8.2	89.8	7.28	166		
9/6/2022	2 CAR-2	1.022	24.542	180	310.1	7.78	62.1	5.17	202		
9/6/2022	2 CAR-2	1.04	23.893	321.7	259.2	7.77	67.6	5.7	168	13.84	
9/6/2022	2 CAR-2	3.291	23.867	307.8	258.6	7.82	70.6	5.95	168	14.63	
9/6/2022	2 CAR-2	5.06	23.795	311.8	258.2	7.87	71.8	6.06	168	19.47	
9/6/2022	2 CAR-4	0.519	25.795	193.4	317.6	8.23	102.2	8.31	206		12
9/6/2022	2 CAR-4	1.014	22.407	287.4	322.4	7.72	64.5	5.59	210	25.53	
9/6/2022	2 CAR-4	1.024	24.459	183.1	311.2	7.78	62.1	5.18	202		
9/6/2022	2 CAR-4	3.063	22.335	214.6	322.4	7.69	62.4	5.42	210	33.4	
9/6/2022	2 CAR-4	5.073	22.342	241.9	325.4	7.63	54.2	4.7	211	74.7	
9/6/2022	2 CAR-BL-MAR	1.102	22.952	131.6	242	7.27	31.1	2.67	157	59.1	
9/6/2022	2 CAR-CSA	1.091	23.641	403.3	257.3	7.87	68.8	5.83	167	19.15	
9/6/2022	2 CAR-DW-MAR	1.017	23.856	426.3	255.3	7.74	58.4	4.93	166	20.98	
9/6/2022	2 CAR-KP-MAR	1.108	22.758	232.3	287.6	7.57	45.3	3.9	187	227.23	

APPENDIX B: LABORATORY DATA

Environmental | Analytical | Management | Safety

Customer Name: SLCOE

Project Name: Carlyle Lake

Samples Received at ARDL: 5/17/22

PO Box 1566 400 Aviation Drive Mt. Vernon, IL 62864 618-244-3235

<u>www.ardlinc.com</u>

Date: 6/22/22

Lab Name: ARDL, Inc.

ARDL Report No.: 8925

CASE NARRATIVE

Customer	Date	Lab ID	
Sample No.	Collected	Number	Analyses Requested
CAR-1	5/17/22	8925-01	NP Pesticides, Metals (1), Inorganics (2)(3)
CAR-2-0	5/17/22	8925-02	NP Pesticides, Inorganics (2)(3), E. Coli
CAR-2-10	5/17/22	8925-03	Metals (1), Inorganics (2)
CAR-4	5/17/22	8925-04	NP Pesticides, Inorganics (2)(3)
CAR-13	5/17/22	8925-05	NP Pesticides, Inorganics (2)(3), E. Coli
CAR-12	5/17/22	8925-06	NP Pesticides, Inorganics (2)(3), E. Coli
CAR-15	5/17/22	8925-07	NP Pesticides, Inorganics (2)(3)
CAR-KP-Marina	5/17/22	8925-08	E. Coli
CAR-DW-Marina	5/17/22	8925-09	E. Coli
CAR-BL-Marina	5/17/22	8925-10	E. Coli
CAR-CSA-Marina	5/17/22	8925-11	E. Coli
(1) Including iron (E. 001

(1) Including iron and manganese.

(2) Including ammonia*, nitrate, nitrite, TKN*, total phosphorus, TOC*, TSS and TVSS.

(3) Including chlorophyll-a and pheophytin-a.

* Analyzed by an accredited subcontract laboratory.

The quality control data are summarized as follows:

NP PESTICIDE FRACTION – METHOD 8270-SIM

HOLDING TIME

Samples were prepared and analyzed within method specified holding times.

INITIAL CALIBRATION

The initial calibration passed criteria.

CONTINUING CALIBRATION

The continuing calibration verification (CCV) passed criteria for all analytes.

PREPARATION BLANK

The blank met acceptance criteria.

LABORATORY CONTROL SAMPLE The LCS analyses met recovery criteria.

MATRIX SPIKE

The matrix spike and matrix spike duplicate met recovery criteria.

"Test everything, keep the good" 1 Thes. 5:21

Project Name: Carlyle Lake

ARDL Report No.: 8925

CASE NARRATIVE (Continued)

DUPLICATE

Duplicate analyses are reported as MS/MSD. RPD of the duplicate analyses met criteria.

<u>INTERNAL STANDARDS</u> All internal standard criteria were met.

SURROGATES

All surrogate recovery criteria were met.

INORGANIC FRACTION

<u>PREPARATION BLANK</u> Results of the preparation blanks were undetected.

<u>LABORATORY CONTROL SAMPLE</u> Percent recoveries of all LCS analyses were within control limits.

MATRIX SPIKE

Percent recoveries of all matrix spikes and matrix spike duplicates were within control limits.

DUPLICATE

All duplicate analyses are reported as MS/MSD except chlorophyll-a, pheophytin-a, TSS and TVSS. RPD on all duplicate analyses were within control limits, except chlorophyll-a.

DATA REPORTING QUALIFIERS

The following data reporting qualifiers are used as required:

ND - Indicates parameter was analyzed for but not detected.

REPORT ORGANIZATION

The data in this report appear by sample type (Field sample, preparation blank, laboratory control sample / spike blank, matrix spike /spike duplicate and sample duplicate). Within each sample type the data appear in the order that the analytical methods were discussed in this case narrative. Sample receipt information follows the analytical data.

Release of the data contained in this package has been authorized by the Technical Services Manager or his designee as verified by the following signature.

Dean S. Dickerson Technical Services Manager

Page 2 of 2

Sample & QC Results

Including as appropriate: Field Sample Results Batch QC Prep Blank LCS/Spike Blank Matrix QC MS/MSD Sample Duplicate

ARDL Data Package 8925

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

Lab Report No:	008925	Rej	port Date	: 06/01/	2022		
Project Name:	CARLYLE LAKE	Ana	alysis: N	P PESTICII	DES (82'	70SIM-MC	D)
Project No.:		Analytical I	Method: 82	270D			
NELAC Certi	fied - IL100308	Prep l	Method: 3	510C			
				Tob No.	0000	25-01	
Field ID:	CAR-1			Lab No.: ilename:	E053		
Desc/Location:							
Sample Date:	05/17/2022			ved Date:		7/2022	
Sample Time:	1130		-	Date:		8/2022	
Matrix:	WATER			sis Date:		1/2022	
Amount Used:				ument ID:	AG5		
Final Volume:			QC Bat		B114	80	
<pre>% Moisture:</pre>	NA		Level	:	LOW		
					Data		Dilution
Parameter		LOD	LOQ	Result	Flag	Units	Factor
Trifluralin		0.222	0.222	ND		UG/L	1
Atrazine		0.222	0.222	0.333		UG/L	1
Metribuzin		0.222	0.222	ND		UG/L	1
Alachlor		0.222	0.222	ND		UG/L	1
Metolachlor		0.222	0.222	0.533		UG/L	1
Chlorpyrifos		0.222	0.222	ND		UG/L	1
Cyanazine		0.222	0.222	ND		UG/L	1
Pendimethalin		0.222	0.222	ND		UG/L	1

SURROGATE RECOVERIES:	Limits	Results	
Triphenylphosphate	30-130	65%	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

Sample 008925-01, NP PESTICIDES (8270SIM-MOD)

400 Aviation Drive; P.O. Box 1566 62864 Mt. Vernon, Illinois ARDL, INC.

> 008925 Lab Report No:

CARLYLE LAKE

Project Name:

06/22/2022 Report Date: Analysis: Inorganics

Project No:							Ŋ	NELAC Certified - IL100308	fied - IL1	00308
		Sampling	ing Loc		CARLYLE LAKE			Matrix:		
FIELD IN: CAR-I Received: 05/17/2022	22	Samplin	sampling Time:		1130 1130			MOISTUFE:	WY .	
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	LOQ	Flag	Result	Units	Method	Method	Date	Date	Number
(a) Iron	0.0400	0.0500		1.06	MG/L	3010A	6010C	05/23/22	05/25/22	P7775
(a) Manganese	0.00400	0.00500		0.140	MG/L	3010A	6010C	05/23/22	05/25/22	P7775
Ammonia Nitrogen	0.0300	0.100		0.15	MG/L	NONE	350.1	NA	05/27/22	06026685
Chlorophyll-a, Correcte	1.00	1.00		58.1	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Kjeldahl Nitrogen	0.480	1.00		1.2	MG/L	351.2	351.2	05/26/22	05/26/22	06016681
Nitrate as Nitrogen	0.0190	0.0200		0.824	MG/L	NONE	GREEN	NA	05/26/22	06016680
Nitrite as Nitrogen	0.0200	0.0200		0.052	MG/L	NONE	354.1	NA	05/18/22	05186615
Pheophytin-a	1.00	1.00		32.1	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Phosphorus	0.00800	0.0100		0.347	MG/L	365.2	365.2	06/01/22	06/02/22	06036693
Solids, Total Suspended	4.00	4.00		37.2	MG/L	NONE	160.2	NA	05/18/22	05246642
Solids, Volatile Suspen	4.00	4.00		9.2	MG/L	NONE	160.4	NA	05/18/22	05246643
Total Organic Carbon	0.500	1.00		5.0	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-01, Inorganic Analyses

Lab Report No:	008925	Rep	ort Date	: 06/01/	2022		
Project Name: Project No.:	CARLYLE LAKE	Analytical M	ethod: 82)ES (82'	70SIM-MC	00)
NELAC Certi:	fied - IL100308	Ргер М	ethod: 3	5100			
Field ID:	CAR-2-0		ARDL	Lab No.:	00893	25-02	
Desc/Location:	CARLYLE LAKE		Lab F:	ilename:	E053	1215	
Sample Date:	05/17/2022		Receiv	ved Date:	05/1	7/2022	
Sample Time:	1250		Prep.	Date:	05/1	8/2022	
Matrix:	WATER		Analy	sis Date:	05/3:	1/2022	
Amount Used:	900 mL		Instru	ument ID:	AG5		
Final Volume:	1 mL		QC Bat	tch:	B114	B 0	
<pre>% Moisture:</pre>	NA		Level	:	LOW		
		, Automatic and a second s			Data		Dilution
Parameter		LOD	LOQ	Result	Flag	Units	Factor
Trifluralin		0.222	0.222	ND		UG/L	1
Atrazine		0.222	0.222	0.500		UG/L	1
Metribuzin		0.222	0.222	ND		UG/L	1
Alachlor		0.222	0.222	ND		UG/L	1
Metolachlor		0.222	0.222	0.767		UG/L	1
Chlorpyrifos		0.222	0.222	ND		UG/L	1
Cyanazine		0.222	0.222	ND		UG/L	1
Pendimethalin		0.222	0.222	ND		UG/L	1
SURROGATE RECOV	ERIES:	Lim	its		Rea	sults	
Triphenylphosph		30-	130		(65%	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

Sample 008925-02, NP PESTICIDES (8270SIM-MOD)

Box 1566 62864 400 Aviation Drive; P.O. Mt. Vernon, Illinois ARDL, INC.

> 008925 Lab Report No:

06/22/2022 Report Date:

Project Name: CARLYLE LAKE Project No:	LAKE						Z	Analysis: Inorganics NELAC Certified - IL100308	Analysis: Inorganics AC Certified - IL1003	ics 00308
ARDL No: 008925-02 Field ID: CAR-2-0 Received: 05/17/2022)2)22	Sampl Samp Samp	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 05/17/2022 1250			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	год	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		QN	MG/L	NONE	350.1	NA	05/27/22	06026685
Chlorophyll-a, Correcte	- 1.00	1.00		46.7	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
E. Coliform	1.00	1.00		56.0	COL/100 ML	NONE	1604	NA	05/17/22	05196624
Kjeldahl Nitrogen	0.480	1.00		1.1	MG/L	351.2	351.2	05/26/22	05/26/22	06016681
Nitrate as Nitrogen	0.0190	0.0200		0.586	MG/L	NONE	GREEN	NA	05/26/22	06016680
Nitrite as Nitrogen	0.0200	0.0200		0.038	MG/L	NONE	354.1	NA	05/18/22	05186615
Pheophytin-a	1.00	1.00		20.0	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Phosphorus	0.00800	0.0100		0.135	MG/L	365.2	365.2	06/01/22	06/02/22	06036693
Solids, Total Suspended	1 2.86	2.86		18.9	MG/L	NONE	160.2	NA	05/18/22	05246642
Solids, Volatile Suspen	1 2.86	2.86		10.0	MG/L	NONE	160.4	NA	05/18/22	05246643
Total Organic Carbon	0.500	1.00		5.8	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-02, Inorganic Analyses

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008925 Lab Report No:

Project Name: CARLYLE LAKE

06/22/2022 Report Date: Analysis: Inorganics

Project No:							N	ELAC Certi	NELAC Certified - IL100308	00308
ARDL No: 008925-03	3	Sampli	Sampling Loc'n:		CARLYLE LAKE			Matrix:	: WATER	
Field ID: CAR-2-10		Sampl	Sampling Date:	te: 05/17/2022	2022			Moisture:	: NA	
Received: 05/17/2022	22	Sampl	Sampling Time:	me: 1250						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	TOQ	Flag	Result	Units	Method	Method	Date	Date	Number
(a) Iron	0.0400	0.0500		1.33	MG/L	3010A	6010C	05/23/22	05/25/22	P7775
(a) Manganese	0.00400	0.00500		0.156	MG/L	3010A	6010C	05/23/22	05/25/22	P7775
Ammonia Nitrogen	0.0300	0.100		0.12	MG/L	NONE	350.1	NA	05/27/22 (06026685
Kjeldahl Nitrogen	1.00	1.00		ND	MG/L	351.2	351.2	05/26/22	05/26/22 (06016681
Nitrate as Nitrogen	0.0190	0.0200		0.917	MG/L	NONE	GREEN	NA	05/26/22 (06016680
Nitrite as Nitrogen	0.0200	0.0200		0.052	MG/L	NONE	354.1	NA	05/18/22 (05186615
Phosphorus	0.00800	0.0100		0.494	MG/L	365.2	365.2	06/01/22	06/02/22 (06036693
Solids, Total Suspended	4.00	4.00		38.0	MG/L	NONE	160.2	NA	05/18/22 (05246642
Solids, Volatile Suspen	4.00	4.00		6.8	MG/L	NONE	160.4	NA	05/18/22 (05246643
Total Organic Carbon	0.500	1.00		4.7	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-03, Inorganic Analyses

Lab Report No: 008925

Report Date: 06/01/2022

Project Name: CARLYLE LA	-		ES (8270SIM-MC	(ם(
Project No.:	Analytical Method: 8			
NELAC Certified - IL10	308 Prep Method: 3	3510C		
Field ID: CAR-4	ARDL	Lab No.:	008925-04	
Desc/Location: CARLYLE LA	E Lab I	Filename:	E0531216	
Sample Date: 05/17/2022	Rece:	ived Date:	05/17/2022	
Sample Time: 1350	Prep	. Date:	05/18/2022	
Matrix: WATER	Analy	ysis Date:	05/31/2022	
Amount Used: 1000 mL	Inst	rument ID:	AG5	
Final Volume: 1 mL	QC Ba	atch:	B11480	
% Moisture: NA	Level	1:	LOW	
			Data	Dilution
Parameter	LOD LOQ	Result	Flag Units	Factor
Trifluralin	0.200 0.200	ND	UG/L	1
Atrazine	0.200 0.200	0.680	UG/L	1
Metribuzin	0.200 0.200	ND	UG/L	1
Alachlor	0.200 0.200	ND	UG/L	1
Metolachlor	0.200 0.200	1.04	UG/L	1
Chlorpyrifos	0.200 0.200	ND	UG/L	1
Cyanazine	0.200 0.200	ND	UG/L	1
Pendimethalin	0.200 0.200	ND	UG/L	1
SURROGATE RECOVERIES:	Limits		Results	
[riphenylphosphate]	30-130		58%	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

Lab Report No: 008925

Report Date: 06/22/2022

Analysis: Inorganics NELAC Certified - IL100308 WATER NA Moisture: Matrix: CARLYLE LAKE 05/17/2022 Sampling Date: Sampling Loc'n: CARLYLE LAKE 008925-04 CAR-4 ARDL No: Field ID: Project Name: Project No:

•	1	4								
Analyte	LOD	LOQ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		QN	MG/L	NONE	350.1	NA	05/27/22 06026685	06026685
Chlorophyll-a, Correcte	1.00	1.00		97.1	MG/CU.M.	10200H	10200H	05/18/22	06/08/22 06106705	06106705
Kjeldahl Nitrogen	0.480	1.00		1.1	MG/L	351.2	351.2	05/26/22	05/26/22	06016681
Nitrate as Nitrogen	0.0190	0.0200		0.208	MG/L	NONE	GREEN	NA	05/26/22	06016680
Nitrite as Nitrogen	0.0200	0.0200		0.035	MG/L	NONE	354.1	NA	05/18/22	05186615
Pheophytin-a	1.00	1.00		ND	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Phosphorus	0.00800	0.0100		0.291	MG/L	365.2	365.2	06/01/22	06/02/22 06036693	06036693
Solids, Total Suspended	4.00	4.00		44.0	MG/L	NONE	160.2	NA	05/18/22	05246642
Solids, Volatile Suspen	4.00	4.00		13.6	MG/L	NONE	160.4	NA	05/18/22 05246643	05246643
Total Organic Carbon	0.500	1.00		6.3	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-04, Inorganic Analyses

Lab Report No: 008925

Report Date: 06/01/2022

Project Name:	CARLYLE LAKE			P PESTICII	DES (82	70SIM-MC	D)
Project No.:		Analytical M					
NELAC Certi:	fied - IL100308	Prep M	ethod: 3	510C			
Field ID:	CAR-13		ARDL	Lab No.:	00893	25-05	
Desc/Location:	CARLYLE LAKE		Lab F	ilename:	E053	1217	
Sample Date:	05/17/2022		Recei	ved Date:	05/1	7/2022	
Sample Time:	1500		Prep.	Date:	05/1	8/2022	
Matrix:	WATER		Analy	sis Date:	05/3	1/2022	
Amount Used:	900 mL		Instr	ument ID:	AG5		
Final Volume:	1 mL		QC Ba	tch:	B114	B 0	
<pre>% Moisture:</pre>	NA		Level	:	LOW		
					Data		Dilution
Parameter		LOD	LOQ	Result	Flag	Units	Factor
Trifluralin		0.222	0.222	ND		UG/L	1
Atrazine		0.222	0.222	0.567		UG/L	1
Metribuzin		0.222	0.222	0.222		UG/L	1
Alachlor		0.222	0.222	ND		UG/L	1
Metolachlor		0.222	0.222	1.39		UG/L	1
Chlorpyrifos		0.222	0.222	ND		UG/L	1
Cyanazine		0.222	0.222	ND		UG/L	1
Pendimethalin		0.222	0.222	ND		UG/L	1
SURROGATE RECOVI		Lim				sults	
riphenylphospha	ate	30-	130		(578	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

Lab Report No: 008925

Report Date: 06/22/2022

Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA
	CARLYLE LAKE 05/17/2022 1500
	Sampling Loc'n: Sampling Date: Sampling Time:
CARLYLE LAKE	ARDL No: 008925-05 ield ID: CAR-13 eceived: 05/17/2022
Project Name: CARLYLE LAKE Project No:	ARDL No: Field ID: Received:

Analyte	LOD	ГОО	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		DN	MG/L	NONE	350.1	NA	05/27/22 06026685	06026685
Chlorophyll-a, Correcte	1.00	1.00		24.2	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
E. Coliform	1.00	1.00		1600	COL/100 ML	NONE	1604	NA	05/17/22	05196624
Kjeldahl Nitrogen	1.00	1.00		DN	MG/L	351.2	351.2	05/26/22	05/26/22	06016681
Nitrate as Nitrogen	0.0190	0.0200		1.45	MG/L	NONE	GREEN	NA	05/26/22	06016680
Nitrite as Nitrogen	0.0200	0.0200		0.032	MG/L	NONE	354.1	NA	05/18/22	05186615
Pheophytin-a	1.00	1.00		146	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Phosphorus	0.00800	0.0100		0.464	MG/L	365.2	365.2	06/01/22	06/02/22	06036693
Solids, Total Suspended	6.67	6.67		141	MG/L	NONE	160.2	NA	05/18/22	05246642
Solids, Volatile Suspen	6.67	6.67		13.3	MG/L	NONE	160.4	NA	05/18/22	05246643
Total Organic Carbon	0.500	1.00		4.5	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-05, Inorganic Analyses

Lab Report No:	008925	Rep	ort Date	: 06/01/	2022		· .
Project Name:	CARLYLE LAKE	Ana	lysis: N	P PESTICII	DES (82	70SIM-MC	D)
Project No.:		Analytical M	ethod: 8	270D			
NELAC Certi:	fied - IL100308	Prep M	ethod: 3	510C			
Field ID:	CAR-12		ARDL	Lab No.:	00893	25-06	
Desc/Location:	CARLYLE LAKE		Lab F	ilename:	E053	1218	
Sample Date:	05/17/2022		Recei	ved Date:	-	7/2022	
Sample Time:	1530		Prep.	Date:	05/1	8/2022	
Matrix:	WATER		Analy	sis Date:	05/3	1/2022	
Amount Used:	900 mL		Instr	ument ID:	AG5		
Final Volume:	1 mL		QC Ba	tch:	B114	B 0	
<pre>% Moisture:</pre>	NA		Level	:	LOW		
					Data		Dilution
Parameter		LOD	LOQ	Result	Flag	Units	Factor
Trifluralin		0.222	0.222	ND		UG/L	1
Atrazine		0.222	0.222	0.989		UG/L	1
Metribuzin		0.222	0.222	0.611		UG/L	1.
Alachlor		0.222	0.222	ND		UG/L	1
Metolachlor		0.222	0.222	3.27		UG/L	1
Chlorpyrifos		0.222	0.222	ND		UG/L	1
Cyanazine		0.222	0.222	ND		UG/L	1
Pendimethalin		0.222	0.222	ND		UG/L	1
SURROGATE RECOV	ERIES:	Lim	its		Rea	sults	· · · ·
Triphenylphospha	ate	30-	130			52%	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

Lab Report No: 008925

Report Date: 06/22/2022

Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA
	CARLYLE LAKE 05/17/2022 1530
	Sampling Loc'n: CARLYLE LAKE Sampling Date: 05/17/2022 Sampling Time: 1530
CARLYLE LAKE	008925-06 CAR-12 05/17/2022
Project Name: Project No:	ARDL No: Field ID: Received:

	1	Tip 2		••••						
Analyte	гор	ГОД	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		ND	MG/L	NONE	350.1	NA	05/27/22 06026685	06026685
Chlorophyll-a, Correcte	1.00	1.00		53.2	MG/CU.M.	10200H	10200H	05/18/22	06/08/22 (06106705
E. Coliform	1.00	1.00		125	COL/100 ML	NONE	1604	NA	05/17/22 (05196624
Kjeldahl Nitrogen	1.00	1.00		QN	MG/L	351.2	351.2	05/26/22	05/26/22 (06016681
Nitrate as Nitrogen	0.0190	0.0200		1.03	MG/L	NONE	GREEN	NA	05/26/22 (06016680
Nitrite as Nitrogen	0.0200	0.0200		0.029	MG/L	NONE	354.1	NA	05/18/22 (05186615
Pheophytin-a	1.00	1.00		21.7	MG/CU.M.	10200H	10200H	05/18/22	06/08/22 (06106705
Phosphorus	0.00800	0.0100		0.239	MG/L	365.2	365.2	06/01/22	06/02/22 (06036693
Solids, Total Suspended	2.86	2.86		52.9	MG/L	NONE	160.2	NA	05/18/22 (05246642
Solids, Volatile Suspen	2.86	2.86		8.86	MG/L	NONE	160.4	NA	05/18/22 (05246643
Total Organic Carbon	0.500	1.00		4.7	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-06, Inorganic Analyses

Lab Report No: 008925

Report Date: 06/01/2022

Project Name:	CARLYLE LAKE		-	P PESTICII	DES (82'	70SIM-MC	D)
Project No.:		Analytical M					
NELAC Certif	Eied - IL100308	Prep M	ethod: 3	510C			
Field ID:	CAR-15		ARDL	Lab No.:	00893	25-07	
Desc/Location:	CARLYLE LAKE		Lab F	ilename:	E0533	1219	
Sample Date:	05/17/2022		Recei	ved Date:	05/1	7/2022	
Sample Time:	1600		Prep.	Date:	05/18	3/2022	
Matrix:	WATER		Analy	sis Date:	05/33	1/2022	
Amount Used:	900 mL		Instr	ument ID:	AG5		
Final Volume:	1 mL		QC Ba	tch:	B1148	30	
<pre>% Moisture:</pre>	NA		Level	:	LOW		
							<u></u>
Description					Data		Dilution
Parameter		LOD	LOQ	Result	Flag	Units	Factor
Trifluralin	······	0.222	0.222	ND		UG/L	1
Atrazine		0.222	0.222	0.811		UG/L	1
Metribuzin		0.222	0.222	ND		UG/L	1
Alachlor		0.222	0.222	ND		UG/L	1
Metolachlor		0.222	0.222	1.19		UG/L	1
Chlorpyrifos		0.222	0.222	ND		UG/L	1
Cyanazine		0.222	0.222	ND		UG/L	1
Pendimethalin		0.222	0.222	ND		UG/L	1
SURROGATE RECOVE	ERIES:	Lim	its		Res	sults	
Friphenylphospha	ate	30-	130		e	528	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008925 Lab Report No:

Project Name: CARLYLE LAKE

06/22/2022 Report Date: Analysis: Inorganics

Project No:							Z	NELAC Certified - IL100308	fied - ILl	00308
ARDI No: 008925-07	7	Sampling		Loc'n: CARLY	CARLYLE LAKE			Matrix:	:: WATER	
Field ID: CAR-15		Samp	Sampling Date:		05/17/2022			Moisture:	: NA	
Received: 05/17/2022	22	Samp	Sampling Time:	ime: 1600						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	LOQ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.100	0.100		QN	MG/L	NONE	350.1	NA	05/27/22 06026685	06026685
Chlorophyll-a, Correcte	1.00	1.00		86.2	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Kjeldahl Nitrogen	0.480	1.00		1.4	MG/L	351.2	351.2	05/26/22	05/26/22	06016681
Nitrate as Nitrogen	0.0190	0.0200		0.249	MG/L	NONE	GREEN	NA	05/26/22	06016680
Nitrite as Nitrogen	0.0200	0.0200		0.036	MG/L	NONE	354.1	NA	05/18/22	05186615
Pheophytin-a	1.00	1.00		25.0	MG/CU.M.	10200H	10200H	05/18/22	06/08/22	06106705
Phosphorus	0.00800	0.0100		0.317	MG/L	365.2	365.2	06/01/22	06/02/22	06036693
Solids, Total Suspended	2.86	2.86		11.4	MG/L	NONE	160.2	NA	05/18/22	05246642
Solids, Volatile Suspen	2.86	2.86		4.57	MG/L	NONE	160.4	NA	05/18/22	05246643
Total Organic Carbon	0.500	1.00		6.4	MG/L	NONE	415.1	NA	06/13/22	581309T

(a) DOD and/or NELAC Accredited Analyte.

Sample 008925-07, Inorganic Analyses

	Report Date: 06/22/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 05/17/22 05196624
Box 1566 62864				Prep Ana Method Me	NONE 1
			CARLYLE LAKE 05/17/2022 1400	Units Me	COL/100 ML 1
ARDL, INC. Aviation Drive; P.O Mt. Vernon, Illinois				Result	350
400 Av Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			0 8 0 0 0	ГОО	1.00
	: 008925	CARLYLE LAKE	008925-08 CAR-KP-MARINA 05/17/2022	LOD	1.00
	Lab Report No:	Project Name: CA Project No:	ARDL No: 000 Field ID: CA Received: 05	Analyte	E. Coliform

Sample 008925-08, Inorganic Analyses

	Report Date: 06/22/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Number	1604 NA 05/17/22 05196624
Box 1566 62864				Prep A Method	NONE
			CARLYLE LAKE 05/17/2022 1232	Units	COL/100 ML
ARDL, INC. 400 Aviation Drive; P.O. Mt. Vernon, Illinois				Result	63.0
			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Sam San San	LOQ	1.00
	o: 008925	CARLYLE LAKE	008925-09 CAR-DW-MARINA 05/17/2022	LOD	1.00
	Lab Report No: 008925	Project Name: Cu Project No:	ARDL No: 00 Field ID: CJ Received: 01	Analyte	E. Coliform

Sample 008925-09, Inorganic Analyses

	Report Date: 06/22/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	sis Prep Analysis Run od Date Date Number	4 NA 05/17/22 05196624
566				Analysis d Method	1604
Box 1566 62864				Prep Method	L NONE
ARDL, INC. Aviation Drive; P.O. Mt. Vernon, Illinois			CARLYLE LAKE 05/17/2022 1610	Units	COL/100 ML
A iation Vernon				Result	130
400 Av. Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			San Sai Sai	LOQ .	1.00
	No: 008925	CARLYLE LAKE	008925-10 CAR-BL-MARINA 05/17/2022	te LOD	1.00
	Lab Report No:	Project Name: CARLYLE LAKE Project No:	ARDL No: Field ID: Received:	Analyte	E. Coliform

Sample 008925-10, Inorganic Analyses

	Report Date: 06/22/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 05/17/22 05196624
Box 1566 62864				Prep Ar Method N	NONE
			CARLYLE LAKE 05/17/2022 1220	Units	COL/100 ML
ARDL, INC. .ation Drive; P.O Vernon, Illinois				Result	19.0
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Sam Sar Sar	ΓΟŐ	1.00
	lo: 008925	CARLYLE LAKE	008925-11 CAR-CSA-MARINA 05/17/2022	LOD	1.00
	Lab Report No: 008925	Project Name: C Project No:	ARDL No: 0 Field ID: C Received: 0	Analyte	E. Coliform

Sample 008925-11, Inorganic Analyses

METHOD BLANK REPORT ARDL, Inc. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008925

Report Date: 06/01/2022

Project Name: CARLYLE LAKE	-	is: NP PEST	ICIDES (8:	270SIM-M	OD)
Project No.:	Analytical Meth				
NELAC Certified - IL100308	Prep Meth	od: 3510C			
Field ID: NA		ARDL Lab No	008	925-01B1	
Desc/Location: NA		Lab Filenam	ne: E053	31210	
Sample Date: NA		Received Da	te: NA		
Sample Time: NA		Prep. Date:	05/3	18/2022	
Matrix: QC Material		Analysis Da	te: 05/3	31/2022	
Amount Used: 1000 mL		Instrument	ID: AG5		
Final Volume: 1 mL		QC Batch:	B114	480	
% Moisture: NA		Level:	LOW		
				Data	
Parameter	LOD	LOQ	Result	Flag	Units
Trifluralin	0.200	0.200	ND		UG/L
Atrazine	0.200	0.200	ND		UG/L
Metribuzin	0.200	0.200	ND		UG/L
Alachlor	0.200	0.200	ND		UG/L
Metolachlor	0.200	0.200	ND		UG/L
Chlorpyrifos	0.200	0.200	ND		UG/L
Cyanazine	0.200	0.200	ND		UG/L
Pendimethalin	0.200	0.200	ND		UG/L
URROGATE RECOVERIES:	Limits		De	sults	
riphenylphosphate	30-130		K	80%	

Surrogate recoveries marked with '*' indicates they are outside standard limits.

(a) DoD and/or NELAC Accredited Analyte.

62864 Mt. Vernon, IL 400 Aviation Drive; P.O. Box 1566 BLANK SUMMARY REPORT ARDL, INC.

Lab Report No: 008925

Report Date: 06/22/2022

Project Name: CARLYLE LAKE

NELAC Certified - IL100308

Analyte	LOD	год	Blank Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run	QC Lab Number
(a) Iron	0.040	0.050	QN	MG/L	3010A	6010C	05/23/22	05/25/22	P7775	008925-01B1
(a) Manganese	0.004	0.005	ND	MG/L	3010A	6010C	05/23/22	05/25/22	P7775	008925-01B1
Ammonia Nitrogen	0.030	0.10	QN	MG/L	NONE	350.1	NA	05/27/22 (06026685	008925-01B1
Chlorophyll-a, Corre	1.0	1.0	DN	MG/CU.M.	10200H	10200H	05/18/22	06/08/22 (06106705	008925-01B1
E. Coliform	1.0	1.0	DN	COL/100 ML	NONE	1604	NA	05/17/22 (05196624	008925-02B1
Kjeldahl Nitrogen	1.0	1.0	DN	MG/L	351.2	351.2	05/26/22	05/26/22 (06016681	008927-01B1
Nitrate as Nitrogen	0.019	0.020	DN	MG/L	NONE	GREEN	NA	05/26/22 (06016680	008925-01B1
Nitrite as Nitrogen	0.020	0.020	ND	MG/L	NONE	354.1	NA	05/18/22 (05186615	008925-01B1
Pheophytin-a	1.0	1.0	QN	MG/CU.M.	10200H	10200H	05/18/22	06/08/22 (06106705	008925-01B1
Phosphorus	0.008	0.010	QN	MG/L	365.2	365.2	06/01/22	06/02/22 0	06036693	008925-02B1
Solids, Total Suspen	1.0	1.0	ND	MG/L	NONE	160.2	NA	05/18/22 0	05246642	008925-04B1
Solids, Volatile Sus	1.0	1.0	DN	MG/L	NONE	160.4	NA	05/18/22 0	05246643	008925-04B1
Total Organic Carbon	0.50	1.0	ND	MG/L	NONE	415.1	NA	06/13/22	581309T	008925-01B1

(a) DOD and/or NELAC Accredited Analyte Inorganic Method Blanks for 008925

ARDL,	INC.	BLANK SPIKE/S 400 Aviation	s/SPIKE D Drive;	DUPLICAT ; P.O. B	SPIKE/SPIKE DUPLICATE REPORT iation Drive; P.O. Box 1566	Mt. Ve	Vernon,	IL 62864	
Lab Report No: 008925							Re	Report Date:	06/01/2022
Project Name: CARLYLE LAKE Project No.:		Analysis: NP	PESTICIDES		(8270SIM-MOD)	Anal	Analytical M Prep M	Method: 8270D Method: 3510C	0D 0C
Matrix: QC Material Amount Used: 1000 mL		QC Batch: Level:		B11480 LOW		Prep. Analys	Prep. Date: Analysis Date:	05/18/2022 05/31/2022	0.0
Parameter	Spike Result	Spike Level	Spike % Rec	Duplicate Result	Duplicate Level	Duplicate % Rec	Recovery Limits	QđX	RPD Limit
Trifluralin	3.21	4	80		1		30-130	4	1
Atrazine Metribuzin	3.21 3.17	44	80 79	: :	; ;	: :	30-130 30-130	; ;	: :
Alachlor	3.25	4	81	;	!	;	30-130	;	;
Metolachlor	3.09	4	77	!	;	!	30-130	{	;
Chlorpyrifos	3.01	4	75	!	!	:	30-130	!	;
Cyanazine	3.13	4	78	;	1	1	30-130	;	:
Pendimethalin	2.91	4	73	;	;	1	30-130	;	;
	раталиста анкосаци		1750		1	4			
	Triphenvlphosphate		AIGS		LICATE %K	۶X LIMIUS ۲۵–۱۶۵			
	Pluent Purce			ņ.					
 (a) DoD and/or NELAC Accredited Analyte. '*' indicates a recovery outside of standard limits. 	ce. :andard limits.								

''' indicates' a recovery outside of standard limits. Spike Blanks for 008925-01, NP PESTICIDES (8270SIM-MOD)

Page 1 of 1

.

.

ARDL,	L, INC.	400 A	LABORATORY CONTROL viation Drive; P.O.	LUKI U Drive	400 Aviation Drive; P.O.	Box 1566	- 		Vernon,	IL 62864	
Lab Report No: 00	008925								Report Date:	Date: 06/22/2022	2022
Project Name:	CARLYLE LAKE	AKE							NELAC	NELAC Certified - IL	IL100308
Analyte	LCS 1 Result	LCS 1 Level	LCS 1 % Rec	LCS 2 Result	LCS 2 Level	LCS 2 % Rec	% Rec Limits	Mean % Rec	Analytical Run	al QC Lab Number	
(a) Iron	5.2	5.0	103	:	1	1	87-115		P7775	008925-01C1	
(a) Manganese	0.81	0.75	108	1	4	ł	90-114	ł	P7775		
Ammonia Nitrogen	1.1	1.0	108	1	ł		80-120	1	06026685	5 008925-01C1	
Kjeldahl Nitrogen	11.0	10.0	110	1	1		80-120		06016681	1 008927-01C1	
Nitrate as Nitrogen	1.0	1.0	102	ł	ł	ł	80-120	ł	06016680	0 008925-01C1	
Nitrite as Nitrogen	0.92	1.0	92	1	ł	1	80-120	1	05186615	5 008925-01C1	
Phosphorus	0.68	0.67	101	!	1	ł	80-120	!	06036693	3 008925-02C1	
Total Organic Carbon	18.8	20.0	94	18.7	20.0	94	76-120	94	581309T	r 008925-01C1	
NOTE: Any values tabulated above marked with an (a) DOD and/or NELAC Accredited Analyte	abulated above m AC Accredited An	arked with alvte		sk are outs	asterisk are outside of acceptable limits.	eptable li	imits.				
)									

AR Lab Report No: 008925	ARDL, INC.	MATH 400	RIX Avi	KE/SP. on Dr.	SPIKE/SPIKE DUPLICATE ation Drive; P.O. Box	CATE REPORT Box 1566		Mt. Vernon, _R	IL eport	62864 Date:	06/01/2022
Project Name: CARLYLE LAKE Project No.:	AKE	Ar	Analysis: 1	NP PEST.	PESTICIDES (8270SIM-MOD)	(COM-WISO)		Analytic Pr	Analytical Method: Prep Method:	l: 8270D l: 3510C	
Field ID: CAR-1 Desc/Location: CARLYLE LAKE Sample Date: 05/17/2022 Sample Time: 1130 Matrix: WATER	LAKE 22		Prep. Amount % Mois QC Bat Level:	<pre>Prep. Date: Amount Used: % Moisture: QC Batch: Level:</pre>	05/18/2022 900 mL NA B11480 LOW	0		ARDL Lab No.: Lab Filename: Received Date Analysis Date		008925-01 05/17/2022 05/31/2022	
Parameter	Sam	Sample Result	MS Result	MS Level	MS & Rec	MSD Result I	MSD Level	MSD % Rec	% Rec Limits	RPD	RPD Limit
Trifluralin	R	G	3.21	4.44	72.3	3.32	4.44	74.8	30-130	3.4	30
Atrazine Metrihuzin	0	0.333 ND	3.64 3.18	4.44	74.5 71.5	3.72 3.31	4.44 4.44	76.3 74.5	30-130 30-130	2.1 1.4	90 80
Alachlor			3.14	4.44	70.8	3.32	4.44	74.8	30-130	5.5	30
Metolachlor	0	0.533	3.7	4.44	71.3	3.84	4.44	74.5	30-130	3.8	30
Chlorpyrifos	NN	8	2.89	4.44	65 70.5	2.94 3.19	4.44	66.3 71.8	30-130 30-130	1.9	0 0 0
Pendimethalin		Ð	2.88	4.44	64.8	2.9	4.44	65.3	30-130	0.8	30
				-							
	SURROGATE RECOVERIES: Triphenylphosphate	ICOVERIES sphate			MS %R 66	MSD %R 70	%R Limits 30-130	mits 30			

'nc' indicates sample >4X spike level.

'*' indicates a recovery outside of standard limits.

Matrix Spikes for 008925-01, NP PESTICIDES (8270SIM-MOD)

	62864
	IJ
	Vernon,
REPORT	Mt .
DUPLICATE	Box 1566
PIKE DU	Р.О.
PIKE/SE	Drive;
MATRIX SPIKE/SPIKE DI	Aviation
	400
	INC.
	ARDL,

Lab Report No: 008925

CARLYLE LAKE

Project Name:

Report Date: 06/22/2022

NELAC Certified - IL100308

AnalyteSampleSampleMSMSMSDMSD% RecRPDQC LabAnalyteMatrixResultResultLevel% RecRelImitRPDQC LabAnalyteMatrixResultResultLevel% RecRel1mitRPDQC Lab(a) IronWATER1.12.11.01072.11.0104 $87-115$ 120 7775 008925-01MS(a) ManganeseWATER0.140.660.501050.660.5010490-114020 87775 008925-01MSNitrate as NitrogenWATER0.0821.01011.11.010175-12572006016680008925-01MSNitrite as NitrogenWATER0.140.930.830.930.8305925-01MS0089255-01MSNitrite as NitrogenWATER0.140.930.830.930.8309925-01MSNitrite as NitrogenWATER0.140.930.830.83078308925-01MSNitrite as NitrogenWATER0.140.930.830.9375-1250051666150089255-01MSNosphorusWATER0.140.930.930.930.830.9375-12500016693009255-02MSTotal Organic CarbonWATER0.935.0869.3505076-1200205013693009255-02MS <th></th>														
Matrix Result Level % Rec Result Level % Rec Limits RPD Limit Run WATER 1.1 2.1 1.0 107 2.1 1.0 104 87-115 1 20 7775 WATER 0.14 0.66 0.50 107 2.1 1.0 104 87-115 1 20 7775 WATER 0.14 0.66 0.50 105 0.66 0.50 104 90-114 0 20 7775 7 20 06016680 7775 7 20 06016680 7 7 20 06016680 7 7 20 06016680 7 7 20 06016680 7 7 20 06016680 7 7 20 05186615 7 20 05186615 7 20 05186615 7 20 060186615 7 20 06036693 7 20 06036693 20 20 06		Sample	Sample	SM	WS	SM	MSD	MSD	MSD	% Rec		RPD		QC Lab
WATER 1.1 2.1 1.0 104 87-115 1 20 7775 WATER 0.14 0.66 0.50 105 0.66 0.50 104 90-114 0 20 7775 WATER 0.14 0.66 0.50 105 0.66 0.50 104 90-114 0 20 7775 WATER 0.82 1.6 1.0 80 1.7 1.0 92 75-125 7 20 06016680 WATER 0.052 1.1 1.0 101 1.1 1.0 101 75-125 0 20 06316635 WATER 0.14 0.93 0.83 95 0.93 083 95 75-125 0 20 06036693 WATER 5.0 9.3 5.0 86 76-120 0 20 0636693	te	Matrix	Result	Result	Level	% Rec	Result	Level	% Rec	Limits	RPD	Limit	Run	Number
WATER 0.14 0.66 0.50 104 90-114 0 20 F775 WATER 0.82 1.6 1.0 80 1.7 1.0 90-114 0 20 F775 WATER 0.82 1.6 1.0 80 1.7 1.0 92 75-125 7 20 06016680 WATER 0.052 1.1 1.0 101 1.1 1.0 101 75-125 0 20 05186615 9 WATER 0.14 0.93 0.83 95 0.93 0.83 95 75-125 0 20 06036693 WATER 0.14 0.93 0.83 95 75-125 0 20 0636693 WATER 5.0 9.3 5.0 86 76-120 0 20 0538693	Iron	WATER	1.1	2.1	1.0	107	2.1	1.0	104	87-115		20	P7775	008925-01MS
WATER 0.82 1.6 1.0 80 1.7 1.0 92 75-125 7 20 06016680 WATER 0.052 1.1 1.0 101 1.1 1.0 101 75-125 7 20 06016680 WATER 0.14 0.93 0.83 95 0.93 0.83 95 75-125 0 20 06036693 WATER 0.14 0.93 0.83 95 75-125 0 20 06036693 WATER 5.0 96 9.3 5.0 86 76.120 0 20 5036693	Inganese	WATER	0.14	0.66	0.50	105	0.66	0.50	104	90-114	0	20	P7775	008925-01MS
WATER 0.052 1.1 1.0 101 75-125 0 20 05186615 WATER 0.14 0.93 0.93 0.83 95 75-125 0 20 06036693 WATER 5.0 9.3 5.0 86 9.3 5.0 86 75-125 0 20 06036693	IS Nitrogen	WATER	0.82	1.6	1.0	80	1.7	1.0	92	75-125	7	20	06016680	008925-01MS
WATER 0.14 0.93 0.83 95 0.93 0.83 95 75-125 0 20 06036693 WATER 5.0 9.3 5.0 86 9.3 5.0 86 76-120 0 20 581309T	IS Nitrogen	WATER	0.052	1.1	1.0	101	1.1	1.0	101	75-125	0	20	05186615	008925-01MS
WATER 5.0 9.3 5.0 86 9.3 5.0 86 76-120 0 20 581309T	phorus	WATER	0.14	0.93	0.83	95	0.93	0.83	95	75-125	0	20	06036693	008925-02MS
	nic Carbon	WATER	5.0	9.3	5.0	86	9.3	5.0	86	76-120	0	20	581309T	008925-01MS

Inorganic Matrix Spikes for 008925

(a) DOD and/or NELAC Accredited Analyte.

NOTE: Values tabulated above marked with an asterisk are explained in the associated narrative.

62864 Mt. Vernon, IL 400 Aviation Drive; P.O. Box 1566 SAMPLE DUPLICATE REPORT ARDL, INC.

Lab Report No: 008925

06/22/2022 Report Date:

> CARLYLE LAKE Project Name:

NELAC Certified - IL100308

Analyte Chlorophyll-a, Corrected	Sample Conc'n 58.1	ц С	Second Duplicate 	Units MG/CU.M.	Percent Diff 22*	Mean (Smp,D1,D2) 	Analytical Run 06106705	QC Lab Number 008925-01D1
Pheophytin-a Solids, Total Suspended Solids, Volatile Suspend	32.1 44.0 13.6	33.7 45.2 14.0		MG/CU.M. MG/L MG/L	ы м м		06106705 05246642 05246643	008925-01D1 008925-04D1 008925-04D1

See Case Narrative for exceptions. * indicates that agreement between duplicates is greater than 20%. (a) DOD and/or NELAC Accredited Analyte Sample Duplicates for 008925

Sample Receipt Information

Including as appropriate:

- COCs
- Cooler Receipts
- Airbills
- Email Communication / Instructions from Customer

ARDL Data Package 8925

Authorized By: DSD-QAO

ORD	PRESERVATION	SPECIFY CHEMICALS ADDED AND FINAL PH IF KNOWN																			
REC	PRESE	ICED		X	X	X	X	X	X	X	X	X	X	X	 						
CHAIN OF CUSTODY RECORD			REMARKS OR SAMPLE LOCATION																added per Ben.	1000 800	
																			added		
											_								2		
		\sim																REMARKS/SPECIAL INSTRUCTIONS:	TKN		
5		00	NAT															rRUC			
8925	4	OSN IIO	SW	X	×	\times	×	×	×	\times								UNS/	4 6		
00		4:	1	X	M	•		k-d	M		M							CIAL	H ₂ SO HNO		
(N-E	1200 XX XX	1.**	X	X	X	~	X	X		X	X	X	X				S/SPE	*Preserved with H ₂ SO ₄ #Preserved with HNO ₃		
864	*	N. N.	AN EO	X	X		X	X	X	Х								IARK	served		
IL 62) Fax	-0.	J-1 .	SA.	X	X	X	X	X	X	X								REN	*Pre #Pre		
ve, Mt. Vernon, IL 62 (618) 244-1149 Fax																		1 AN			1
Mt. Ve 8) 244	iss	V-20	Chlon	X	X	X	X	X	X	X								Signature)	ignature)		
rive, l (61		010400 010400 0105-V	V	XX	X X	X	X X	X X	X X	X X								Signa	(Sight	Shipping Ticket No.	
tion D one	EKS	CONTAIN	HO 'ON	r 		~	~	~	~	r								d by:	d by: (g Tick	1
Aviat 35 Pho			GRAB	X	Х	×	х	X	Х	х	х	×	X	х				Received by:	Received by: (Si	uipping	
6, 400 44-32			COMP		0	2	0	-	5		0		0		 		-		Fr	10	-
P.O. Box 1566, 400 Aviation Drive, Mt. Vernon, IL 62864 (618) 244-3235 Phone (618) 244-1149 Fax			TIME	1130	1250	1250	1350	500	DES	1600	1460	122	1610	1220				Time	Time 2/435	Time 1735	
			DATE	517	とこ	5.17	51,	LIS	SIJ	61-5	215	517	C 1-S	5-17				Date	Date	Date 5-177	
ARDL, Inc.	PROJECT Carlyle Lake	SAMPLERS: (Signature)	SAMPLE NUMBER	CAR-1	CAR-2-0	CAR-2-10	CAR - 4	CAR - 13	CAR - 12	CAR - 15	CAR – KP – Marina	CAR – DW – Marina	CAR – BL – Marina	CAR – CSA - Marina				Relinquished by: (Signature)	. (to but the second
			1	-	2	3	7	5		2	to	6	22		 A	RDL	. Re	port 8	8925	- Page	29 of 31

	ARDL, INC.		
ر ۲۰		Cooler # Red 1	
ARI	DL #	Number of Coolers in Shipment: 2	
Pro		Date Received: <u>05/17/2022</u>	
A.	Raskiskic Kiver PRELIMINARY EXAMINATION PHASE: Date cooler was opened: 05/17/20	DZZ_(Signature)_DCB	
1.	Did cooler come with a shipping slip (airbill, etc.)?	YES (N	õ)
	If YES, enter carrier name and airbill number here: <u>/ / / / / / / / / / / / / / / / / / /</u>	rier-Valerie	
2.	Were custody seals on outside of cooler?		0 (N/A)
	How many and where?,Seal Date:,	,Seal Name:	~~~~~
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES N	o (A)
4.	Did you screen samples for radioactivity using a Geiger Counter?	(TES N	0
5.	Were custody papers sealed in a plastic bag? Hand delivered	YES (N	6
6.	Were custody papers filled out properly (ink, signed, etc.)?		IO N/A
7.	Were custody papers signed in appropriate place by ARDL personnel?		O N/A
8.	Was project identifiable from custody papers? If YES, enter project name at th	e top of this form	o n/a
9.	Was a separate container provided for measuring temperature? YES	NO Observed Cooler Temp Correction factor	Ос
B.		ignature)_DCB	<u> </u>
10.	Describe type of packing in cooler: LCCSC ICC		
11.	Were all samples sealed in separate plastic bags?		0 N/A
12.	Did all containers arrive unbroken and were labels in good condition?		10
13.	Were sample labels complete?		0
14.	Did all sample labels agree with custody papers?		0
15.	Were correct containers used for the tests indicated?	YES N	0
16.	Was pH correct on preserved water samples?		N/A
17.	Was a sufficient amount of sample sent for tests indicated?		10
18.	Were bubbles absent in VOA samples? If NO, list by sample #:	YES N	
19.	Was the ARDL project coordinator notified of any deficiencies?	YES N	10 (NA)
	Comments and/or Corrective Action:	Sample Transfer	
		Fraction Fraction	
		Area # Area #	
		Walk-In By By	
		DCB ,	
		On AG18/2022	
		upper 1	
<u> </u>		Chain-of-Custody #	
(E	By: Signature) Date:		

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

	COOLER RECEIPT ARDL, INC.	
	DL #: 8925, 8926	Cooler # Red Z
ARI	$DL #: \underbrace{O(L S), O(L G)}_{L G}$	Number of Coolers in Shipment: 2
Pro	ject: Carlyle Lake	Date Received: 05/17/2022
	Kaskaskia Rijer PRELIMINARY EXAMINATION PHASE: Date cooler was opened: 05/15	
A.		
1.	Did cooler come with a shipping slip (airbill, etc.)? If YES, enter carrier name and airbill number here:	Aurien - Valaria
2.	Were custody seals on outside of cooler?	A
2.	How many and where?,Seal Date:	\bigcirc
3.	Were custody seals unbroken and intact at the date and time of arrival?	0
3. 4.	Did you screen samples for radioactivity using a Geiger Counter?	
ч. 5.	Were custody papers sealed in a plastic bag? Hand delivere	d
6.	Were custody papers filled out properly (ink, signed, etc.)?	
7.	Were custody papers signed in appropriate place by ARDL personnel?	
8.	Was project identifiable from custody papers? If YES, enter project name at	t the top of this form
9.	Was a separate container provided for measuring temperature? YES	NO V Observed Cooler Temp 3, D C
B.	LOG-IN PHASE: Date samples were logged-in 05/18/2022	
	LOG-IN FINASE. Date samples were logged-in Configeration	(Signature) CC
10.	Describe have of modified in contrast	
10.	Describe type of packing in cooler:	YES (10) N/A
10. 11.	Describe type of packing in cooler: Were all samples sealed in separate plastic bags? Did all containers arrive unbroken and were labels in good condition?	YES NO N/A
10. 11. 12. 13.	Describe type of packing in cooler: Were all samples sealed in separate plastic bags? Did all containers arrive unbroken and were labels in good condition?	YES NO N/A
10. 11. 12. 13. 14.	Describe type of packing in cooler:	YES NO VES NO VES NO VES NO VES NO VES NO VES NO
10. 11. 12. 13. 14.	Describe type of packing in cooler:	YES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO
 10. 11. 12. 13. 14. 15. 	Describe type of packing in cooler:	YES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 	Describe type of packing in cooler: Were all samples sealed in separate plastic bags? Did all containers arrive unbroken and were labels in good condition? Were sample labels complete? Did all sample labels agree with custody papers? Were correct containers used for the tests indicated? Was pH correct on preserved water samples?	YES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 17. 	Describe type of packing in cooler:	YES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO YES NO NA YES NO NA YES NO NA
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO YES NO NA YES NO NA YES NO NA
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO VES NO
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO VES NO VA YES NO YES NO
 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Describe type of packing in cooler:	YES NO VES NO

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

Environmental | Analytical | Management | Safety

Customer Name: SLCOE

Project Name: Carlyle Lake

Samples Received at ARDL: 6/23/22

PO Box 1566 400 Aviation Drive Mt. Vernon, IL 62864 618-244-3235

<u>www.ardlinc.com</u>

Date: 7/15/22

Lab Name: ARDL, Inc.

ARDL Report No.: 8938

CASE NARRATIVE

Customer	Date	Lab ID	
Sample No.	Collected	Number	Analyses Requested
CAR-1	6/23/22	8938-01	Metals(1), Inorganics(2)(3)(4)
CAR-2-0	6/23/22	8938-02	Inorganics(2)(3)(4), E. Coli
CAR-2-10	6/23/22	8938-03	Metals(1), Inorganics(2)
CAR-4	6/23/22	8938-04	Inorganics(2)(3)(4)
CAR-13	6/23/22	8938-05	Inorganics(2)(3)(4), E. Coli
CAR-12	6/23/22	8938-06	Inorganics(2)(3)(4), E. Coli
CAR-15	6/23/22	8938-07	Inorganics(2)(3)(4)
CAR-KP-MARINA	6/23/22	8938-08	E. Coli
CAR-DW-MARINA	6/23/22	8938-09	E. Coli
CAR-BL-MARINA	6/23/22	8938-10	E. Coli
CAR-CSA-MARINA	6/23/22	8938-11	E. Coli
(1) la aludia a incur au			

(1) Including iron and manganese.

(2) Including ammonia*, nitrate, nitrite, total phosphorus*, TOC*, TSS and TVSS.

(3) Including TKN*

(4) Including chlorophyll-a corrected and pheophytin-a.

* Analyzed by an accredited subcontract laboratory.

The quality control data are summarized as follows:

INORGANIC FRACTION

PREPARATION BLANK

Results of the preparation blanks were undetected.

LABORATORY CONTROL SAMPLE

Percent recoveries of all LCS analyses were within control limits.

MATRIX SPIKE

Percent recoveries of all matrix spikes and matrix spike duplicates were within control limits.

DUPLICATE

All duplicate analyses are reported as MS/MSD except chlorophyll-a corrected, pheophytin-a, TSS and TVSS. RPD on all duplicate analyses were within control limits, except pheophytin-a. The parent sample has been flagged appropriately with a 'J' qualifier.

"Test everything, keep the good" 1 Thes. 5:21

Project Name: Carlyle Lake

ARDL Report No.: 8938

CASE NARRATIVE (Continued)

DATA REPORTING QUALIFIERS

The following data reporting qualifiers are used as required:

- ND Indicates parameter was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration or this flag indicates analyte(s) associated with a DOD-QSM specified non-compliance pertaining to matrix QC criteria.

REPORT ORGANIZATION

Release of the data contained in this package has been authorized by the Technical Services Manager or his designee as verified by the following signature.

011.

Dean S. Dickerson Technical Services Manager

Page 2 of 2

Sample & QC Results

Including as appropriate: Field Sample Results Batch QC Prep Blank LCS/Spike Blank Matrix QC MS/MSD Sample Duplicate

ARDL Data Package 8938 - Inorganic

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

ARDL Report 8938 - Page 3 of 22

	Box 1566	62864
ARDL, INC.	400 Aviation Drive; P.O.	Mt. Vernon, Illinois

Lab Report No: 008938

CARLYLE LAKE

Project Name: Project No:

Report Date: 07/14/2022

Analysis: Inorganics NELAC Certified - IL100308

ARDL No: 008938-01 Field ID: CAR-1 Received: 06/23/2022	22	Sampl Samp Samp	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 06/23/2022 1128			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ΓΟŎ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
(a) Iron	0.0400	0.0500		0.694	MG/L	3010A	6010C	07/08/22	07/12/22	P7789
(a) Manganese	0.00400	0.00500		0.207	MG/L	3010A	6010C	07/08/22	07/12/22	P7789
Ammonia Nitrogen	0.100	0.100		DN	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	1.00	1.00		16.0	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Kjeldahl Nitrogen	1.00	1.00		ND	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0190	0.0200		0.175	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	0.0200	0.0200		0.043	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a	1.00	1.00		7.9	MG/CU.M.	10200H	10200H	06/24/22	06/29/22 07056807	07056807
Phosphorus	0.0660	0.100		0.229	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	2.22	2.22		15.3	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	2.22	2.22		4.67	MG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	0.400	1.00		4.8	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-01, Inorganic Analyses

	Box 1566	62864
ARDL, INC.	400 Aviation Drive; P.O.	Mt. Vernon, Illinois

008938 Lab Report No:

Report Date: 07/14/2022

Project Name: Project No:	CARLYLE LAKE	AKE						N	Analysis: Inorganics NELAC Certified - IL100308	: Inorganics fied - IL1003	ics 00308
ARDL No: Field ID: Received:	008938-02 CAR-2-0 06/23/2022	N	Samp Samj Samj	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 06/23/2022 1253			Matrix: Moisture:	: WATER : NA	
Analyte	Φ	LOD	LOQ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	u	0.100	0.100		QN	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	Correcte	1.00	1.00		31.5	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
E. Coliform		1.00	1.00		100	COL/100 ML	NONE	1604	NA	06/23/22	06276767
Kjeldahl Nitrogen	en.	1.00	1.00		DN	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	uəgo.	0.0190	0.0200		DN	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	.ogen	0.0200	0.0200		ND	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a		1.00	1.00		5.5	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Phosphorus		0.0660	0.100		0.194	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	uspended	2.22	2.22		11.6	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	e Suspen	2.22	2.22		7.56	MG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	arbon	0.400	1.00		5.3	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-02, Inorganic Analyses

ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008938

CARLYLE LAKE

Project Name: Project No:

Report Date: 07/14/2022

NELAC Certified - IL100308

Analysis: Inorganics

ARDL No: 008938-03 Field ID: CAR-2-10 Received: 06/23/2022	03 0 022	Samp. Sam Sam	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 06/23/2022 1248			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ΓΟΟ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
(a) Iron	0.0400	0.0500		1.17	MG/L	3010A	6010C	07/08/22	07/12/22	P7789
(a) Manganese	0.00400	0.00500		0.230	MG/L	3010A	6010C	07/08/22	07/12/22	P7789
Ammonia Nitrogen	0.100	0.100		ND	MG/L	NONE	350.1	NA	06/27/22	R313738
Kjeldahl Nitrogen	1.00	1.00		ND	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0190	0.0200		0.121	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	0.0200	0.0200		0.106	MG/L	NONE	354.1	NA	06/22/22	06286779
Phosphorus	0.0660	0.100		0.219	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	d 2.86	2.86		24.3	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	n 2.86	2.86		5.43	MG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	0.400	1.00		4.6	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-03, Inorganic Analyses

ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008938

CARLYLE LAKE

Project Name: Project No:

Report Date: 07/14/2022

Analysis: Inorganics NELAC Certified - IL100308

ARDL No: 008938-04 Field ID: CAR-4 Received: 06/23/2022	4 22	Samp. Samj Samj	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 06/23/2022 1418			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	LOQ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		ND	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	1.00	1.00		42.4	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Kjeldahl Nitrogen	0.480	1.00		1.0	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0190	0.0200		0.079	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	0.0200	0.0200		ND	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a	1.00	1.00		6.6	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Phosphorus	0.0660	0.100		0.26	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	3.45	3.45		30.7	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	3.45	3.45		12.8	OMG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	0.400	1.00		5.2	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-04, Inorganic Analyses

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008938 Lab Report No:

CARLYLE LAKE

Project Name: Project No:

07/14/2022 Report Date: Analysis: Inorganics NELAC Certified - IL100308

ARDL No: 008938-05 Field ID: CAR-13 Received: 06/23/2022	5 22	Samp] Samr Samr	<pre>Sampling Loc'n: Sampling Date: Sampling Time:</pre>		CARLYLE LAKE 06/23/2022 1524			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	Γοδ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		DN	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	1.00	1.00		56.1	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
E. Coliform	1.00	1.00		225	COL/100 ML	NONE	1604	NA	06/23/22	06276767
Kjeldahl Nitrogen	1.00	1.00		QN	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0190	0.0200		1.92	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	0.0200	0.0200		0.047	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a	1.00	1.00	Ŀ	9.8	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Phosphorus	0.0660	0.100		0.149	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	4.17	4.17		73.8	MG/L	NONE	160.2	NA	06/24/22 (06296785
Solids, Volatile Suspen	4.17	4.17		10.8	MG/L	NONE	160.4	NA	06/24/22 (06296787
Total Organic Carbon	0.400	1.00		3.4	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-05, Inorganic Analyses

، ا Page 1 of ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008938

CARLYLE LAKE

Project Name:

Report Date: 07/14/2022

Analysis: Inorganics

I

I

Project No:							Z	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: 008938-06 Field ID: CAR-12 Received: 06/23/2022	N 0	Samplir Sampli Sampli	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 06/23/2022 1605			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ГОД	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.100	0.100		ND	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	1.00	1.00		98.0	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
E. Coliform	1.00	1.00		650	COL/100 ML	NONE	1604	NA	06/23/22	06276767
Kjeldahl Nitrogen	0.480	1.00		1.1	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0950	0.100		2.36	MG/L	NONE	GREEN	NA	06/24/22	06306796
Nitrite as Nitrogen	0.0200	0.0200		0.103	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a	1.00	1.00		13.2	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Phosphorus	0.0660	0.100		0.174	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	4.55	4.55		60.0	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	4.55	4.55		20.5	MG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	0.400	1.00		3.7	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-06, Inorganic Analyses

ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008938

CARLYLE LAKE

Project Name: Project No:

Report Date: 07/14/2022

Analysis: Inorganics NELAC Certified - IL100308

ARDL No: 008938-07	2	Samp	Sampling Loc'n:		CARLYLE LAKE			Matrix:	:: WATER	
Field ID: CAR-15		Sam	Sampling Date:		06/23/2022			Moisture:	: NA	
Received: 06/23/2022	22	Samj	Sampling Time:	.me: 1422						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	год	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.100	0.100		DN	MG/L	NONE	350.1	NA	06/27/22	R313738
Chlorophyll-a, Correcte	1.00	1.00		76.9	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Kjeldahl Nitrogen	0.480	1.00		1.3	MG/L	351.2	351.2	06/24/22	06/27/22	193994
Nitrate as Nitrogen	0.0190	0.0200		0.092	MG/L	NONE	GREEN	NA	06/24/22	06306795
Nitrite as Nitrogen	0.0200	0.0200		0.020	MG/L	NONE	354.1	NA	06/22/22	06286779
Pheophytin-a	1.00	1.00		21.3	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807
Phosphorus	0.0660	0.100		0.256	MG/L	365.2	365.2	06/24/22	06/27/22	193992
Solids, Total Suspended	3.33	3.33		32.7	MG/L	NONE	160.2	NA	06/24/22	06296785
Solids, Volatile Suspen	3.33	3.33		13.7	MG/L	NONE	160.4	NA	06/24/22	06296787
Total Organic Carbon	0.400	1.00		5.1	MG/L	NONE	415.1	NA	06/29/22	R313832

(a) DOD and/or NELAC Accredited Analyte.

Sample 008938-07, Inorganic Analyses

	Report Date: 07/14/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	/sis Prep Analysis Run 10d Date Date Number	04 NA 06/23/22 06276767
566				Analysis d Method	1604
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. Mt. Vernon, Illinois			CARLYLE LAKE 06/23/2022 1427	Units	COL/100 ML
AF Lation I Vernon,				Result	175
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Sam Sar Sar	ГОД	1.00
	0: 008938	CARLYLE LAKE	008938-08 CAR-KP-MARINA 06/23/2022	LOD	1.00
	Lab Report No:	Project Name: C Project No:	ARDL No: 0 Field ID: C Received: 0	Analyte	E. Coliform

Sample 008938-08, Inorganic Analyses

G	Report Date: 07/14/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 06/23/22 06276767
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. I Mt. Vernon, Illinois (CARLYLE LAKE 06/23/2022 1228	Units	COL/100 ML
ARI ation DJ Vernon,				Result	125
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Samp San San	ГОД	1.00
	lo: 008938	CARLYLE LAKE	008938-09 CAR-DW-MARINA 06/23/2022	LOD	1.00
	Lab Report No:	Project Name: C Project No:	ARDL No: 0 Field ID: C Received: 0	Analyte	E. Coliform

Sample 008938-09, Inorganic Analyses

Box 1566 62864	Report Date: 07/14/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Prep Analysis Prep Analysis Run Method Method Date Date Number	NONE 1604 NA 06/23/22 06276767
ARDL, INC. 400 Aviation Drive; P.O. Box Mt. Vernon, Illinois 628			Sampling Loc'n: CARLYLE LAKE Sampling Date: 06/23/2022 Sampling Time: 1630	P LOQ Flag Result Units Me	1.00 325 COL/100 ML N
	Lab Report No: 008938	Project Name: CARLYLE LAKE Project No:	ARDL No: 008938-10 Field ID: CAR-BL-MARINA Received: 06/23/2022	Analyte LOD	E. Coliform 1.00

Sample 008938-10, Inorganic Analyses

y	Report Date: 07/14/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 06/23/22 06276767
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. Mt. Vernon, Illinois			CARLYLE LAKE 06/23/2022 1237	Units	COL/100 ML
ARI ation DJ Vernon,				Result	86.0
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Sam San San	ТОQ	1.00
	Vo: 008938	CARLYLE LAKE	008938-11 CAR-CSA-MARINA 06/23/2022	LOD	1.00
	Lab Report No: 008938	Project Name: C Project No:	ARDL No: C Field ID: C Received: C	Analyte	E. Coliform

Sample 008938-11, Inorganic Analyses

Mt. Vernon, IL BLANK SUMMARY REPORT 400 Aviation Drive; P.O. Box 1566 ARDL, INC.

Lab Report No: 008938

Report Date: 07/14/2022

62864

E LAKE
CARLYLE L
: Name:
Project

IL100308
Т
Certified
NELAC

Analyte	гор	ГОQ	Blank Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run	QC Lab Number
(a) Iron	0.040	0.050	DN	MG/L	3010A	6010C	07/08/22	07/12/22	P7789	008938-01B1
(a) Manganese	0.004	0.005	ND	MG/L	3010A	6010C	07/08/22	07/12/22	P7789	008938-01B1
Ammonia Nitrogen	0.10	0.10	QN	MG/L	NONE	350.1	NA	06/27/22	R313738	008938-01B1
Chlorophyll-a, Corre	1.0	1.0	DN	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807	008938-05B1
E. Coliform	1.0	1.0	DN	COL/100 ML	NONE	1604	NA	06/23/22	06276767	008938-02B1
Kjeldahl Nitrogen	1.0	1.0	DN	MG/L	351.2	351.2	06/24/22	06/27/22	193994	008938-01B1
Nitrate as Nitrogen	0.019	0.020	DN	MG/L	NONE	GREEN	NA	06/24/22	06306795	008938-01B1
Nitrate as Nitrogen	0.019	0.020	ND	MG/L	NONE	GREEN	NA	06/24/22	06306796	008938-06B1
Nitrite as Nitrogen	0.020	0.020	ND	MG/L	NONE	354.1	NA	06/22/22	06286779	008938-01B1
Pheophytin-a	1.0	1.0	ND	MG/CU.M.	10200H	10200H	06/24/22	06/29/22	07056807	008938-05B1
Phosphorus	0.066	0.10	ND	MG/L	365.2	365.2	06/24/22	06/27/22	193992	008938-01B1
Solids, Total Suspen	1.0	1.0	DN	MG/L	NONE	160.2	NA	06/24/22	06296785	008938-04B1
Solids, Volatile Sus	1.0	1.0	DN	OMG/L	NONE	160.4	NA	06/24/22	06296787	008938-04B1
Total Organic Carbon	0.40	1.0	QN	MG/L	NONE	415.1	NA	06/29/22	R313832	008938-03B1

(a) DOD and/or NELAC Accredited Analyte Inorganic Method Blanks for 008938

Image: 07/14/2022 CARLYLE LAKE NELAC Certified - 11100308 Project Name: CARLYLE LAKE Mailyre NELAC Certified - 11100308 Justice NELAC Certified - 11100308 Analyre Nelaction 1000 Justice Nelaction 1000 Nelaction 1000 <th cols<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th>											
ame: CARIAVLE LAKE NELAC Certified re LCS 1 LCS 2 L		938										
LGS 1 LCS 1 Reult Analytical Reult Reult 1 103 0 110 7109 1.0 1.0 100 0 0 130364 1.0 1.0 100 0 0 130364 1.1 1.0 100 0 0 0 0506796 nn 0.95 0 0 0 0 0506796 nn 0.95 0 0 0 0 0506796 nn 0.95 - 0		CARLYLE LI	AKE							NELAC Cer	I	
5.2 5.0 103 87-115 7789 10 1.0 1.07 107 90-114 7789 11.0 1.0 1.07 90-114 87739 11.0 1.0 1.0 1.0 90-120 81733 11.0 1.0 1.0 1.0 80-120 133394 11.0 1.0 95 80-120 0500795 11.0 1.0 96 1033994 0500795 10 1.1 96 100-20 05306795 11.1 1.0 108 10120 05306795 0.95 1.0 1.0 108 06306795 0.0 1.1 1.1 108 103392 0.9 1.1 1.1 1013932 0.1 27.4 27.2 101 1013932	Analyte	LCS 1 Result	LCS 1 Level	LCS 1 % Rec	LCS 2 Result	LCS 2 Level	LCS 2 % Rec	% Rec Limits	Mean % Rec	Analytical Run	QC Lab Numbe <i>r</i>	
0.00 0.75 100 0-104 P739 1.0 1.0 1.0 100 11 P739 P3333 1.0 1.0 1.0 100 11 P P3394 1.1 1.0 10.0 110 P P3094 1.1 1.0 10 95 P P3095 en 0.95 1.0 95 P P3095 en 1.1 1.0 108 P P3095 en 27.4 27.2 101 P P4120 P31832 con 27.4 27.2 101 P P4120 P31832 con 27.4 27.2 101 P P4120 P13932 con 27.4 27.2 101 P P4120 P P41909 <td>- Tron</td> <td>с С</td> <td>C v</td> <td>103</td> <td></td> <td></td> <td></td> <td>87-115</td> <td>1</td> <td>P7789</td> <td>008938-01C1</td>	- Tron	с С	C v	103				87-115	1	P7789	008938-01C1	
1.0 1.0 <td>) Manganese</td> <td>0.80</td> <td>0.75</td> <td>107</td> <td>1</td> <td>1</td> <td></td> <td>90-114</td> <td>1</td> <td>P7789</td> <td>008938-01C1</td>) Manganese	0.80	0.75	107	1	1		90-114	1	P7789	008938-01C1	
11.0 10.0 110 60-120 19394 en 0.95 1.0 95 0.120 06306796 en 0.96 1.0 96 80-120 06306795 en 1.1 1.0 10 10 10 05306795 en 1.1 1.0 108 80-120 05306795 en 1.1 1.0 108 80-120 13392 on 27.4 27.2 101 16-120 13392 on 27.4 27.2 101 16-120 13392 on 27.4 27.2 101 16-120 13392 on 27.4 27.2 101 13392 on 27.2 101 13392 on 27.4 27.2 101 13392	monia Nitrogen	1.0	1.0	100	1]	:	80-120	ł	R313738	008938-01C1	
Nitrogen 0.95 1.0 95 80-120 05305796 Nitrogen 0.96 1.0 96 10 1.1 0.10 9.6 0.0530579 Nitrogen 1.1 1.0 108 10 1.20 05286779 1.1 2.0 9.5 10 1.0 1.0 0.586779 1.1 2.0 1.0 9.5 10 1.0 1.0 1.1 0.1 0.1 1.0 1.0 1.0 1.0	eldahl Nitrogen	11.0	10.0	110	ł	1	ł	80-120	1	193994	008938-01C1	
Nitrogen 0.96 1.0 96 80-120 06306795 Nitrogen 1.1 1.0 108 80-120 06286779 0.95 1.0 95 80-120 139992 nic Carbon 27.4 27.2 101 76-120 R313932 TF: Any values tabulated above marked with an asterisk are outside of acceptable limits.	trate as Nitrogen	0.95	1.0	95	ł	1	ł	80-120	1	06306796	008938-06C1	
Nitrogen 1.1 1.0 108 60-120 0626779 1.0 95 10 108 10 103 1030 10300 nic Carbon 27.4 27.2 101 10 10 76-120 113332 Nic Carbon 27.4 27.2 101 10 10 10 100 1000 The second allow and allow at a sterisk are outside of acceptable limits.	trate as Nitrogen	0.96	1.0	96	1	1		80-120		06306795	008938-01C1	
nic Carbon 27.4 27.2 101 16-120 13392 27.4 27.2 101 76-120 R313832 7.5 Any values tabulated above marked with an asterisk are outside of acceptable limits.	trite as Nitrogen	1.1	1.0	108	1	!	1	80-120	ł	06286779	008938-01C1	
nic Carbon 27.4 27.2 101 76-120 R31382	osphorus	0.95	1.0	95	ł		ł	80-120	ł	193992	008938-01C1	
	tal Organic Carbon	27.4	27.2	101	ł	*	ł	76-120	ł	R313832	008938-03C1	
	NOTE: Any values tak	bulated above ma	ırked with		sk are outs	ide of acc	eptable li	mits.				

Inorganic LCS Results for 008938

	62864
	H
	Vernon,
E REPORT	Mt.
UPLICAT	. Box 1566
MATRIX SPIKE/SPIKE D	Aviation Drive; P.O
R	400 A
	INC.
	ARDL,

Lab Report No: 008938

CARLYLE LAKE

Project Name:

Report Date: 07/14/2022

NELAC Cert

IL100308
1
Certified
VELAC

	Sample	Sample	SM	SM	WS	MSD	MSD	MSD	% Rec		RPD		QC Lab
Analyte	Matrix	Result	Result	Level	% Rec	Result	Level	% Rec	Limits	RPD	Limit	Run	Number
(a) Iron	WATER	0.69	1.7	1.0	102	1.8	1.0	106	87-115	m	20	P7789	008938-01MS
(a) Manganese	WATER	0.21	0.73	0.50	104	0.74	0.50	107	90-114	2	20	P7789	008938-01MS
Ammonia Nitrogen	WATER	DN	1.6	2.0	80	1.6	2.0	82	75-125	m	20	R313738	008938-01MS
Kjeldahl Nitrogen	WATER	ΠN	9.8	10.0	98	9.9	10.0	66	75-125	1	20	193994	008938-01MS
Nitrate as Nitrogen	WATER	0.18	1.2	1.0	106	1.2	1.0	105	75-125	0	20	06306795	008938-01MS
Nitrite as Nitrogen	WATER	0.043	1.2	1.0	119	1.2	1.0	112	75-125	9	20	06286779	008938-01MS
Phosphorus	WATER	0.23	1.2	1.0	94	1.2	1.0	96	75-125	7	20	193992	008938-01MS
Total Organic Carbon	WATER	4.6	9.3	5.0	94	9.3	5.0	94	76-120	0	20	R313832	008938-03MS

Inorganic Matrix Spikes for 008938

(a) DOD and/or NELAC Accredited Analyte.

NOTE: Values tabulated above marked with an asterisk are explained in the associated narrative.

	62864
	Π
	Vernon,
	Mt.
SAMPLE DUPLICATE REPORT	400 Aviation Drive; P.O. Box 1566
	INC.
	ARDL,

Lab Report No: 008938

Report Date: 07/14/2022

LAKE
CARLYLE 1
Name:
Project

NELAC Certified - IL100308

Analyte	Sample Conc'n	Sample First Conc'n Duplicate	Second Duplicate	Units	Percent Diff	Mean (Smp,D1,D2)	Analytical Run	QC Lab Number
Chlorophyll-a, Corrected	56.1	56.0		MG/CU.M.	0		07056807	008938-05D1
Pheophytin-a	9.8	13.5	1	MG/CU.M.	32*	!	07056807	008938-05D1
Solids, Total Suspended	30.7	33.5	-	MG/L	6	!	06296785	008938-04D1
Solids, Volatile Suspend	12.8	13.1	1	0MG/L	2		06296787	008938-04D1

Page 1 of 1 * indicates that agreement between duplicates is greater than 20%. See Case Narrative for exceptions. (a) DOD and/or NELAC Accredited Analyte Sample Duplicates for 008938

Sample Receipt Information

Including as appropriate:

- COCs
- Cooler Receipts
- Airbills
- Email Communication / Instructions from Customer

ARDL Data Package 8938 - Inorganic

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

SPECIFY CHEMICALS ADDED AND FINAL PH IF KNOWN PRESERVATION CHAIN OF CUSTODY RECORD × × × × × × × × ICED × × × SAMPLE LOCATION REMARKS REMARKS/SPECIAL INSTRUCTIONS: aswisw ND DOST NH3-N *Preserved with H₂SO₄ #Preserved with HNO₃ × × × × × × × × × × P.O. Box 1566, 400 Aviation Drive, Mt. Vernon, IL 62864 (618) 244-1149 Fax × × × X × × X × × × × × × X X × × × X × Received by: (Signature) Received by: (Signature) Forden Wlemen × X X × × × Shipping Ticket No. X × × × × × × (618) 244-3235 Phone NO. OF CONTAINERS GRAB × × × × × × × × × × × COMP 6-23-23 12h 22h Time (728 524 IZS3 127 TIME 1128 1248 1418 605 Time Time 1630 1021 Ngroo 12/21 11/22/0 Ban Greeking, Banjun Skistor Date DATE Date Date € ARDL, Inc. Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) CAR – CSA - Marina CAR – DW – Marina Received for Laboratory by: J CAR - KP - Marina CAR - BL - Marina SAMPLE NUMBER RPURCHASE ORDER NO: SAMPLERS: (Signature) ₹ CAR-2-10 0 -Carlyle Lake **CAR - 13** 6 CAR-12 7 CAR-15 CAR-2 CAR-4 CAR-PROJECT N t Page 20 0 ARDL

8938

	COOLER RECEIPT REP ARDL, INC.	ORT			
ARI	DL #: <u>8938,8939</u> Cod	bler # <u>GVeen</u> 1 mber of Coolers in Shipn	- gent:		_
Pro		re Received: $Md23/d$	2022		_
A.		2Z(Signature) DCB			
1.	Did cooler come with a shipping slip (airbill, etc.)?		YES (NO)
	If YES, enter carrier name and airbill number here: ARD Court	ier-Jordan 1	J		
2.	Were custody seals on outside of cooler?		YES	NO	(N/A)
	How many and where?,Seal Date:	,Seal Name:	an a		
3.	Were custody seals unbroken and intact at the date and time of arrival?		YES	NO	NA
4.	Did you screen samples for radioactivity using a Geiger Counter?			NO	
5.	Were custody papers sealed in a plastic bag?. Hand delivered		YES	N	
6.	Were custody papers filled out properly (ink, signed, etc.)?			NO	N/A
7.	Were custody papers signed in appropriate place by ARDL personnel?			NO	N/A
8.	Was project identifiable from custody papers? If YES, enter project name at the to	p of this form		NO	N/A
9.		Observed Cooler Temp	5. <u>4, 2</u> ection factor) 0.0	Temp
В.	LOG-IN PHASE: Date samples were logged-in: ()[2]24/2022 (Signa	ture) DCB		000	/
10.	Describe type of packing in cooler: Loose Ice				
11.	Were all samples sealed in separate plastic bags?		YES	NO) N/A
12.	Did all containers arrive unbroken and were labels in good condition?		YES	NO	
13.	Were sample labels complete?			NO	
14.	Did all sample labels agree with custody papers?			NO	
15.	Were correct containers used for the tests indicated?			NO	
16.	Was pH correct on preserved water samples?		YES	NO	N/A
17.	Was a sufficient amount of sample sent for tests indicated?		Ē	NO	_
18.	Were bubbles absent in VOA samples? If NO, list by sample #:		YES	NO	N/A
19.	Was the ARDL project coordinator notified of any deficiencies?		YES	NO	(N/A)
	Comments and/or Corrective Action:	Sample		1	
		Fraction	Fraction		
		Area #	Area #		
		Walk-In By	Ву		
		DCB	-,		
		06/24/2022	On		
		Chain-of-Custody #	 Auto-Millionaubau-pootal-balancem-web 	and the second secon	
(E	By: Signature) Date:				

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

	<u>COOLER RECEIPT REPORT</u> <u>ARDL, INC.</u>
ARI	DL #: $8938,8939$ DL #: <u>Red 1</u> Number of Coolerry in Shipmont: Z
Pro	ject: <u>Carlyle Lake</u> , Kaskaskia River Date Received: <u>Old23/2022</u>
A.	PRELIMINARY EXAMINATION PHASE: Date cooler was opened: 1/2/23/2022 (Signature)
1.	Did cooler come with a shipping slip (airbill, etc.)?
	If YES, enter carrier name and airbill number here: <u>ARDL</u> Couvier - Jordan W.
2.	Were custody seals on outside of cooler?YES NO N/A
	How many and where?,Seal Date:,Seal Name:
3.	Were custody seals unbroken and intact at the date and time of arrival?YES NO NA
4.	Did you screen samples for radioactivity using a Geiger Counter?
5.	Were custody papers sealed in a plastic bag?Hand delivered
6.	Were custody papers filled out properly (ink, signed, etc.)?
7.	Were custody papers signed in appropriate place by ARDL personnel?
8.	Was project identifiable from custody papers? If YES, enter project name at the top of this form
9.	Was a separate container provided for measuring temperature? YESNOObserved Cooler Temp. 3.4CC _C
В.	LOG-IN PHASE: Date samples were logged-in: U6/24/2022 (Signature)
10.	Describe type of packing in cooler: LOUSE LCE
11.	Were all samples sealed in separate plastic bags?
12.	Did all containers arrive unbroken and were labels in good condition?
13.	Were sample labels complete?
14.	Did all sample labels agree with custody papers?
15.	Were correct containers used for the tests indicated?
16.	Was pH correct on preserved water samples?
17.	Was a sufficient amount of sample sent for tests indicated?
18.	Were bubbles absent in VOA samples? If NO, list by sample #:YES NO NA
19.	Was the ARDL project coordinator notified of any deficiencies?
	Comments and/or Corrective Action: Sample Transfer
	Fraction
	Area # Area #
	By By By
	PCB
	On 06 24 2022 On
	Chain-of-Custody #
(E	By: Signature) Date:

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

Environmental | Analytical | Management | Safety

Customer Name: SLCOE

Project Name: Carlyle Lake

Samples Received at ARDL: 8/2/2022

PO Box 1566 400 Aviation Drive Mt. Vernon, IL 62864 618-244-3235

www.ardlinc.com

Date: 8/25/2022

Lab Name: ARDL, Inc.

ARDL Report No.: 8958

CASE NARRATIVE

Customer	Date	Lab ID	
Sample No.	Collected	Number	Analyses Requested
CAR-1	8/2/22	8958-01	Metals(1), Inorganics(2)(3), TKN*
CAR-2-0	8/2/22	8958-02	Inorganics(2)(3), TKN*, E. Coli
CAR-2-10	8/2/22	8958-03	Metals(1), Inorganics(2)
CAR-4	8/2/22	8958-04	Inorganics(2)(3), TKN*
CAR-13	8/2/22	8958-05	Inorganics(2)(3), TKN*, E. Coli
CAR-12	8/2/22	8958-06	Inorganics(2)(3), TKN*, E. Coli
CAR-15	8/2/22	8958-07	Inorganics(2)(3), TKN*
CAR-KP-MARINA	8/2/22	8958-08	E. Coli
CAR-DW-MARINA	8/2/22	8958-09	E. Coli
CAR-BL-MARINA	8/2/22	8958-10	E. Coli
CAR-CSA-MARINA	8/2/22	8958-11	E. Coli

(1) Including iron and manganese.

(2) Including ammonia*, nitrate*, nitrite, total phosphorus*, TOC*, TSS and TVSS.

(3) Including chlorophyll-a corrected and pheophytin-a.

* Analyzed by an accredited subcontract laboratory.

The quality control data are summarized as follows:

INORGANIC FRACTION

PREPARATION BLANK

Results of the preparation blanks were undetected.

LABORATORY CONTROL SAMPLE

Percent recoveries of all LCS analyses were within control limits.

MATRIX SPIKE

Percent recoveries of all matrix spikes and matrix spike duplicates were within control limits, except 2 of 2 for ammonia. The parent sample has been flagged appropriately with a 'J' qualifier.

DUPLICATE

All duplicate analyses are reported as MS/MSD except chlorophyll-a corrected, pheophytin-a, TSS and TVSS. RPD on all duplicate analyses were within control limits, except chlorophyll-a corrected. The parent sample has been flagged appropriately with a 'J' qualifier.

"Test everything, keep the good" 1 Thes. 5:21

Project Name: Carlyle Lake

ARDL Report No.: 8958

CASE NARRATIVE (Continued)

DATA REPORTING QUALIFIERS

The following data reporting qualifiers are used as required:

- ND Indicates parameter was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration or this flag indicates analyte(s) associated with a DOD-QSM specified non-compliance pertaining to matrix QC criteria.

Release of the data contained in this package has been authorized by the Technical Services Manager or his designee as verified by the following signature.

Dean S. Dickerson Technical Services Manager

Page 2 of 2

Sample & QC Results

Including as appropriate: Field Sample Results Batch QC Prep Blank LCS/Spike Blank Matrix QC MS/MSD Sample Duplicate

ARDL Data Package 8958 - Inorganic

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008958

CARLYLE LAKE

Project Name:

Report Date: 08/25/2022

Analysis: Inorganics

Project No:							2	NELAC Certified -	fied - IL1003	JL100308
	-01	Samp	Sampling Loc'n: Sampling Date:		CARLYLE LAKE 08/02/2022			Matrix: Moisture:	:: WATER : NA	
Received: US/UZ/ZUZZ	7707	sam	sampiing lime:	1me: U833						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ТОÕ	Flag	Result	Units	Method	Method	Date	Date	Number
(a) Iron	0.0400	0.0500		0.602	MG/L	3010A	6010C	08/11/22	08/17/22	P7813
(a) Manganese	0.00400	0.00500		0.158	MG/L	3010A	6010C	08/11/22	08/17/22	P7813
Ammonia Nitrogen	0.0270	0.100	Ŀ	0.037	MG/L	NONE	350.1	NA	08/11/22	R315638C
Chlorophyll-a, Correcte	te 1.00	1.00		12.5	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
Kjeldahl Nitrogen	0.475	1.00	Ъ	0.50	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	0.00900	0.0500		0.216	MG/L	NONE	353.2	NA	08/11/22	R315670C
Nitrite as Nitrogen	0.0190	0.0200		DN	MG/L	NONE	354.1	NA	08/03/22	08237001
Pheophytin-a	1.00	1.00		4.5	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
Phosphorus	0.0660	0.100		0.372	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	ed 3.45	3.45		18.3	MG/L	NONE	160.2	NA	08/03/22	08086930
Solids, Volatile Suspen	en 3.45	3.45		6.21	MG/L	NONE	160.4	NA	08/03/22	08086931
Total Organic Carbon	0.500	1.00		4.56	MG/L	NONE	9060	NA	08/09/22	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-01, Inorganic Analyses

	Box 1566	62864
ARDL, INC.	400 Aviation Drive; P.O.	Mt. Vernon, Illinois

008958 Lab Report No:

08/25/2022 Report Date:

Project Name: CARLYLE LAKE Project No:	LAKE							Analysis: Inorganics NELAC Certified - IL100308	: Inorganics fied - IL1003	ics 00308
ARDL No: 008958-02 Field ID: CAR-2-0 Received: 08/02/2022	2 2 2 2 2	Sampling Samplin Samplin	יס יס ו		CARLYLE LAKE 08/02/2022 1354			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ΓΟΟ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.0270	0.100		DN	MG/L	NONE	350.1	NA	08/11/22	R315638C
Chlorophyll-a, Correcte	1.00	1.00		20.2	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
E. Coliform	1.00	1.00		350	COL/100 ML	NONE	1604	NA	08/02/22	08237000
Kjeldahl Nitrogen	0.475	1.00	Ŀ	0.60	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	00600.0	0.0500		0.183	MG/L	NONE	353.2	NA	08/11/22	R315670C
Nitrite as Nitrogen	0.0190	0.0200		DN	MG/L	NONE	354.1	NA	08/03/22	08237001
Pheophytin-a	1.00	1.00		6.7	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
Phosphorus	0.0660	0.100		0.366	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	4.00	4.00		25.6	MG/L	NONE	160.2	NA	08/03/22	08086930
Solids, Volatile Suspen	4.00	4.00		7.2	MG/L	NONE	160.4	NA	08/03/22	08086931
Total Organic Carbon	0.500	1.00		4.3	MG/L	NONE	9060	NA	08/09/22	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-02, Inorganic Analyses

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008958 Lab Report No:

CARLYLE LAKE

Project Name: Project No:

08/25/2022 Report Date: NELAC Certified - IL100308

Analysis: Inorganics

ARDL No: 008958-03 Field ID: CAR-2-10 Received: 08/02/2022	22	Sampling Samplin Samplin	ם מ		CARLYLE LAKE 08/02/2022 1340			Matrix: Moisture:	: WATER : NA	
Analyte	ГОД	гоб	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
(a) Iron	0.0400	0.0500		1.24	MG/L	3010A	6010C	08/11/22	08/17/22	P7813
(a) Manganese	0.00400	0.00500		0.195	MG/L	3010A	6010C	08/11/22	08/17/22	P7813
Ammonia Nitrogen	0.0270	0.100		DN	MG/L	NONE	350.1	NA	08/11/22	R315638C
Kjeldahl Nitrogen	0.475	1.00	Ŀ	0.616	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	0.00900	0.0500		0.186	MG/L	NONE	353.2	NA	08/11/22	R315670C
Nitrite as Nitrogen	0.0190	0.0200		QN	MG/L	NONE	354.1	NA	08/03/22	08237001
Phosphorus	0.0660	0.100		0.365	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	4.26	4.26		38.7	MG/L	NONE	160.2	NA	08/03/22	08086930
Solids, Volatile Suspen	4.26	4.26		8.94	MG/L	NONE	160.4	NA	08/03/22	08086931
Total Organic Carbon	0.500	1.00		4.3	MG/L	NONE	9060	NA	08/09/22	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-03, Inorganic Analyses

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008958 Lab Report No:

Project Name: CARLYLE LAKE

08/25/2022 Report Date: Analysis: Inorganics

Project No:							Z	ELAC Certi	NELAC Certified - IL100308	0308
ARDL No: 008958-04 Field ID: CAR-4 Received: 08/02/2022	4 22	Sampling Samplin Samplin	<pre>ampling Loc'n: Sampling Date: Sampling Time:</pre>		CARLYLE LAKE 08/02/2022 1023			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ΓΟŌ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.0270	0.100	Ь	0.040	MG/L	NONE	350.1	NA	08/11/22 R315638C	(315638C
Chlorophyll-a, Correcte	1.00	1.00		17.9	MG/CU.M.	10200H	10200H	08/03/22	08/05/22 (08096941
Kjeldahl Nitrogen	0.475	1.00	Ŀ	0.80	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	0.00900	0.0500		0.185	MG/L	NONE	353.2	NA	08/11/22 F	R315670C
Nitrite as Nitrogen	0.0190	0.0200		ΟN	MG/L	NONE	354.1	NA	08/03/22 (08237001
Pheophytin-a	1.00	1.00		9.3	MG/CU.M.	10200H	10200H	08/03/22	08/05/22 (08096941
Phosphorus	0.0660	0.100		0.262	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	5.88	5.88		46.5	MG/L	NONE	160.2	NA	08/03/22 (08086930
Solids, Volatile Suspen	5.88	5.88		9.41	MG/L	NONE	160.4	NA	08/03/22 (08086931
Total Organic Carbon	0.500	1.00		4.3	MG/L	NONE	9060	NA	08/09/22 F	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-04, Inorganic Analyses

ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008958

CARLYLE LAKE

Project Name:

Report Date: 08/25/2022

Analysis: Inorganics NELAC Certified - IL100308

Project No:							Z	ELAC Certi	NELAC Certified - IL100308	00308
ARDL No: 008958-05 Field ID: CAR-13 Received: 08/02/2022	5 22	Samp] Samr Samr	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 08/02/2022 1143			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	LOQ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.0270	0.100		QN	MG/L	NONE	350.1	NA	08/11/22	R315638C
Chlorophyll-a, Correcte	1.00	1.00		QN	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
E. Coliform	1.00	1.00		350	COL/100 ML	NONE	1604	NA	08/02/22	08237000
Kjeldahl Nitrogen	0.475	1.00	Ŀ	0.60	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	00600.0	0.0500		0.594	MG/L	NONE	353.2	NA	08/11/22	R315670C
Nitrite as Nitrogen	0.0190	0.0200		DN	MG/L	NONE	354.1	NA	08/03/22	08237001
Pheophytin-a	1.00	1.00		190	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
Phosphorus	0.0660	0.100		0.102	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	4.00	4.00		35.2	MG/L	NONE	160.2	NA	08/03/22	08086930
Solids, Volatile Suspen	4.00	4.00		8.0	MG/L	NONE	160.4	NA	08/03/22	08086931
Total Organic Carbon	0.500	1.00		3.1	MG/L	NONE	9060	NA	08/09/22	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-05, Inorganic Analyses

	Box 1566	62864
ARDL, INC.	400 Aviation Drive; P.O.	Mt. Vernon, Illinois

008958 Lab Report No: CARLYLE LAKE

Project Name: Project No:

08/25/2022 Report Date: Analysis: Inorganics NELAC Certified - IL100308

ARDI. NO. ODR958-D6	L.	CumeS	Samuling Loc'n.		CARLVLE LAKE			Matrix:	WATER	
	5	Sam	Sampling Date:		08/02/2022			Moisture:		
Received: 08/02/2022	22	Samj	Sampling Time:	ime: 1233						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ΓΟÕ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0270	0.100		ND	MG/L	NONE	350.1	NA	08/11/22	R315638C
Chlorophyll-a, Correcte	1.00	1.00	Ŀ	41.4	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
E. Coliform	1.00	1.00		450	COL/100 ML	NONE	1604	NA	08/02/22	08237000
Kjeldahl Nitrogen	0.475	1.00		ND	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	00600.0	0.0500		0.455	MG/L	NONE	353.2	NA	08/11/22	R315670C
Nitrite as Nitrogen	0.0190	0.0200		QN	MG/L	NONE	354.1	NA	08/03/22	08237001
Pheophytin-a	1.00	1.00		18.6	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941
Phosphorus	0.0660	0.100		0.116	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	4.35	4.35		27.0	MG/L	NONE	160.2	NA	08/03/22	08086930
Solids, Volatile Suspen	4.35	4.35		7.83	MG/L	NONE	160.4	NA	08/03/22	08086931
Total Organic Carbon	0.500	1.00		3.9	MG/L	NONE	9060	NA	08/09/22	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-06, Inorganic Analyses

400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864 ARDL, INC.

> 008958 Lab Report No:

CARLYLE LAKE

Project Name:

08/25/2022 Report Date: Analysis: Inorganics

Project No:							Z	ELAC Certi	NELAC Certified - IL100308	0308
ARDL No: 008958-07	07	Sampling		Loc'n: CARLY	CARLYLE LAKE			Matrix:	: WATER	
Field ID: CAR-15		Samp	Sampling Date:		08/02/2022			Moisture:	: NA	
Received: 08/02/2022	022	Samp	Sampling Time:	.me: 1023						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ТОÕ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0270	0.100	Ŀ	0.040	MG/L	NONE	350.1	NA	08/11/22 R315638C	t315638C
Chlorophyll-a, Correcte	e 1.00	1.00		17.6	MG/CU.M.	10200H	10200H	08/03/22	08/05/22 (08096941
Kjeldahl Nitrogen	0.475	1.00	Ŀ	0.60	MG/L	351.2	351.2	08/08/22	08/09/22	195373C
Nitrate as Nitrogen	00600.0	0.0500		0.192	MG/L	NONE	353.2	NA	08/11/22 F	R315670C
Nitrite as Nitrogen	0.0190	0.0200		ND	MG/L	NONE	354.1	NA	08/03/22 (08237001
Pheophytin-a	1.00	1.00		8.2	MG/CU.M.	10200H	10200H	08/03/22	08/05/22 (08096941
Phosphorus	0.0660	0.100		0.263	MG/L	365.4	365.4	08/08/22	08/09/22	195372C
Solids, Total Suspended	d 6.25	6.25		48.8	MG/L	NONE	160.2	NA	08/03/22 (08086930
Solids, Volatile Suspen	n 6.25	6.25		10.0	MG/L	NONE	160.4	NA	08/03/22 (08086931
Total Organic Carbon	0.500	1.00		4.4	MG/L	NONE	9060	NA	08/09/22 F	R315556C

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-07, Inorganic Analyses

	2022	nics 100308		Run Number	08/02/22 08237000
	e: 08/25/2022	Analysis: Inorganics NELAC Certified - IL100308	x: WATER e: NA	Analysis Date	08/02/22
	Report Date:	Analysis: ELAC Certifie	Matrix: Moisture:	Prep Date	NA
Q	Ŗ	R		Analysis Method	1604
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. H. Vernon, Illinois			CARLYLE LAKE 08/02/2022 1037	Units	COL/100 ML
AR ation D Vernon,				Result	675
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Samp San San	Тоб	1.00
	Lab Report No: 008958	CARLYLE LAKE	008958-08 CAR-KP-MARINA 08/02/2022	E	1.00
	Lab Report	Project Name: CARLYLE LAKE Project No:	ARDL No: Field ID: Received:	Analyte	E. Coliform

Sample 008958-08, Inorganic Analyses

	Report Date: 08/25/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	s Prep Analysis Run Date Date Number	NA 08/02/22 08237000
<u>و</u>				Analysis Method	1604
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. Mt. Vernon, Illinois			CARLYLE LAKE 08/02/2022 1432	Units	COL/100 ML
ARI ation Dı Vernon,				Result	150
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Samr San San	ГОŎ	1.00
	Io: 008958	CARLYLE LAKE	008958-09 CAR-DW-MARINA 08/02/2022	LOD	1.00
	Lab Report No: 008958	Project Name: C Project No:	ARDL No: C Field ID: C Received: C	Analyte	E. Coliform

Sample 008958-09, Inorganic Analyses

	Report Date: 08/25/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 08/02/22 08237000	
9				Anal Met	16	
Box 1566 62864				Prep Method	NONE	
NC. P.O. nois			CARLYLE LAKE 08/02/2022 1255	Units	COL/100 ML	
ARDL, I Aviation Drive; Mt. Vernon, Illi				Result	200	
400 Avi Mt.			ampling Loc'n: Sampling Date: Sampling Time:	Flag		
			Sampling Samplin Samplin	год	1.00	
	No: 008958	CARLYLE LAKE	008958-10 CAR-BL-MARINA 08/02/2022	te LOD	1.00	
	Lab Report No:	Project Name: Project No:	ARDL No: Field ID: Received:	Analyte	E. Coliform	

Sample 008958-10, Inorganic Analyses

		ω		Run Number	7000
	2022	nics 10030			0823
	: 08/25/2022	: Inorganics fied - IL1003	: WATER : NA	Analysis Date	08/02/22 08237000
	Report Date:	Analysis: Inorganics NELAC Certified - IL100308	Matrix: Moisture:	Prep Date	NA
10	Re	ΞN		Analysis Method	1604
Box 1566 62864				Prep Method	NONE
ARDL, INC. Aviation Drive; P.O. Mt. Vernon, Illinois			CARLYLE LAKE 08/02/2022 1414	Units	COL/100 ML
ARI ation D; Vernon,				Result	125
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Samr San San	ΓΟΟ	1.00
	008958	CARLYLE LAKE	008958-11 CAR-CSA-MARINA 08/02/2022	TOD	1.00
	No:		008: CAR- 08/0	t e	
	Lab Report No:	Project Name: Project No:	ARDL No: Field ID: Received:	Analyte	E. Coliform

(a) DOD and/or NELAC Accredited Analyte.

Sample 008958-11, Inorganic Analyses

62864 Mt. Vernon, IL 400 Aviation Drive; P.O. Box 1566 BLANK SUMMARY REPORT ARDL, INC.

Lab Report No: 008958

CARLYLE LAKE

Project Name:

Report Date: 08/25/2022

NELAC Certified - IL100308

			Blank		Prep	Analysis	Prep	Analysis		QC Lab
Analyte	LOD	ΓΟŌ	Result	Units	Method	Method	Date	Date	Run	Number
(a) Iron	0.040	0.050	QN	MG/L	3010A	6010C	08/11/22	08/17/22	P7813	008958-01B1
(a) Manganese	0.004	0.005	DN	MG/L	3010A	6010C	08/11/22	08/17/22	P7813	008958-01B1
Ammonia Nitrogen	0.027	0.10	ND	MG/L	NONE	350.1	NA	08/11/22	R315638C	008958-01B1
Chlorophy11-a, Corre	1.0	1.0	DN	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941	008958-06B1
Kjeldahl Nitrogen	0.48	1.0	DN	MG/L	351.2	351.2	08/08/22	08/09/22	195373C	008958-03B1
Nitrate as Nitrogen	0.009	0.050	DN	MG/L	NONE	353.2	NA	08/11/22 R315670C	R315670C	008958-07B1
Nitrite as Nitrogen	0.019	0.020	DN	MG/L	NONE	354.1	NA	08/03/22	08237001	008958-01B1
Pheophytin-a	1.0	1.0	DN	MG/CU.M.	10200H	10200H	08/03/22	08/05/22	08096941	008958-06B1
Phosphorus	0.066	0.10	DN	MG/L	365.4	365.4	08/08/22	08/09/22	195372C	008958-03B1
Solids, Total Suspen	1.0	1.0	QN	MG/L	NONE	160.2	NA	08/03/22	08086930	008958-04B1
Solids, Volatile Sus	1.0	1.0	QN	MG/L	NONE	160.4	NA	08/03/22	08086931	008958-04B1
Total Organic Carbon	0.50	1.0	ND	MG/L	NONE	9060	NA	08/09/22 1	R315556C	008958-01B1

(a) DOD and/or NELAC Accredited Analyte Inorganic Method Blanks for 008958

AR	ARDL, INC.	400 A1	viation Drive; P.O.	400 Aviation Drive;	; Р.О.	. Box 1566	1566	Mt. Vé	Vernon, IL	. 62864
Lab Report No: 00	008958								Report Date:	ate: 08/25/2022
Project Name:	CARLYLE LAKE	AKE							NELAC Cer	Certified - IL100308
Analyte	LCS 1 Result	LCS 1 Level	LCS 1 % Rec	LCS 2 Result	Level	LCS 2 % Rec	% Rec Limits	Mean % Rec	Analytical Run	QC Lab Number
(a) Iron	4.6	5.0	63	1	1		87-115	-	P7813	008958-01C1
(a) Manganese	0.73	0.75	57	ł	ł	ł	90-114		P7813	008958-01C1
Ammonia Nitrogen	1.0	1.0	104	80 AU	ł	ł	90-110	ł	R315638C	008958-01C1
Kjeldahl Nitrogen	10.4	10.0	104	1	ł	1	90-110	1	195373C	008958-03C1
Nitrate as Nitrogen	0.51	0.50	102	t t	ł	ł	90-110	90% A.	R315670C	008958-07C1
Nitrite as Nitrogen	0.95	1.0	95	ł	ł	1	80-120	**	08237001	008958-01C1
Phosphorus	0.93	1.0	93	ł	ł	!	85-115	*	195372C	008958-03C1
Total Organic Carbon	26.9	27.2	66	ł	ł	1	90-110	;	R315556C	008958-01C1
NOTE: Any values (a) DOD and/or NE	NOTE: Any values tabulated above marked with an (a) DOD and/or NELAC Accredited Analyte	irked with alyte		ASLEITSK AIE OULSIGE OI		acceptable limits.	·SJIWI			

Page 1 of 1

Inorganic LCS Results for 008958

62864 Mt. Vernon, IL MATRIX SPIKE/SPIKE DUPLICATE REPORT 400 Aviation Drive; P.O. Box 1566 ARDL, INC.

Lab Report No: 008958

CARLYLE LAKE

Project Name:

Report Date: 08/25/2022

NELAC Certified - IL100308

	Sample	Sample	SM	SM	SM	MSD	MSD	MSD	% Rec		RPD		QC Lab
Analyte	Matrix	Result	Result	Level	% Rec	Result	Level	\$ Rec	Limits	RPD	Limit	Run	Number
(a) Iron	WATER	0.60	1.6	1.0	96	1.6	1.0	66	87-115	2	20	P7813	008958-01MS
(a) Manganese	WATER	0.16	0.65	0.50	98	0.66	0.50	101	90-114	7	20	P7813	008958-01MS
Ammonia Nitrogen	WATER	J 0.037	1.5	2.0	76 *	1.6	2.0	* LL	90-110	2	10	R315638C	008958-01MS
Kjeldahl Nitrogen	WATER	J 0.62	9.8	10.0	92	10	10.0	94	90-110	7	15	195373C	008958-03MS
Nitrate as Nitrogen	WATER	0.19	0.46	0.25	108	0.46	0.25	106	90-110	1	10	R315670C	008958-07MS
Nitrite as Nitrogen	WATER	ND	0.90	1.0	06	06.0	1.0	06	75-125	0	20	08237001	008958-01MS
Phosphorus	WATER	0.37	1.3	1.0	94	1.3	1.0	96	85-115	1	15	195372C	008958-03MS
Total Organic Carbon	WATER	4.6	9.2	5.0	92	9.4	5.0	67	85-115	e	10	R315556C	008958-01MS

Inorganic Matrix Spikes for 008958

(a) DOD and/or NELAC Accredited Analyte.

NOTE: Values tabulated above marked with an asterisk are explained in the associated narrative.

62864 Mt. Vernon, IL SAMPLE DUPLICATE REPORT 400 Aviation Drive; P.O. Box 1566 ARDL, INC.

Lab Report No: 008958

Report Date: 08/25/2022

CARLYLE LAKE Project Name:

NELAC Certified - IL100308

Analyte	Sample Conc'n	Sample First Conc'n Duplicate	Second Duplicate	Units	Percent Diff	Mean (Smp,D1,D2)	Analytical Run	QC Lab Number	1
Chlorophyll-a, Corrected	41.4	23.7	-	MG/CU.M.	54*	1	08096941	008958-06D1	I
Pheophytin-a	18.6	22.6	-	MG/CU.M.	19	1	08096941	008958-06D1	
Solids, Total Suspended	46.5	44.4	1	MG/L	ъ	1	08086930	008958-04D1	
Solids, Volatile Suspend	9.4	9.4	-	MG/L	0		08086931	008958-04D1	

See Case Narrative for exceptions. * indicates that agreement between duplicates is greater than 20%. (a) DOD and/or NELAC Accredited Analyte

Sample Duplicates for 008958

ARDL Report 8958 - Page 18 of 22

Sample Receipt Information

Including as appropriate:

- COCs
- Cooler Receipts
- Airbills
- Email Communication / Instructions from Customer

ARDL Data Package 8958 - Inorganic

Authorized By: DSD-QAO

ARDL, Inc.		P.O. Box 1566, 400 Aviation Drive, Mt. (618) 244-3235 Phone (618)	00 Aviatio 235 Phon	n Driv e	ve, Mt (618)	. Ven 244-	. Vernon, IL 62 244-1149 Fax	Vernon, IL 62864 244-1149 Fax	4		00	67	8928	1. 1		C	HAIN 0	CHAIN OF CUSTODY RECORD	DY R	ECOR	Q
PROJECT Carlyle Lake					-0	je.		400		AL	4								PR	PRESERVATION	TION
SAMPLERS: (Signature) Ben Greeling, Brenching Hick, Kaleb Raker,	5 heles,	Ka leb	CONTAIN		12.50	00000000000000000000000000000000000000	20	N		0.	OSN IIC V: J:S	asn			\sim	2	2. N.		ICED	SPEC CHEM ADDEJ FINAL KNO	SPECIFY CHEMICALS ADDED AND FINAL pH IF KNOWN
SAMPLE NUMBER	DATE	TIME	GRAB		1.	Volus		EON*			SW	Via		\backslash	\sim	SAIV	REMARKS OR SAMPLE LOCATION	KS CATION			
1 CAR-1	6/2/24	0833	×	X	X	X	X	X	X		X								X		
Z CAR-2-0		1354	X	X	Х	X	X	X		Х									Х		
3 CAR-2-10		0451	×	X		X		X	X										Х		
4 CAR - 4		023	×	X	X	X	X	X								tern			Х		
5 CAR - 13		11/1/2	X X	X	X	X	X	X		X						*			Х		
6 CAR-12		1233	×	X	X	X	X	X		Х						Ъ.,			Х		
7 CAR – 15		1023	X	X	Х	X	X	X											X		
& CAR – KP – Marina		[037	X							Х									Х		
9 CAR – DW – Marina	_	1432	×							X								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Х		
10 CAR – BL – Marina		1255	×							Х									Х	-	
CAR – CSA - Marina	7	14/14	X							Х									X		¥
A																					
RDL																					
Rep			<																		
Relinquished by: (Signature)	Date K/1/1	Time)// (2)	Received by: (Signature)	by: (S	gnatu	re)		REMA	RKS/	REMARKS/SPECIAL INSTRUCTIONS	ALIN	STRI	JCTIC	NS:							
66 Relinquished by: (Signature).	8/2/27	Time	Received by (Signature)	by: (S	ignatu			*Prese #Prese	rved v rved v	*Preserved with H ₂ SO ₄ #Preserved with HNO ₃	S04 103										
BBB Received for Laboratory by: a (Signature)	Date S/2/D	Time 1	Shipping Ticket No.	Ficket	No.			-													
ZPURCHASE ORDER NO:	-																				

	<u>COOLER RECEIPT F</u> ARDL, INC.	REPORT
	QQEQ	Cooler # Blue 1
ARI	DL #:())))))	Cooler # DVE_L Number of Coolers in Shipment:
	ect: Carlyle Lake	
Pro	ect: <u>Carlyle Lafe</u>	Date Received: 08/02/202.2
A.	PRELIMINARY EXAMINATION PHASE: Date cooler was opened:	202 Z_(Signature)
1.	Did cooler come with a shipping slip (airbill, etc.)?	YES NO
	If YES, enter carrier name and airbill number here:	Carrier-Valerie
2.	Were custody seals on outside of cooler?	
	How many and where?,Seal Date:	"Seal Name:
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES NONÀ
4.	Did you screen samples for radioactivity using a Geiger Counter?,	NO NO
5.	Were custody papers sealed in a plastic bag? Hand de livere	CYES (10)
6.	Were custody papers filled out properly (ink, signed, etc.)?	
7.	Were custody papers signed in appropriate place by ARDL personnel?	NO N/A
8.	Was project identifiable from custody papers? If YES, enter project name at	the top of this form
9.	Was a separate container provided for measuring temperature? YES	NO Observed Cooler Temp. 3.1 C Correction factor 0.0 C
В.	LOG-IN PHASE: Date samples were logged-in: 08/03/2022	(Signature)
10.	Describe type of packing in cooler: LOOSE Ice	
11.	Were all samples sealed in separate plastic bags?	
12.	Did all containers arrive unbroken and were labels in good condition?	NO
13.	Were sample labels complete?	NO NO
14.	Did all sample labels agree with custody papers?	
15.	Were correct containers used for the tests indicated?	
16.	Was pH correct on preserved water samples?	
17.	Was a sufficient amount of sample sent for tests indicated?	NO
18.	Were bubbles absent in VOA samples? If NO, list by sample #:	YES NO (N/A)
19,	Was the ARDL project coordinator notified of any deficiencies?	YES NO (N/A)
	Comments and/or Corrective Action:	Sample Transfer
		All
		Area #
		By D D By
		P0B
		On On On
		LUGUS/LURC
		Chain-of-Custody #
(F	By: Signature) Date:	

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

	COOLER RECEIPT	
	ARDL, INC	· 0.4
ARI	$\mathcal{O}_{L\#}$	Cooler # Ked Z
		Number of Coolers in \$hipment:
Pro	est CON Me Lake	Date Received: 08/02/2022
110		
Α.	PRELIMINARY EXAMINATION PHASE: Date cooler was opened:	3/2072(Signature)
1.	Did cooler come with a shipping slip (airbill, etc.)?	YES NO
	Did cooler come with a shipping slip (airbill, etc.)?	Courier-Vallerie
2.	Were custody seals on outside of cooler?	YES NO NA
	How many and where?,Seal Date	,Seal Name:
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES NO NA
4.	Did you screen samples for radioactivity using a Geiger Counter?,	YES NO
5.	Did you screen samples for radioactivity using a Geiger Counter?	UO YES NO
6.	Were custody papers filled out properly (ink, signed, etc.)?	NO N/A
7.	Were custody papers signed in appropriate place by ARDL personnel?	
8.	Was project identifiable from custody papers? If YES, enter project name a	t the top of this form
9.	Was a separate container provided for measuring temperature? YES	Correction factor () () (
В.	LOG-IN PHASE: Date samples were logged-in:	
10.	Describe type of packing in cooler: Lcose Ice	
11.	Were all samples sealed in separate plastic bags?	
12.	Did all containers arrive unbroken and were labels in good condition?	NO
13.	Were sample labels complete?	
14.	Did all sample labels agree with custody papers?	NO
15.	Were correct containers used for the tests indicated?	
16.	Was pH correct on preserved water samples?	
17.	Was a sufficient amount of sample sent for tests indicated?	
18.	Were bubbles absent in VOA samples? If NO, list by sample #:	YES_ NO (N/A)
19.	Was the ARDL project coordinator notified of any deficiencies?	YES NO NA
	Comments and/or Corrective Action:	Sample Transfer
		Fraction Fraction
		Area # Area #
		By By
		Dr.B.
		On On On
-		00/03/2022
		Chain-of-Custody #
(E	y: Signature) Date:	

• •

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

Environmental | Analytical | Management | Safety

Customer Name: SLCOE

Project Name: Carlyle Lake

Samples Received at ARDL: 9/6/2022

PO Box 1566 400 Aviation Drive Mt. Vernon, IL 62864 618-244-3235

www.ardlinc.com

Date: 10/10/2022

Lab Name: ARDL, Inc.

ARDL Report No.: 8995

CASE NARRATIVE

Customer	Date	<u>Lab ID</u>	•
Sample No.	<u>Collected</u>	<u>Number</u>	Analyses Requested
CAR-1	9/6/22	8995-01	Metals(1), Inorganics(2)(3)
CAR-2	9/6/22	8995-02	Inorganics(2)(3), E. Coli
CAR-2-10	9/6/22	8995-03	Metals(1), Inorganics(2)
CAR-4	9/6/22	8995-04	Inorganics(2)(3)
CAR-13	9/6/22	8995-05	Inorganics(2)(3), E. Coli
CAR-12	9/6/22	8995-06	Inorganics(2)(3), E. Coli
CAR-15	9/6/22	8995-07	Inorganics(2)(3)
CAR-KP-MARINA	9/6/22	8995-08	E. Coli
CAR-DW-MARINA	9/6/22	8995-09	E. Coli
CAR-BL-MARINA	9/6/22	8995-10	E. Coli
CAR-CSA-MARINA	9/6/22	8995-11	E. Coli

(1) Including iron and manganese.

(2) Including ammonia*, nitrate*, nitrite, total phosphorus*, TKN*, TOC*, TSS and TVSS.

(3) Including chlorophyll-a corrected and pheophytin-a.

* Analyzed by an accredited subcontract laboratory.

The quality control data are summarized as follows:

PREPARATION BLANK

Results of the preparation blanks were undetected.

LABORATORY CONTROL SAMPLE

Percent recoveries of all LCS analyses were within control limits.

MATRIX SPIKE

Percent recovery of all matrix spikes and matrix spike duplicates were within control limits, except 2 of 2 for ammonia. The parent sample has been flagged appropriately with a 'J' qualifier.

DUPLICATE

All duplicate analyses are reported as MS/MSD except chlorophyll-a corrected, pheophytin-a, TSS and TVSS. RPD on all duplicate analyses were within control limits, except pheophytin-a. The parent sample has been flagged appropriately with a 'J' qualifier.

"Test everything, keep the good" 1 Thes. 5:21

Project Name: Carlyle Lake

ARDL Report No.: 8995

CASE NARRATIVE (Continued)

DATA REPORTING QUALIFIERS

The following data reporting qualifiers are used as required:

- ND Indicates parameter was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration or this flag indicates analyte(s) associated with a DOD-QSM specified non-compliance pertaining to matrix QC criteria.

Release of the data contained in this package has been authorized by the Technical Services Manager or his designee as verified by the following signature.

Dean S. Dickerson Technical Services Manager

Page 2 of 2

Sample & QC Results

Including as appropriate: Field Sample Results Batch QC Prep Blank LCS/Spike Blank Matrix QC MS/MSD Sample Duplicate

ARDL Data Package 8995 - Inorganics

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

ARDL Report 8995 - Page 3 of 22

> 008995 Lab Report No:

10/10/2022 Report Date:

Project Name: Project No:	CARLYLE LAKE	LAKE						N	Analysis: ELAC Certifie	Analysis: Inorganics NELAC Certified - IL100308	ics 00308
ARDL No: Field ID: Received:	008995-01 CAR-1 09/06/2022	1 22	Samp] Samp Samp	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 09/06/2022 1145			Matrix: Moisture:	: WATER : NA	
Analyte	t e	LOD	LOQ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
(a) Iron		0.0400	0.0500		0.747	MG/L	3010A	6010C	09/12/22	09/14/22	P7847
(a) Manganese		0.00400	0.00500		0.164	MG/L	3010A	6010C	09/12/22	09/14/22	P7847
Ammonia Nitrogen	en	0.0270	0.100	Ŀ	QN	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	Correcte	1.00	1.00		33.8	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Kjeldahl Nitrogen	gen	0.475	1.00		1.07	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	rogen	00600.0	0.0500		0.072	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	rogen	0.0200	0.0200		0.023	MG/L	NONE	354.1	NA	09/07/22	09297108

09277104

09/15/22

09/07/22 09/09/22

10200H 365.4 160.2

NONE 10200H 365.2 NONE

MG/CU.M.

15.2

0.0500 0.0200 1.00

0.00900 0.0200 1.00 0.0660

Pheophytin-a Phosphorus

0.100

2.00

2.00

Solids, Total Suspended Solids, Volatile Suspen Total Organic Carbon

0.500

2.00 1.00

0.35 19.2 5.4

MG/L MG/L

196488

09/12/22

09/07/22 09297105

NA NA NA

> 160.4 415.1

> NONE NONE

MG/L

MG/L

4.49

09/07/22 09297107

R318089

09/15/22

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-01, Inorganic Analyses

ч Page 1 ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008995

CARLYLE LAKE

Project Name:

Report Date: 10/10/2022

Analysis: Inorganics

Project No:							N	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: 008995-02 Field ID: CAR-2 Received: 09/06/2022	2 22	Sampl Samp Samp	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 09/06/2022 1313			Matrix: Moisture:	: WATER : NA	
Analyte	LOD	ΓΟŌ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
Ammonia Nitrogen	0.0540	0.200		DN	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	1.00	1.00		61.3	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
E. Coliform	1.00	1.00		53.0	COL/100 ML	NONE	1604	NA	09/06/22	09297106
Kjeldahl Nitrogen	0.475	1.00		1.2	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	0.00900	0.0500		0.058	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	0.0200	0.0200		DN	MG/L	NONE	354.1	NA	09/07/22	09297108
Pheophytin-a	1.00	1.00	b	24.5	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Phosphorus	0.0660	0.100		0.316	MG/L	365.2	365.4	09/09/22	09/12/22	196488
Solids, Total Suspended	2.86	2.86		17.4	MG/L	NONE	160.2	NA	09/07/22	09297105
Solids, Volatile Suspen	2.86	2.86		8.0	MG/L	NONE	160.4	NA	09/07/22	09297107
Total Organic Carbon	0.500	1.00		4.64	MG/L	NONE	415.1	NA	09/15/22	R318089

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-02, Inorganic Analyses

> 008995 Lab Report No:

CARLYLE LAKE

Project Name:

Report Date: 10/10/2022

Analysis: Inorganics

Project No:								ч	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: Field ID: Received:	008995-03 CAR-2-10 09/06/2022	03 0 022	Sampl Samp Samp	Sampling Loc'n: Sampling Date: Sampling Time:		CARLYLE LAKE 09/06/2022 1313			Matrix: Moisture:	: WATER : NA	
Analyte	te	ГОD	Тоõ	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
(a) Iron		0.0400	0.0500		0.642	MG/L	3010A	6010C	09/12/22	09/14/22	P7847
(a) Manganese		0.00400	0.00500		0.149	MG/L	3010A	6010C	09/12/22	09/14/22	P7847
Ammonia Nitrogen	ren	0.0270	0.100		ND	MG/L	NONE	350.1	NA	09/13/22	R317956
Kjeldahl Nitrogen	gen	0.475	1.00		ND	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	rogen	0.00900	0.0500	ŗ	0.046	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	rogen	0.0200	0.0200		0.024	MG/L	NONE	354.1	NA	09/07/22	09297108
Phosphorus		0.0660	0.100		0.305	MG/L	365.2	365.4	09/09/22	09/12/22	196488
•											

09/07/22 09297105 09/07/22 09297107 R318089

09/15/22

NA NA NA

365.4 160.2 160.4 415.1

NONE NONE NONE

MG/L MG/L

18.8 5.0 4.66

2.50 2.50 1.00

2.50 2.50

Solids, Total Suspended Solids, Volatile Suspen Total Organic Carbon

0.500

MG/L

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-03, Inorganic Analyses

Ч of Page 1 ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864

Lab Report No: 008995

CARLYLE LAKE

Project Name:

Report Date: 10/10/2022

Analysis: Inorganics NELAC Certified - IL100308

Project No:							Z	NELAC Certified - IL100308	fied - IL1	00308
	4	Samp]	Sampling Loc'n:		CARLYLE LAKE			Matrix:		
FIELA IN: CAR-4 Received: 09/06/2022	22	samp	sampling Lace: Sampling Time:		us/us/zuzz 1454			AUTSCULE	WY .	
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ГОQ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0540	0.200		QN	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	1.00	1.00		66.1	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Kjeldahl Nitrogen	0.475	1.00		1.1	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	00600.0	0.0500		ND	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	0.0200	0.0200		ND	MG/L	NONE	354.1	NA	09/07/22	09297108
Pheophytin-a	1.00	1.00		28.3	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Phosphorus	0.0660	0.100		0.278	MG/L	365.2	365.4	09/09/22	09/12/22	196488
Solids, Total Suspended	3.33	3.33		27.0	MG/L	NONE	160.2	NA	09/07/22	09297105
Solids, Volatile Suspen	3.33	3.33		9.33	MG/L	NONE	160.4	NA	09/07/22	09297107
Total Organic Carbon	0.500	1.00		4.87	MG/L	NONE	415.1	NA	09/15/22	R318089

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-04, Inorganic Analyses

> 008995 Lab Report No:

CARLYLE LAKE

Project Name:

10/10/2022 Report Date: Analysis: Inorganics

Project No:							Z	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: 008995-05 Field ID: CAR-13 Received: 09/06/2022	5 22	Sampling Samplin Samplin	ਹ ਹ ਹ		CARLYLE LAKE 09/06/2022 1554			Matrix: Moisture:	: WATER : NA	
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ТОŎ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0540	0.200		QN	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	1.00	1.00		45.4	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
E. Coliform	1.00	1.00		450	COL/100 ML	NONE	1604	NA	09/06/22	09297106
Kjeldahl Nitrogen	0.475	1.00		UD	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	00600.0	0.0500		0.285	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	0.0200	0.0200		DN	MG/L	NONE	354.1	NA	09/07/22	09297108
Pheophytin-a	1.00	1.00		16.9	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Phosphorus	0.0660	0.100		0.132	MG/L	365.2	365.4	09/09/22	09/12/22	196488

09/07/22 09297105

09/09/22 NA NA NA

365.2 NONE NONE NONE

MG/L MG/L MG/L MG/L

4.00

4.00 4.00 0.500

Solids, Total Suspended Solids, Volatile Suspen Total Organic Carbon

4.00 1.00

0.132 56.0 10.4 3.0

365.4 160.2 160.4 415.1

09/07/22 09297107

R318089

09/15/22

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-05, Inorganic Analyses

Ч ч О Page 1

> 008995 Lab Report No:

CARLYLE LAKE

Project Name:

Report Date: 10/10/2022

Analysis: Inorganics

i

I.

Project No:							Z	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: 008995-06 Field TD: CAR-12	10	Samp. Sam	Sampling Loc'n: Sampling Date:		CARLYLE LAKE 09/06/2022			Matrix: Moisture:	: WATER : NA	
	52	sam	Sampling Time:							
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ГОQ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0270	0.100		ND	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	1.00	1.00		54.4	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
E. Coliform	1.00	1.00		825	COL/100 ML	NONE	1604	NA	09/06/22	09297106
Kjeldahl Nitrogen	0.475	1.00		1.1	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	00600.0	0.0500		0.092	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	0.0200	0.0200		ДN	MG/L	NONE	354.1	NA	09/07/22	09297108
Pheophytin-a	1.00	1.00		10.6	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Phosphorus	0.0660	0.100		0.223	MG/L	365.2	365.4	09/09/22	09/12/22	196488
Solids, Total Suspended	2.86	2.86		15.4	MG/L	NONE	160.2	NA	09/07/22	09297105
Solids, Volatile Suspen	2.86	2.86		5.43	MG/L	NONE	160.4	NA	09/07/22	09297107
Total Organic Carbon	0.500	1.00		5.81	MG/L	NONE	415.1	NA	09/15/22	R318089

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-06, Inorganic Analyses

Ч Page 1 of

> 008995 Lab Report No:

CARLYLE LAKE

Project Name:

Report Date: 10/10/2022

Analysis: Inorganics

Project No:							Z	NELAC Certified - IL100308	fied - IL1	00308
ARDL No: 008995-07	7	Sampling	1	Loc'n: CARL)	CARLYLE LAKE			Matrix:	: WATER	
Field ID: CAR-15		Samp	Sampling Date:		09/06/2022			Moisture:	: NA	
Received: 09/06/2022	22	Samp	Sampling Time:	ime: 1454						
						Prep	Analysis	Prep	Analysis	Run
Analyte	LOD	ГОQ	Flag	Result	Units	Method	Method	Date	Date	Number
Ammonia Nitrogen	0.0540	0.200		QN	MG/L	NONE	350.1	NA	09/13/22	R317956
Chlorophyll-a, Correcte	1.00	1.00		41.1	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Kjeldahl Nitrogen	0.475	1.00		1.0	MG/L	351.2	351.2	09/09/22	09/12/22	196489
Nitrate as Nitrogen	00600.0	0.0500		ΩN	MG/L	NONE	353.2	NA	09/14/22	R318037
Nitrite as Nitrogen	0.0200	0.0200		UN	MG/L	NONE	354.1	NA	09/07/22	09297108
Pheophytin-a	1.00	1.00		8.9	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104
Phosphorus	0.0660	0.100		0.267	MG/L	365.2	365.4	09/09/22	09/12/22	196488
Solids, Total Suspended	3.33	3.33		27.0	MG/L	NONE	160.2	NA	09/07/22	09297105
Solids, Volatile Suspen	3.33	3.33		9.67	MG/L	NONE	160.4	NA	09/07/22	09297107
Total Organic Carbon	0.500	1.00		4.62	MG/L	NONE	415.1	NA	09/15/22	R318089

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-07, Inorganic Analyses

Ч Page 1 of

	Report Date: 10/10/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA
62864			
Mt. Vernon, Illinois			CARLYLE LAKE 09/06/2022 1503
Mt. Veri			Sampling Loc'n: CARLYLE LAKE Sampling Date: 09/06/2022 Sampling Time: 1503
	Lab Report No: 008995	CARLYLE LAKE	ARDL No: 008995-08 Field ID: CAR-KP-MARINA Received: 09/06/2022
	Lab Report	Project Name: CARLYLE LAKE Project No:	ARDL No: Field ID: Received:

400 Aviation Drive; P.O. Box 1566 ARDL, INC.

Analysis Prep Analysis Run Method Date Date Number	1604 NA 09/06/22 09297106
Prep Method	NONE
Units	COL/100 ML
Result	47.0
Flag	
τοΩ	1.00
LOD	1.00
Analyte	E. Coliform

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-08, Inorganic Analyses

1566 54	Report Date: 10/10/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Prep Analysis Prep Analysis Run
400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864			Sampling Loc'n: CARLYLE LAKE Sampling Date: 09/06/2022 Sampling Time: 1344	Pr
	Lab Report No: 008995	Project Name: CARLYLE LAKE Project No:	ARDL No: 008995-09 Field ID: CAR-DW-MARINA Received: 09/06/2022	

ARDL, INC.

AnalyteLODLOQFlagResultUnitsPrepAnalysisRunE. Coliform1.001.00825COL/100 MLNONE1604NA09/06/2209297106		1	5								
1.00 1.00 825 COL/100 ML NONE 1604 NA	Analyte	LOD	год	Flag	Result	Units	Prep Method	Analysis Method	Prep Date	Analysis Date	Run Number
	E. Coliform	1.00	1.00		825	COL/100 ML	NONE	1604	NA	09/06/22	09297106

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-09, Inorganic Analyses

	Report Date: 10/10/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA	Analysis Prep Analysis Run Method Date Date Number	1604 NA 09/06/22 09297106
Box 1566 62864				Prep <i>I</i> Method	NONE
ARDL, INC. Aviation Drive; P.O. F ft. Vernon, Illinois (CARLYLE LAKE 09/06/2022 1458	Units	COL/100 ML
ARI ation DJ Vernon,				Result	150
400 Avi Mt.			Sampling Loc'n: Sampling Date: Sampling Time:	Flag	
			Samr San San	LOQ	1.00
	lo: 008995	CARLYLE LAKE	008995-10 CAR-BL-MARINA 09/06/2022	LOD	1.00
	Lab Report No:	Project Name: C Project No:	ARDL No: 0 Field ID: C Received: 0	Analyte	E. Coliform

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-10, Inorganic Analyses

	Report Date: 10/10/2022	Analysis: Inorganics NELAC Certified - IL100308	Matrix: WATER Moisture: NA
ARDL, INC. 400 Aviation Drive; P.O. Box 1566 Mt. Vernon, Illinois 62864			Sampling Loc'n: CARLYLE LAKE Sampling Date: 09/06/2022 Sampling Time: 1333
	Lab Report No: 008995	CARLYLE LAKE	008995-11 CAR-CSA-MARINA 09/06/2022
	Lab Report	Project Name: CARLYLE LAKE Project No:	ARDL No: 008995-11 Field ID: CAR-CSA-MA Received: 09/06/2022

	Analysis Run Date Number	09/06/22 09297106
	Prep Date	NA
	Prep Analysis Method Method	1604
	Prep Method	NONE
	Units	COL/100 ML NONE
Time: 1333	Result	200
Sampling Tir	Flag	
Sam	год	1.00
22	LOD	1.00
Received: 09/06/2022	Analyte	E. Coliform

(a) DOD and/or NELAC Accredited Analyte.

Sample 008995-11, Inorganic Analyses

62864 Mt. Vernon, IL 400 Aviation Drive; P.O. Box 1566 BLANK SUMMARY REPORT ARDL, INC.

Lab Report No: 008995

Report Date: 10/10/2022

Project Name: CARLYLE LAKE

NELAC Certified - IL100308

			Blank		Prep	Analysis	Prep	Analysis		QC Lab
Analyte	LOD	LOQ	Result	Units	Method	Method	Date	Date	Run	Number
(a) Iron	0.040	0.050	QN	MG/L	3010A	6010C	09/12/22	09/14/22	P7847	008995-01B1
(a) Manganese	0.004	0.005	UN	MG/L	3010A	6010C	09/12/22	09/14/22	P7847	008995-01B1
Ammonia Nitrogen	0.027	0.10	DN	MG/L	NONE	350.1	NA	09/13/22	R317956	008995-01B1
Chlorophyll-a, Corre	1.0	1.0	UN	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104	008995-02B1
Kjeldahl Nitrogen	0.48	1.0	QN	MG/L	351.2	351.2	09/09/22	09/12/22	196489	008995-01B1
Nitrate as Nitrogen	0.009	0.050	ΟN	MG/L	NONE	353.2	NA	09/14/22	R318037	008995-06B1
Nitrite as Nitrogen	0.020	0.020	QN	MG/L	NONE	354.1	NA	09/07/22	09297108	008995-01B1
Pheophytin-a	1.0	1.0	DN	MG/CU.M.	10200H	10200H	09/07/22	09/15/22	09277104	008995-02B1
Phosphorus	0.066	0.10	DN	MG/L	365.2	365.4	09/09/22	09/12/22	196488	008995-01B1
Solids, Total Suspen	1.0	1.0	DN	MG/L	NONE	160.2	NA	09/07/22	09297105	008995-06B1
Solids, Volatile Sus	1.0	1.0	ЛŊ	MG/L	NONE	160.4	NA	09/07/22	09297107	008995-06B1
Total Organic Carbon	0.50	1.0	DN	MG/L	NONE	415.1	NA	09/15/22	R318089	008995-01B1

(a) DOD and/or NELAC Accredited Analyte Inorganic Method Blanks for 008995

AR	ARDL, INC.	400 A1	LABORATORY CONTROL riation Drive; P.O.	400 Aviation Drive; P.O.	; P.O.	. Box 1566	L566 Mt	•	Vernon,	IL 62864
Lab Report No: 00	008995								Report Date:	Date: 10/10/2022
Project Name:	CARLYLE L	LAKE							NELAC C	NELAC Certified - IL100308
Analyte	LCS 1 Result	LCS 1 Level	LCS 1 & Rec	LCS 2 Result	LCS 2 Level	LCS 2 % Rec	% Rec Limits	Mean % Rec	Analytical Run	al QC Lab Number
(a) Iron	5.0	5.0	100	Ĭ	!	8	87-115		P7847	008995-01C1
(a) Manganese	0.76	0.75	102	1	ł	ł	90-114	ł	P7847	008995-01C1
Ammonia Nitrogen	1.0	1.0	104	ł	ł	ł	90-110	1	R317956	5 008995-01C1
Kjeldahl Nitrogen	9.7	10.0	97	ł	ł	1	90-110	ł	196489	008995-01C1
Nitrate as Nitrogen	0.49	0.50	98	ł	ł		90-110	ł	R318037	008995-06C1
Nitrite as Nitrogen	0.96	1.0	96	ł	ł	ł	80-120		09297108	3 008995-01C1
Phosphorus	0.90	1.0	06	ł	ł	ł	85-115	1	196488	008995-01C1
Total Organic Carbon	55.4	59.3	93	!	ł	!	90-110		R318089	008995-01C1
NOTE: Any values tabulated above marked with	cabulated above ma	ırked with	an asterisk are	sk are outside	of	acceptable limits.	mits.			

Inorganic LCS Results for 008995

	62864
	님
	Vernon,
REPORT	Mt.
DUPLICATE 1	1566
JPLI	Вох
MATRIX SPIKE/SPIKE DI	400 Aviation Drive; P.O.
	INC.
	ARDL,

Lab Report No: 008995

Report Date: 10/10/2022

Project Name: CARLYLE LAKE

NELAC Certified - IL100308

	Sample	Sample	MS	SM	SM	MSD	MSD	MSD	<pre>% Rec</pre>		RPD		QC Lab
Analyte	Matrix	Result	Result	Level	% Rec	Result	Level	% Rec	Limits	RPD	Limit	Run	Number
(a) Iron	WATER	0.75	1.7	1.0	95	1.7	1.0	96	87-115	1	20	P7847	008995-01MS
(a) Manganese	WATER	0.16	0.64	0.50	95	0.65	0.50	97	90-114	2	20	P7847	008995-01MS
Ammonia Nitrogen	WATER	DN	0.95	2.0	47 *	0.96	2.0	48 *	90-110	7	10	R317956	008995-01MS
Kjeldahl Nitrogen	WATER	1.1	10.3	10.0	92	10.3	10.0	92	90-110	0	15	196489	008995-01MS
Nitrate as Nitrogen	WATER	0.092	0.35	0.25	103	0.35	0.25	102	90-110	1	10	R318037	008995-06MS
Nitrite as Nitrogen	WATER	0.023	0.98	1.0	96	0.97	1.0	95	75-125	1	20	09297108	008995-01MS
Phosphorus	WATER	0.35	1.3	1.0	97	1.3	1.0	66	85-115	2	15	196488	008995-01MS
Total Organic Carbon	WATER	4.5	9.2	5.0	94	9.1	5.0	63	85-115	1	10	R318089	008995-01MS

Inorganic Matrix Spikes for 008995

(a) DOD and/or NELAC Accredited Analyte.

NOTE: Values tabulated above marked with an asterisk are explained in the associated narrative.

Page 1 of 1

ARDL Report 8995 - Page 17 of 22

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			41	_
62864	10/10/2022	led - IL100308	QC Lab Number	008995-02D1 008995-02D1	008995-06D1	008995-06D
	Report Date:	NELAC Certified	Analytical Run	09277104	09297105	09297107
r 6 Mt. Vernon, IL			Mean (Smp,D1,D2)	1 1	1	1
re repor: Box 156(			Percent Diff	9 44*	9	10
SAMPLE DUPLICATE REPORT ation Drive; P.O. Box 1566			Units	MG/CU.M. MG/CII M	MG/L	MG/L
SAMPLE ation Dri			Second Duplicate	1 1	!	
400 Avia			First Duplicate	67.1 15.7	16.3	6.0
INC.	ß	CARLYLE LAKE	Sample Conc'n	61.3 24.5	15.4	5.4
ARDI, INC.	Lab Report No: 008995	Project Name: CARLY	Analyte	Chlorophyll-a, Corrected Pheophytin-a	Solids, Total Suspended	Solids, Volatile Suspend

See Case Narrative for exceptions. * indicates that agreement between duplicates is greater than 20%. (a) DOD and/or NELAC Accredited Analyte Sample Duplicates for 008995



# Sample Receipt Information

Including as appropriate:

- COCs
- Cooler Receipts
- Airbills
- Email Communication / Instructions from Customer

ARDL Data Package 8995 - Inorganics

N:\ARDL Case Narratives\ARDL Data Package Contents.pdf - Revised June 21, 2019

Authorized By: DSD-QAO

ARDL Report 8995 - Page 19 of 22

2 11 12 13 13 13 13 13 13 13 13 13 13

	COOLER RECEIPT REP	<u>ORT</u>			
	ARDL, INC.				
ARI	DL#: 6995 Co	oler # Blue 1	0		
		mber of Coolers in Ship	- ment: <u>2</u>		_
Pro	ject: Carlyle Lake		2022		
A.	PRELIMINARY EXAMINATION PHASE: Date cooler was opened: 09/07/202	Z_(Signature)			
1.	Did cooler come with a shipping slip (airbill, etc.)?	•	YES (	NO)	)
	If YES, enter carrier name and airbill number here: <u>ARD</u> Cour	ier - Valerie			
2.	Were custody seals on outside of cooler?		YES	NO	N/A
	How many and where?,Seal-Date:	,Seal Name:			
3.	Were custody seals unbroken and intact at the date and time of arrival?		YES	NO	NA
4.	Did you screen samples for radioactivity using a Geiger Counter?			NO	
5.	Were custody papers sealed in a plastic bag? Hand delivered		YES	(NO)	<b>)</b> .
6.	Were custody papers filled out properly (ink, signed, etc.)?			NO	N/A
7.	Were custody papers signed in appropriate place by ARDL personnel?			NO	N/A
8.	Was project identifiable from custody papers? If YES, enter project name at the to	p of this form		NO	N/A
9.	Was a separate container provided for measuring temperature? YESNO	Observed Cooler Tem	p. 0.7 c	3	anysle
В.	LOG-IN PHASE: Date samples were logged-in: 09/07/2022(Signature)	iture) DCB Cori	rection factor	<b>0.</b> 0	
10.	Describe type of packing in cooler: LOOSE Ice				
11.	Were all samples sealed in separate plastic bags?		YES	NO	N/A
12.	Did all containers arrive unbroken and were labels in good condition?		YES	NO.	
13.	Were sample labels complete?			NO	
14.	Did all sample labels agree with custody papers?			NO	
15.	Were correct containers used for the tests indicated?			NO	
16.	Was pH correct on preserved water samples?			NO	N/A
17.	Was a sufficient amount of sample sent for tests indicated?			NO	
18.	Were bubbles absent in VOA samples? If NO, list by sample #:		YES	NO	MA
19.	Was the ARDL project coordinator notified of any deficiencies?		YES	NO	NA
	Comments and/or Corrective Action:	Sample	Transfer		
(	an 210 to 1 Tul	Fraction	Fraction		
	at =2=10 10 have IKN	/7 [ ] Area #	Area #		
V	erbally from Ben to Randy.	Walk-In			
	9/7/22	By	Ву		
	1.166	On	On		
		09/07/2022			
		Chain-of-Custody #	y Barton Milling attorned attorned attorned		-
(E	By: Signature) 13CB Date: 09 07 2022				

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17

	<u>COOLER RECEIPT RE</u> ARDL, INC.	PORT
ARI	DL #: 8995,8996	Cooler # <u>Blve Z</u> Number of Coolers in Shipment:
Pro	ect: Carlyle Lake, Kaskaskig River	Date Received:
A.	PRELIMINARY EXAMINATION PHASE: Date cooler was opened:	2022 (Signature) DCK
1.	• •	-
	Did cooler come with a shipping slip (airbill, etc.)? If YES, enter carrier name and airbill number here: <u>ARDL</u> <u>C</u>	ourier - Valerie
2.	Were custody seals on outside of cooler?	YES NO NA
	How many and where?,Seal Date:,	,Seal Name:
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES NO (NA)
4.	Did you screen samples for radioactivity using a Geiger Counter?	
5.	Were custody papers sealed in a plastic bag? Hound delivere	
6.	Were custody papers filled out properly (ink, signed, etc.)?	
7.	Were custody papers signed in appropriate place by ARDL personnel?	
8.	Was project identifiable from custody papers? If YES, enter project name at the	
9.	Was a separate container provided for measuring temperature? YES	NO Observed Cooler Temp C Sample
В.	LOG-IN PHASE: Date samples were logged-in: 00/07/2022 (Si	gnature)
10.	Describe type of packing in cooler: LOOSe Ice	
11.	Were all samples sealed in separate plastic bags?	
12.	Did all containers arrive unbroken and were labels in good condition?	VES NO.
13.	Were sample labels complete?	
14.	Did all sample labels agree with custody papers?	NO
15,	Were correct containers used for the tests indicated?	
16.	Was pH correct on preserved water samples?	É NO N/A
17.	Was a sufficient amount of sample sent for tests indicated?	
18.	Were bubbles absent in VOA samples? If NO, list by sample #:	YES NO (1/A)
19.	Was the ARDL project coordinator notified of any deficiencies?	YES NO (NA)
	Comments and/or Corrective Action:	Sample Transfer
		Fraction Fraction
	· · · ·	Area # A Area #
		By By
		By By
		On On
		01072022
		Chain-of-Custody #
(E	By: Signature) Date:	•

M:\ADMIN\FORMS\COOLER RECEIPT REPORT.doc Rev. 02/22/17